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Abstract 
Objective: Pediatric patients have different diseases and outcomes than adults; however, existing phecodes do not capture the distinctive 
pediatric spectrum of disease. We aim to develop specialized pediatric phecodes (Peds-Phecodes) to enable efficient, large-scale phenotypic 
analyses of pediatric patients.
Materials and Methods: We adopted a hybrid data- and knowledge-driven approach leveraging electronic health records (EHRs) and genetic 
data from Vanderbilt University Medical Center to modify the most recent version of phecodes to better capture pediatric phenotypes. First, we 
compared the prevalence of patient diagnoses in pediatric and adult populations to identify disease phenotypes differentially affecting children 
and adults. We then used clinical domain knowledge to remove phecodes representing phenotypes unlikely to affect pediatric patients and cre
ate new phecodes for phenotypes relevant to the pediatric population. We further compared phenome-wide association study (PheWAS) out
comes replicating known pediatric genotype-phenotype associations between Peds-Phecodes and phecodes.
Results: The Peds-Phecodes aggregate 15 533 ICD-9-CM codes and 82 949 ICD-10-CM codes into 2051 distinct phecodes. Peds-Phecodes 
replicated more known pediatric genotype-phenotype associations than phecodes (248 vs 192 out of 687 SNPs, P< .001).
Discussion: We introduce Peds-Phecodes, a high-throughput EHR phenotyping tool tailored for use in pediatric populations. We successfully 
validated the Peds-Phecodes using genetic replication studies. Our findings also reveal the potential use of Peds-Phecodes in detecting novel 
genotype-phenotype associations for pediatric conditions. We expect that Peds-Phecodes will facilitate large-scale phenomic and genomic anal
yses in pediatric populations.
Conclusion: Peds-Phecodes capture higher-quality pediatric phenotypes and deliver superior PheWAS outcomes compared to phecodes.
Key words: phecodes; pediatrics; electronic health records (EHRs); phenotyping; phenome-wide association study (PheWAS); genomics. 

Background and significance
The pediatric spectrum of disease is distinct from its adult 
counterpart.1 Children experience a variety of illnesses not 
commonly observed in adults. This includes congenital 
anomalies, genetic disorders with early mortality, and certain 
infectious diseases.2,3 Conversely, adults experience many 
diseases unlikely to affect pediatric patients, such as Alz
heimer’s disease, breast and prostate cancer, osteoarthritis, 
and many other conditions associated with aging.4 Although 
pediatric data have rapidly accumulated in electronic health 
records (EHRs), pediatric patients have not been prioritized 

in developing high-throughput phenotyping tools such as 
phecodes. This has prevented researchers from performing 
focused large-scale analyses of pediatric data, including 
pediatric-specific phenome-wide association studies (Phe
WAS) and genome-wide association studies (GWAS), and has 
contributed to missed opportunities for scientific discovery.

The development of phecodes represents a key milestone in 
EHR phenotyping. Phecodes aggregate relevant International 
Classification of Diseases (ICD-9-CM, ICD-10-CM, and 
ICD-10) codes into distinct phenotypes to better represent 
clinically meaningful diseases and traits (eg, grouping 
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ICD-9-CM codes 162.� representing lung cancer and ICD-9- 
CM codes V10.1� representing a history of lung cancer).5,6

Phecodes are represented using numeric codes arranged in a 
three-level hierarchy, allowing phenotypes to be captured at 
various levels of granularity. Root phecodes, located at the 
top of the phecode hierarchy, provide the broadest phenotype 
definitions and are represented using whole numbers. These 
root phecodes can then branch into progressively more 
detailed sub-phecodes, indicated by decimal digits. In the cur
rent phecodes (version 1.2), up to two levels of additional 
phenotypic granularity (ie, two decimal places) are available 
for each root phecode. Phecodes with a single digit following 
the decimal point are referred to as level 1 sub-phecodes; level 
2 sub-phecodes have two digits after the decimal point. For 
example, root phecode 008 “Intestinal infection” branches 
into level 1 sub-phecode 008.5 “Bacterial enteritis”, which 
then branches into level 2 sub-phecode 008.51 “Intestinal E. 
coli” (Figure S1). Because of the decimal representation of 
sub-phecodes, a root phecode may only branch horizontally 
into a maximum of nine level 1 sub-phecodes (ie, xxx.1– 
xxx.9), each of which can then branch into up to nine level 2 
sub-phecodes (eg, xxx.11–xxx.19).

