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Deciphering the suppressive immune microenvironment of
prostate cancer based on CD4+ regulatory T cells:
Implications for prognosis and therapy prediction

Dear Editor,
Prostate cancer (PCa) is traditionally considered an
immunologically cold tumour characterized by an
immunosuppressive tumour microenvironment (TME)
and a disappointing response to immunotherapy. Never-
theless, recent studies have demonstrated that the TME of
PCa is heterogeneous, and some PCa patients still exhibit
“hot tumours” and are sensitive to immunotherapy.1 Our
prior works also classified PCa into three phenotypes
according to variable immune status and emphasized
the important role of regulatory T (Treg) cells in shaping
the exhausted TME in PCa.2 In this study, we further
conducted an in-depth discussion on Treg cells, and the
detailed methods are listed in the Supporting Information
Data.
A total of 56924 cells from 14 samples with Gleason

scores were clustered and annotated into 13 cell types,
where the high variable of T cell attracted much atten-
tion (Figure 1A–C and Figure S1). We extracted and
re-clustered all T cells into 11 clusters (Figure S2A). Refer-
ring to published articles, these cells were annotated
into six cell populations (Figure 1D–F and Figure S2B),
where C3 exhibited the highest Treg score (p < 2.2e-
16) and C5 had the highest Th17 score (p < 2.1e-16);
we annotated C3 as Treg cells and C5 as Th17 cells
(Figure 1G). The ratio of Treg and Th17 is positively cor-
related with Gleason groups (p = .04, R = 0.65; Figure 1H
and Figure S2C), which was also comfited in an exter-
nal dataset (HRA000823, p = .039, R = 0.56; Figure
S3), indicating a positive correlation between high Treg
infiltration and poor prognosis. In multiplex immunoflu-
orescence experiment, more CD4+FOXP+Treg cells were
observed in high-risk PCa samples (Gleason score 4+5,
PSA > 100 ng/dL, T3bN1M0) than in low-risk sam-
ples (Gleason score 3+4, PSA 25.39 ng/dL, T2N0M0)
(Figure 1I). In addition, the abundances of CD8+effector,
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CTL, activate B and plasma B cells increased with Gleason
groups, and SPP1+macrophage presented a positive corre-
lation with Gleason groups, while no significance showed
(Figures S4–S6). Trajectory analysis revealedTreg andTh17
differentiated in distinct directions (Figure 2A), and the
expression patterns of branch-dependent genes were dif-
ferent. As shown in Figure 2B, G3 genes increased as cells
differentiated toward branch 2 (Treg) and were enriched
in the negative regulation of immune system processes,
which might better represent mature Treg cells.
Based on branch-dependent genes in the G3 cluster

(Figures S7 and S8), we assigned patients in the TCGA-
PRAD cohort into two phenotypes (Figure 2C): P2 exhib-
ited a poorer prognosis (p< .001, hazards ratio [HR]= 4.34,
95% confidence interval [CI]: 2.564–7.344), and a higher
Treg activity score (p = 3.39e-11), thereby nomenclature
as rich-Treg PCa (TregR) and P1 as poor-Treg PCa (TregP)
(Figure 2D,E). Notably, the two groups exhibited distinct
inflammation and immune status (Figure S9). Compared
to TregP, TregR had higher scores for immune-suppressed
signatures, such as transforming growth factor-β (TGF-β),
myeloid-derived suppressor cell (MDSC), tertiary lym-
phoid structure (TLS) and programmed cell death 1 (PD-1)
signatures (Figure 2F). Interestingly, higher scores of these
immune-suppressed signatures were also observed in the
immune-suppressed subtype, where TGF-β might be the
pivotal enforcer of immune tolerance and homeostasis.
Peripheral CD4+ T cells reportedly produce TGF-β under
suboptimal stimulation, initiating Treg transformation in
malignant cells.3 Treg cells also secrete abundant TGF-
β, inhibiting CD8+ T cells and thus advancing tumour
progression.4 Jiao et al. also emphasized the essential
role of TGF-β in shaping suppressive microenvironment
in PCa. As a common result, immunotherapy combined
with TGF-β inhibition may be a better treatment option to
further improve survival rates.5
In the three external cohorts, the risk of recurrence was