We previously demonstrated that phecodes produced supe
rior results in PheWAS compared to other coding systems, 
including ICD and the Clinical Classifications Software.5

Since their introduction, phecodes have been globally used in 
multiple studies to both replicate known genotype-phenotype 
associations and discover new ones.7–9 Phecodes have also 
been used beyond genetics to study long-term disease 
effects.10 The latest version of phecodes can be found at: 
http://www.phecode.org/

While the existing phecodes are valuable in biomedical 
research, they need to be optimized for use in pediatric phe
nomic analyses. Phecodes were developed using population- 
based diagnoses predominantly from adult patients, which 
do not accurately reflect pediatric conditions. Modifying the 
existing phecodes to capture diseases primarily affecting 
pediatric patients with increased granularity and exclude age- 
related diseases uncommon in the pediatric population 
presents an opportunity to increase statistical power for iden
tifying signals more efficiently and accurately.

In this study, we use current phecodes as a starting point to 
create Peds-Phecodes, specialized pediatric phecodes that 
more appropriately reflect the unique spectrum of pediatric 
disease, and evaluate their performance in large-scale Phe
WAS analyses using real-world data.

Materials and methods
Data source
We used de-identified EHR data from Vanderbilt University 
Medical Center’s (VUMC) Synthetic Derivative, a repository 
of rich, longitudinal clinical information encompassing data 
from >3.5 million patients, including data from >1 million 
pediatric patients.11 For our validation analyses, we also used 
data from VUMC’s DNA biobank, BioVU,12 which links the 
genetic data of >100 000 patients to their de-identified EHR 
data (>50 000 patients with available pediatric EHR data).

Pediatric phecode (Peds-Phecodes) development
We mapped ICD diagnoses captured while patients were <18 
years (pediatric) and �18 years (adult) in VUMC’s EHR to 
current phecodes (N¼ 1866) and compared the prevalence of 

each phecode in the pediatric and adult populations. We used 
the chi-square test to assess for significant differences in prev
alence between the two groups if both proportions were over 
5%. Otherwise, we used Fisher’s exact test to assess the dif
ference. We used a Bonferroni-corrected significance thresh
old to adjust for multiple testing. Additionally, we flagged 
phecodes with low pediatric patient representation (N<50 
pediatric patients) as phecodes for potential removal, as 50 
cases has been suggested to be the minimum sample size 
required to detect an association in PheWAS analyses of 
binary traits.13

We adopted a hybrid data- and knowledge-driven 
approach to develop the pediatric phecodes (Peds-Phecodes) 
(Figure 1). From bottom-up, we pruned the phecodes without 
sufficient pediatric patient representation to identify potential 
phecodes for removal. We iteratively remapped each sub- 
phecode with <50 pediatric patients (from a study popula
tion of >1 million pediatric patients) to the phecode directly 
above it in the phecode hierarchy, starting at the most granu
lar level of the hierarchy (level 2 sub-phecodes) and working 
up to the root phecode. In this way, we collapsed uncommon 
sub-phecodes while preserving the underlying hierarchical 
structure of the phecodes. For example, sub-phecodes 153.2 
“Colon cancer” and 153.3 “Malignant neoplasm of rectum, 
rectosigmoid junction, and anus” were consolidated into 
their root phecode 153 “Colorectal cancer”. Two pediatri
cians (SLV and PJK) reviewed the remaining low count phec
odes to identify those that represented diseases not applicable 
to the pediatric population (eg, phecode 453 “Chronic 
venous hypertension” and phecode 796 “Elevated prostate 
specific antigen”), which were then removed. Low pediatric 
count phecodes representing rare diseases (eg, phecode 209 
“Neuroendocrine tumors”) were preserved.

We then focused on the phecodes with significantly higher 
prevalence in our pediatric cohort. For each phecode with 
higher pediatric prevalence, the two pediatricians reviewed 
the distribution of pediatric and adult patient diagnoses 
mapped to the phecode and provided recommendations for 
new phecodes reflecting diseases of particular importance to 
the pediatric population (Figure S2). To provide a clearer pic
ture of the intra-phecode ICD distributions, ICD-10-CM 
diagnoses were converted to ICD-9-CM using the General 
Equivalence Mappings (GEMS) provided by the Centers for 
Medicare & Medicaid Services.14 Both the ICD-9-CM codes 
and matching ICD-10-CM codes were remapped to the newly 
created phecodes. We also mapped several ICD-10-CM codes 
without ICD-9-CM analogs (eg, ICD-10-CM codes related to 
COVID-19) to new phecodes. Because the existing phecode 
structure allowed for only nine sub-phecodes at levels 1 and 2 
of the phecode hierarchy, we incorporated letters into the 
sub-phecode decimal representation (eg, xxx.1A–xxx.1Z) to 
accommodate the addition of new phecodes that exceeded 
these limits. This approach ensured that all modified pheco
des continued to belong to the correct phecode “tree”.

PheWAS analyses
To validate the Peds-Phecodes, we conducted PheWAS analy
ses using Peds-Phecodes and the current phecodes independ
ently and compared their ability to replicate known 
genotype-phenotype associations from previous pediatric 
studies. We queried the NHGRI-EBI GWAS Catalog15 to 
find genetic variants associated with pediatric phenotypes for 
our PheWAS replication studies. We identified 687 SNPs in 
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the GWAS Catalog that could be investigated using VUMC’s 
DNA biobank. These SNPs were associated with eight differ
ent pediatric phenotypes: congenital heart disease, pyloric 
stenosis, Hirschsprung’s disease, hypospadias, caf�e-au-lait 
spots (observed in neurofibromatosis type I), pediatric eosi
nophilic esophagitis, childhood-onset asthma, and juvenile 
idiopathic arthritis. We performed PheWAS analyses for all 
687 SNPs using binary logistic regression, adjusting for sex 
and race. We only used diagnoses made during the pediatric 
age window (ie, ICD-9-CM and ICD-10-CM codes recorded 
at <18 years of age) in creating the phenotypes for PheWAS. 
We required a minimum of two instances of the ICD codes 
(both recorded at <18 years of age) for a patient to be 
counted as a case.

As in previous studies, replication was defined as the detec
tion of signals related to the phenotype of interest with con
cordant effect directionality and P< .05.6 We evaluated 
replication using both an exact and approximate phenotype 
match. In the exact phenotype match, we focused only on the 
PheWAS signal for the singular phecode best representing the 
phenotype of the genetic association from the GWAS Catalog 
(eg, Peds-Phecode 747.1113 “Transposition of great vessels” 
and phecode 747.13 “Congenital anomalies of great vessels” 
for replication of the association between rs150246290 and 
transposition of the great arteries16). In the approximate 
match, we broadened our replication phenotype, examining 
the signals for all sub-phecodes stemming from the root phe
code best matching the phenotype of the known association. 
For example, the approximated replication phenotype for the 
association between rs150246290 and transposition of the 
great arteries was represented by root phecode 747 “Cardiac 
and circulatory congenital anomalies” and all its sub- 

phecodes (N¼57 sub-phecodes in Peds-Phecodes, N¼ 5 in 
the current phecodes).