more than 6-fold greater for TregR than for TregP in the
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F IGURE 1 Single-cell analysis. (A) Uniform manifold approximation and projection (UMAP) visualization of 28 clusters. (B) UMAP
visualization of 13 cell types, including 33085 T cells, 3052 B cells, 3268 endothelial cells, 2476 basal epithelial cells, 1793 luminal epithelial
cells, 1167 club epithelial cells, 2126 mast cells, 2557 pericytes, 890 cDC cells, 148 pDC cells, 823 fibroblasts, 5420 macrophages/monocytes and
119 cycling T cell. (C) Dot plot showing the expression level of marker genes, including T cells (CD2, CD3D and CD3E), B cells (CD79A, CD79B
andMS4A1), endothelial cells (RAMP2, PLVAP, AQP1, ECSCR and VWF), basal epithelial cells (KRT5 and KRT14), luminal epithelial cells
(ACPP, KLK2 and KLK3), club epithelial cells (MMP7 andWFDC2), mast cells (TPSAB1 and CPA3), pericytes (RGS5, ACTA2 andMYH11), cDC
cells (CD1C, CD1E and CLEC9A), pDC cells (IL3RA, CLEC4C, LILRB4 and LILRA4), fibroblasts (VWF, DCN, LUM), macrophages/monocytes
(C1QB, C1QC, CD14, FCN1 and VCAN) and cycling T cells (CD2, CD3D, CD3E, MKI67 and PCNA). (D) A total of 33,085 T cells were further
extracted and performed batch effect elimination, dimensionality reduction and clustering and the UMAP plot showed the expression of
specific T cell markers of CD3D and CD3E. (E) The UMAP showed six types of T cells (11111 CTL, 3879 CD8+ T effector, 2397 NKT cells, 8651
CD4+ naïve T, 3679 CD4+ regulatory T [Treg] and 3368 Th17 cells). (F) Dot plot showing the expression of specific T cell markers among these
six type T cells, including CTL (CD8A, CD8B, GZMH and GZMA), CD8+ T effector cells (CD8A, CD8B, IFNG and GZMK), NKT cells (NKG7
and CD44), CD4+ naïve T cells (CCR7 and SELL), CD4+ Treg cell (CTLA4, TNFRSF4, TNFRSF8, RTKN2 and FOXP3) and Th17 cells (IL17A,
IL17F, RORC, CCL20 and CCR6). (G) Comparison of the AUCell score of Treg activity between the C3 cluster and the other 10 clusters (upper);
Comparison of the AUCell score of Th17 activity between the C5 cluster and the other 10 clusters (lower). (H) The correlation between
Gleason groups and Treg/Th17 ratios. (I) Multiplex immunofluorescence showed the location and co-location of CD4 and FOXP3 in prostate
cancer (PCa) tissues.
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F IGURE 2 Pseudotime analysis of CD4+T cells and construction of regulatory T (Treg)-prostate cancer (PCa) classification. (A)
Differentiation trajectories of CD4+Treg, Th17 and CD4+Naïve cells. (B) Branch point analysis based on pseudotime trajectory and GO
enrichment analysis. Genes of C1 expressed increase significantly as cells differentiate towards branch1 (Th17), and enriched into positive
regulation of immune pathways; less difference of C2 genes was observed in the two cell fates, which were more likely related to positive
regulation of T cell activation, mononuclear cell differentiation and positive regulation of leukocyte cell-cell adhesion; genes of C3 increases
as cells differentiate towards branch 2 (Treg), and were enriched into negative of immune system process; C4 genes highly expressed at the
initiation of two cell fates, which were enriched to cytoplasmic translation, response to heat, response to unfolding protein, response to
temperature stimulus and response to topologically incorrect protein. (C) Construction of a binary classification system for PCa based on
unsupervised clustering algorithms and 75 branch-dependent genes. (D) K-M plot showed poor-Treg PCa (TregP) had a higher survival
probability than rich-Treg PCa (TregR). (E) Comparison of Treg score between TregP and TregR. (F) Distribution of 14 immune-relevant
signatures among TregP and TregR.
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F IGURE 3 Validation in three external cohorts. (A) K-M analysis in AHMU-PC cohort. Rich-Treg PCa (TregR) presented shorter
recurrence-free survival (RFS, p < .001, hazards ratio [HR] = 6.6, 95%CI: 2.375–18.364) than poor-Treg PCa (TregP); (B) Comparison of the
Treg activity between TregP and TregR in AHMU-PC cohort, TregR presented higher Treg score (p = 5.07e-03) than TregP; (C) K-M analysis
in MSKCC cohort. Compared to TregP, TregR presented a shorter RFS (p = .026, HR = 0.45, 95%CI: 0.227–0.909); (D) Comparison of the Treg
activity between TregP and TregR in MSKCC cohort, and TregR presented higher Treg score (p = 2.70e-10) than TregP; (E) K-M analysis in
GSE25136 cohort. TregR had poorer clinical outcome than TregP (p = .026, HR = 2.17, 95%CI: 0.096–4.283); (F) Comparison of the Treg
activity between TregP and TregR in the GSE25136 cohort, higher Treg score was observed in TregR despite no statistical significance (p = .37),
which might be related to the small sample size.
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F IGURE 4 Comparison of gene mutation patterns, sensitivity to immunotherapy and chemotherapy and published molecular
classifications. (A) The top six most differently mutated genes between rich-Treg PCa (TregR) and poor-Treg PCa (TregP), including TP53,
MUC17, NALCN, DCHS2, DCHS2, MXRA5 and PIK3CA. (B) SubMap analysis for deciphering the different responses to anti-PD-1 or CTLA-4
therapy. (C) Comparison of the sensitivity to eight chemotherapeutic drugs, including bicalutamide, doxorubicin, etoposide, gemcitabine,
mitomycin C, vinorelbine, cisplatin, 5-fluorouracil and the lower IC50, the higher the sensitivity. (D) Sankey plot showed the distributions of
TregP and TregR in PMOC classification (left) and PAM50 classification (right). (E) χ2 test table showed the concrete proportions of TregP and
TregR subtypes in different molecular classifications.
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real-world AHMU-PC cohort (p < .001) and 2-fold greater
in the MSKCC (p = .026) and GSE23136 (p = .026) cohorts
(Figure 3). Similar trends, with elevated TGF-β, MDSC,
TLS and PD-1 scores in the TregR subtype, were consistent
across all cohorts (Figure S10).
Multiple somatic nucleotide variations underlie the