Beyond replication, we also evaluated the ability of the 
Peds-Phecodes to detect novel genetic associations compared 
to the existing phecodes. We compared the overlapping and 
unique signals generated in each PheWAS and examined the 
significant signals detected using Peds-Phecodes but not phec
odes (P < Bonferroni-corrected P).

We developed the PedsPheWAS R package to facilitate 
PheWAS analysis using the Peds-Phecodes (https://github. 
com/The-Wei-Lab/PedsPheWAS).

Results
Differences in disease prevalence in the pediatric 
and adult populations
We observed marked differences in the distribution of disease 
between the pediatric and adult populations. Phecode 465 
“Acute upper respiratory infections of multiple or unspecified 
sites” represented the most common overall pediatric disease 
phenotype, with a prevalence of 26.4% in the pediatric popu
lation compared to a prevalence of 16.9% in the adult popu
lation (P< .001), followed by phecode 656 “Other perinatal 
conditions of fetus or newborn” (pediatric preva
lence¼23.7%, adult prevalence¼1.7%, P< .001), a broad 
phecode encompassing a wide range of conditions including 
isoimmunization, endocrine and metabolic disturbances, 
hemorrhage, and hematological disorders. In contrast, the 
most common overall disease phenotype among the adult 
population was phecode 401 “Hypertension” (adult preva
lence¼31.8%, pediatric prevalence¼ 1.8%, P< .001).

Keep phecode 
(e.g., rare diseases)

Bottom-up

Phecodes with <50 
pediatric patients

Map sub-phecode to 
preceding phecode

Create new 
phecode(s)

Top-down

Phecodes with higher 
pediatric prevalence

Clinician review

EHR Original phecodes

Map ICD diagnoses to original phecodes:
● Pediatric (age <18)
● Adult (age ≥18)

Peds-Phecodes

Remove phecode 
(e.g., adult-onset 

diseases)
Keep phecode

Figure 1. Workflow for Peds-Phecodes development. We used a hybrid data- and knowledge-driven approach combining patient diagnosis counts from 
VUMC with clinician-led manual review to prune out phenotypes with little pediatric relevance (left) and create new phecodes for important pediatric 
phenotypes (right).
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Consistent with our hypothesis that pediatric and adult 
patients are differentially affected by disease, we found that 
nearly all phecodes (1783/1866, or 95.6%) differed signifi
cantly in prevalence in the pediatric and adult populations. 
We identified 317 phecodes with higher prevalence among 
pediatric patients at VUMC compared to adult patients and 
1466 phecodes with lower prevalence in pediatric patients 
compared to adults (Bonferroni-corrected P¼ .05/ 
1866¼2.7�10 − 5) (Tables S1 and S2). The phecodes with 
significantly higher pediatric prevalence included congenital 
anomalies (N¼ 51), disorders affecting the sense organs 
(N¼30), diseases affecting the digestive system (N¼26), 
and injuries and poisonings (N¼ 26). Among the phecodes 
with significantly higher prevalence in the adult population 
were diseases of the circulatory system (N¼164), genitouri
nary conditions (N¼157), and endocrine/metabolic condi
tions (N¼ 136). Figure 2 shows the top five level 2 sub- 
phecodes with significantly higher prevalence in the pediatric 
population, ordered by descending prevalence, along with the 
corresponding sub-phecodes with significantly higher preva
lence in the adult population.

Pediatric phecodes (Peds-Phecodes)
The final Peds-Phecodes set consists of 2051 phecodes, com
pared with 1866 phecodes in the most recent phecodes itera
tion. The 2051 Peds-Phecodes are subdivided into 586 root 
phecodes with five possible levels of sub-phecodes (N¼1016 
level 1 sub-phecodes, N¼322 level 2, N¼106 level 3, N¼18 
level 4, and N¼3 level 5), in contrast to the 1866 phecodes, 
which contain 585 root phecodes with two possible levels of 
sub-phecodes (N¼ 1012 level 1, N¼ 269 level 2). These 2051 
phecodes provide a mapping for 15 533 ICD-9-CM codes and 
82 949 ICD-10-CM codes. As the pediatric phecodes were 

developed using the existing phecodes as a starting point, there 
is still much overlap between the two, with 1693 shared phec
odes (Figure 3). In developing the Peds-Phecodes, 173 pheco
des were removed from the starting phecode set and 358 new 
phecodes were created. The majority of the new phecodes cre
ated (351/358) were sub-phecodes of existing root phecodes, 
resulting in an extension of the phecode hierarchy to a maxi
mum of six levels rather than three.

Furthermore, the Peds-Phecodes were recategorized into 19 
disease categories: circulatory system, dermatologic, endo
crine/metabolic, digestive, genitourinary, hematologic, muscu
loskeletal, neurological, renal/kidney, respiratory, sense 
organs, congenital anomalies and genetic disorders, infections, 
immunologic and inflammatory disorders, neoplasms, mental 
disorders, pregnancy complications, symptoms, and injuries 
and poisonings. The renal/kidney and immunologic and 
inflammatory disorders categories were newly created for the 
Peds-Phecodes. We sought to group the Peds-Phecodes into 
disease categories based on the affected anatomical location to 
highlight their etiology. For instance, Peds-Phecode 747 
“Cardiac and circulatory congenital anomalies” was placed 
into the circulatory system disease category, although phecode 
747 belongs to the congenital anomalies category in phecodes 
version 1.2. This recategorization primarily affected the Man
hattan plot visualization of the Peds-Phecodes PheWAS results 
by modifying the placement of certain phecodes along the x- 
axis of the plot. The recategorization did not have a quantita
tive impact on the signals detected in PheWAS.

Replication of known genotype-phenotype 
associations
Considering only the signal for the singular phecode best 
matching the phenotype of interest (ie, exact phenotype 
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Figure 2. Comparison of phecode prevalence between the pediatric and adult populations at VUMC. Patient diagnoses at <18 years of age were mapped 
to the most recent phecodes version. The top five phecodes with significantly higher pediatric prevalence are displayed in the top half the dumbbell plot; 
the top five phecodes with significantly higher prevalence among adults are shown in the bottom half. Because of the multiple levels of phecode 
granularity available, direct comparisons can only be made between phecodes existing at the same level of the phecode hierarchy. Here, we show 
results for the level 2 (ie, most granular) sub-phecodes in the current phecode hierarchy.
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match), use of the Peds-Phecodes replicated 88/687 (12.8%) 
of the SNP-phenotype associations extracted from the GWAS 
Catalog with P< .05, compared to 80/687 (11.6%) repli
cated using the phecodes. Given this relatively low replication 
rate for both phecode sets in the context of limited pediatric 
GWAS availability and the smaller pediatric sample sizes for 
PheWAS, we expanded our definition of the replication phe
notype. Rather than using a single phecode as the replication 
phenotype, we defined the replication phenotype using the 
root phecode best matching the phenotype of interest as well 
as all its sub-phecodes (ie, approximate phenotype match).

Using the approximate phenotype match, we successfully 
replicated 248/687 (36.1%) associations at P< .05 using the 
Peds-Phecodes, a significant increase from the 192/687 
(27.9%) replicated using the phecodes (P< .001 using McNe
mar’s exact test) (Tables S3 and S4). Additionally, use of the 
Peds-Phecodes generally yielded smaller P-values for known 
genotype-phenotype associations compared to the phecodes, 
despite similar statistical power based on the number of iden
tified cases (Figure 4).