high heterogeneity of PCa, and TregR and TregP showed
distinct mutation landscapes (Figure S11 and Table S4),
among which the mutational differences in TP53 and
PIK3CA attracted our attention (Figure 4A). Variants of
the TP53 gene predisposed patients to aggressive PCa,
elevated chemoresistance and poor sensitivity to anti-PD-
1 therapy,6–8 which might be one of the explanations
for limited available treatments for TregR. Among the
enrolled eight chemicals, only cisplatin (p = .004) and
5-fluorouracil (p = .028) were effective against TregR,
while bicalutamide (p= 4.2e-11), doxorubicin (p= 5.3e-06),
etoposide (p = 1.9e-10), gemcitabine (p = .00053), mito-
mycin C (p = .0021) and vinorelbine (p = 2e-08) were
better for TregP (Figure 4B), as well as anti-PD-1 therapy
(Figure 4C). Overall, the susceptibility of the two sub-
types to the eight drugs was broadly consistent across
the three cohorts, except for cisplatin (Figure S12). As
an upstream effector of the PI3K-AKT-mTOR pathway,
PI3K activation usually occurs in advanced tumours and
PI3KA mutations are observed among nearly 28%–30% of
castration-resistant PCa.9 PI3K-AKT-mTOR pathway may
be aberrantly activated when AR receptors are strongly
inhibited, which contributes to the poor response of TregR
cells to bicalutamide.10 On the other hand, PI3K inhibitors
such as BKM120 and PX966 may help restore sensitivity to
bicalutamide in TregR.
We further compared PCa-Treg classification with two

proposed classifications (Figure 4D); the detailed informa-
tion was listed in Supplementary Methods. more TregR
belonged to PMOC2, with a weak response to androgen
deprivation therapy (ADT) and highermutation frequency
ofTP53, resulting in poor prognosis, whichwas also consis-
tent with TregR (Figure 4E). The overlap of TregR/PMOC2
defined the worst phenotype (p < .0001, Figure S13A).
In addition, more TregRs belonged to the luminal B sub-
type than to the TregP subtype (Figure 4E), and the
TregR/luminal B group also exhibited the poorest pheno-
type (p < .0001; Figure S13B). Similar clinical features of
TregR, PMOC2 and luminal B indicated the stability of
molecular typing to some extent. Although high-risk PCa
is determined bymany factors, Tregs are heavily weighted.
In this study, we combined single-cell and bulk RNA

sequencing to verify the driving role of Tregs in PCa.
Two phenotypes were defined, where TregR represented a
poor prognosis, immunosuppressed and poor therapeutic
response phenotype and TregP was the opposite. Charac-
teristics such as TGF-β expression and PI3KA and TP53

mutations facilitate the resistance to anti-PD-1 therapy
or ADT, further studies are needed to explore the spe-
cific underlyingmechanisms, whichwill help us overcome
ADT resistance and reverse the “cold” TME in TregR PCa.
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