Using Peds-Phecodes, we were able to replicate several gen
otype-phenotype associations that we were unable to repli
cate using the phecodes. In Figure 5, we show the results of 
our PheWAS for SNP rs2505998, a genetic variant in the 
RET gene, which has previously been shown to be associated 
with Hirschsprung’s disease, a congenital defect of the intes
tine that most commonly affects the colon and rectum.17 The 
PheWAS performed using Peds-Phecodes captured the 
expected association between phecode 750.214 
“Hirschsprung's disease and other congenital functional dis
orders of colon” (OR¼2.23, P¼ 6.02�10 − 4); however, the 
PheWAS using the phecodes was not able to exactly replicate 
the association (OR¼1.13, P¼ .22);. Our PheWAS analyses 
also reflected the higher granularity of phenotypes available 
through the Peds-Phecodes. In the PheWAS for rs138741144, 
an ASIC2 variant previously associated with cardiac septal 
defects,16 using Peds-Phecodes revealed significant associa
tions with phecode 747.113 “Common ventricle”, phecode 
747.128 “Atresia and stenosis of aorta”, phecode 747.13 

“Congenital anomalies of great vessels”, and phecode 
747.133 “Patent ductus arteriosus”. In contrast, the PheWAS 
using the phecodes produced a much less granular signal, 
with only one significant association related to congenital 
heart disease: phecode 747.13 “Congenital anomalies of 
great vessels” (Figure 6).

We also examined the overlap between the top signals pro
duced in PheWAS using Peds-Phecodes compared to pheco
des. For 99.7% (685/687) of SNP-phenotype pairs, the 
PheWAS analysis using Peds-Phecodes resulted in a larger 
number of signals with P< .05 compared to the PheWAS 
using the phecodes. We found a significant difference 
between the number of significant signals in the Peds- 
Phecodes PheWAS compared to the phecode PheWAS using a 
paired t-test (P< .001). The number of overlapping signals 
with P< .05 ranged from 2.3% (16/687) to 29.5% (203/ 
687). For each genotype-phenotype association, the PheWAS 
using Peds-Phecodes revealed several signals (minimum 
N¼ 3, maximum N¼75) that were not detected using the 
phecodes, representing potentially novel SNP-phenotype 
associations.

To further explore the novel associations identified using 
the Peds-Phecodes, we examined the unique signals detected 
in the Peds-Phecodes PheWAS analyses applying a 
Bonferroni-corrected significance threshold rather than a rep
lication P-value threshold. We found that the Peds-Phecodes 
identified novel associations for 147/687 (21.4%) of the 
SNPs tested in PheWAS, with a total of 348 novel associa
tions detected (maximum N¼16 for the TLR1 variant 
rs5743618) (Table S5). Interestingly, these new associations 
were not limited to new phecodes created when developing 
the Peds-Phecodes from the existing phecodes—we identified 
new genetic associations for 55 distinct phenotypes, 27 of 
which were phecodes shared by Peds-Phecodes and the phec
odes. For example, we identified 97 new genetic associations 
for phecode 465.3 “Acute upper respiratory infection” (a 
new phecode) and 43 new associations for phecode 079 
“Viral infection” (a shared phecode).

Discussion
The Peds-Phecodes represent a first attempt to develop a 
high-throughput EHR phenotyping tool specifically designed 
for pediatric research, with the aim of facilitating large-scale 
pediatric-specific phenome-wide and genome-wide studies by 
streamlining and standardizing the phenotyping process in a 
manner that reflects the unique pediatric spectrum of disease.

EHRs provide an archive of longitudinal clinical data with 
vast potential for research use. However, defining phenotypes 
efficiently and accurately for research within the EHR 
remains a challenging and nuanced process. Phecodes 
emerged from an effort to characterize the phenome by creat
ing standardized groupings of ICD codes to represent clini
cally meaningful phenotypes, making it possible to perform 
PheWAS analyses quickly and effectively using EHR data. 
However, phecodes were developed using population-based 
diagnoses predominantly affecting adult patients, and thus 
are best suited for cohorts primarily composed of adult 
patients.

When we mapped patient diagnoses in VUMC’s EHR to 
the current phecodes version, we observed distinct differences 
in the diagnoses recorded while patients were <18 years of 
age (ie, pediatric patients) and those recorded after patients 

Peds−Phecodes                                                                          Phecodes

173358 1693

Figure 3. Comparison of Peds-Phecodes and phecodes. Weighted Venn 
diagram showing the overlap between Peds-Phecodes and phecodes.
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were �18 years of age. As shown in Figure 2, phecodes 
related to infections (eg, otitis media) and congenital anoma
lies had higher prevalence in the pediatric population, 
whereas chronic diseases (eg, gastroesophageal reflux disease, 
obstructive sleep apnea, and major depressive disorder) were 
more common among adults. Given the use of ICD codes for 
medical billing in the United States, it is important to 
acknowledge that the diagnoses assigned to a patient may not 
always directly represent the patient’s true disease state, but 
rather an abstracted representation. Nonetheless, these 
observed differences reflect the unique distributions of dis
ease among pediatric and adult populations and highlight the 
need for modified phecodes for pediatric-specific PheWAS. 
Other studies have reported similar differences in patterns of 
disease among children and adults,18,19 providing further 
motivation for specialized pediatric phecodes.

We developed the pediatric phecodes using a hybrid data- 
and knowledge-driven approach—we leveraged diagnosis 
code counts to help us approximate the importance (or lack 
thereof) of each existing phecode in the pediatric population. 

Diagnosis codes provided a consistent and replicable way of 
performing the initial assessment and significantly reduced 
manual review efforts. Clinical domain knowledge then fine- 
tuned the detected signals and ascertained their practical 
importance. With this insight, we modified the existing phec
odes to capture diseases primarily affecting pediatric patients 
with increased granularity and exclude diseases not relevant 
to pediatric patients, capturing clinically meaningful pediatric 
phenotypes. The results of our PheWAS analyses reflect the 
ability of Peds-Phecodes to better capture pediatric condi
tions. Using Peds-Phecodes, we replicated more of the geno
type-phenotype associations extracted from the GWAS 
Catalog compared to the phecodes. We also found that using 
the Peds-Phecodes tended to produce smaller P-values in our 
PheWAS replication studies.

Peds-Phecodes substantially increased the granularity with 
which certain phenotypes could be characterized. In develop
ing Peds-Phecodes, we did not remove the underlying hier
archical structure of phecodes. Rather, we further extended 
the hierarchy vertically to accommodate a maximum of five 

A B

C

Figure 4. Performance of Peds-Phecodes and phecodes in PheWAS replication studies. Weighted Venn diagrams comparing Peds-Phecodes and 
phecodes in terms of their ability to replicate known genotype-phenotype associations (panel A), the replication P-values (panel B), and statistical power 
(panel C).
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levels of added granularity rather than two. We also extended 
the phecode hierarchy horizontally, incorporating alphanu
meric codes to allow a phecode to directly branch into more 
than nine possible sub-phecodes (eg, phecode 758.1A 
“Gonadal dysgenesis”). The results of our comparative Phe
WAS analyses highlight the advantages of the added granu
larity built into the Peds-Phecodes. When attempting to find 
an exact phenotype match for the replication studies, pheco
des tended to represent phenotypes that were much broader 
than the target phenotype. For instance, phecodes 751.12 
“Congenital anomalies of male genital organs” and 750.21 
“Congenital anomalies of intestine” were the best matches 
for hypospadias and Hirschsprung’s disease, respectively. 
However, the Peds-Phecodes directly represented these phe
notypes (phecodes 751.124 “Hypospadias” and 750.214 

“Hirschsprung's disease and other congenital functional dis
orders of colon”). Using an approximate phenotype match, 
we were able to replicate more known genotype-phenotype 
associations using the Peds-Phecodes largely because of their 
increased granularity.

Differences in the significant signals obtained in PheWAS 
using Peds-Phecodes and phecodes also revealed the potential 
of the Peds-Phecodes to detect novel associations. Although 
we found at least 16 overlapping phecodes with P< .05 in 
each PheWAS comparison, we also found at least three sig
nals with P< .05 unique to each Peds-Phecodes PheWAS for 
each SNP. Furthermore, we identified a total of 348 novel 
SNP-phenotype associations with Bonferroni significance 
using the Peds-Phecodes. These signals warrant further inves
tigation, and we hope to further explore the novel 

Figure 5. Comparative PheWAS analyses for rs2505998, which has previously been associated with Hirschsprung’s disease. PheWAS was performed 
using Peds-Phecodes (top) and phecodes (bottom). The lower horizontal line (blue) in each Manhattan plot indicates P¼ .05; the upper horizontal line 
(red) indicates the Bonferroni-corrected P-value threshold. In both analyses, the most significant PheWAS association for rs2505998 was observed for 
phecode 070.2 “Viral hepatitis B”.
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associations identified using the Peds-Phecodes in large-scale 
pediatric PheWAS analyses in future studies.

This study has several limitations. While we created over 
350 new phecodes in developing the Peds-Phecodes, we faced 
difficulties in finding SNPs associated with pediatric pheno
types for PheWAS validation, particularly in the realm of 
infectious diseases. This may in part have been due to our 
reliance on the GWAS Catalog to identify genetic associa
tions; use of other repositories of genotype-phenotype data 
(eg, Online Mendelian Inheritance in Man), particularly 
those focusing specifically on rare diseases, may have yielded 
other genetic variants for testing and should be explored in 
subsequent studies. Still, pediatric patients are comparatively 
understudied in GWAS and the pediatric-specific studies 
available tend to focus on a relatively small number of condi
tions, limiting the breadth of the replication PheWAS 

analyses that we were able to perform. We extracted 687 
SNPs associated with eight pediatric phenotypes from the 
GWAS Catalog. Four of these eight pediatric phenotypes 
were congenital anomalies, two were pediatric autoimmune 
diseases, one was a common inflammatory disease (asthma), 
and one was a rare disease (neurofibromatosis type I), provid
ing some level of variety but nothing close to comprehensive 
coverage of the pediatric phenome. Our replication analyses 
were also limited by smaller sample sizes resulting in lower 
statistical power, as there are less pediatric data contained 
within EHRs. However, pediatric EHR data will accumulate 
over time, paving the way for more high-powered PheWAS 
analyses in pediatric cohorts in the future. Finally, we 
acknowledge that the ICD code to phecode mapping will 
likely always have room for improvement. Knowledge assem
bly is an iterative process—as researchers apply the pediatric 

Figure 6. Comparative PheWAS analyses for rs138741144, which has previously been associated with cardiac septal defects. PheWAS was performed 
using Peds-Phecodes (top) and phecodes (bottom). The lower horizontal line in each Manhattan plot indicates P¼ .05. No signals cross the Bonferroni- 
corrected P-value threshold (upper horizontal line).
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phecodes in their work, we hope to incorporate their feed
back and continue to update the mapping. We will also con
tinue to extend the pediatric phecode map to include newly 
added ICD-10-CM codes.

The Peds-Phecodes can be browsed and downloaded at: 
http://www.phecode.org/

Conclusion
There is an urgent need for high-throughput EHR phenotyp
ing tools specialized for use in pediatric populations. Building 
on the existing phecodes, we developed new pediatric pheco
des (Peds-Phecodes) using a hybrid approach integrating 
diagnosis data and clinical domain knowledge. Using the 
Peds-Phecodes to conduct PheWAS analyses, we were able to 
replicate significantly more known genotype-phenotype asso
ciations for pediatric conditions compared to using the phec
odes, as well as identify potentially novel genotype- 
phenotype associations. We have made a PedsPheWAS R 
package to perform PheWAS using the Peds-Phecodes.
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