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Abstract 
Objective: Surgical outcome prediction is challenging but necessary for postoperative management. Current machine learning models utilize 
pre- and post-op data, excluding intraoperative information in surgical notes. Current models also usually predict binary outcomes even when 
surgeries have multiple outcomes that require different postoperative management. This study addresses these gaps by incorporating intrao-
perative information into multimodal models for multiclass glaucoma surgery outcome prediction.
Materials and methods: We developed and evaluated multimodal deep learning models for multiclass glaucoma trabeculectomy surgery out-
comes using both structured EHR data and free-text operative notes. We compare those to baseline models that use structured EHR data 
exclusively, or neural network models that leverage only operative notes.
Results: The multimodal neural network had the highest performance with a macro AUROC of 0.750 and F1 score of 0.583. It outperformed 
the baseline machine learning model with structured EHR data alone (macro AUROC of 0.712 and F1 score of 0.486). Additionally, the multimo-
dal model achieved the highest recall (0.692) for hypotony surgical failure, while the surgical success group had the highest precision (0.884) 
and F1 score (0.775).
Discussion: This study shows that operative notes are an important source of predictive information. The multimodal predictive model combin-
ing perioperative notes and structured pre- and post-op EHR data outperformed other models. Multiclass surgical outcome prediction can pro-
vide valuable insights for clinical decision-making.
Conclusions: Our results show the potential of deep learning models to enhance clinical decision-making for postoperative management. They 
can be applied to other specialties to improve surgical outcome predictions.
Key words: multimodal model; deep learning; multiclass surgical outcomes; glaucoma; operative notes. 

Introduction
The adoption of electronic health records (EHRs) has gener-
ated a large volume of clinical data that has shown significant 
potential for clinical research.1–3 Applications for this data 
include retrospective analysis, comparative effectiveness 
research, and artificial intelligence (AI) applications. AI tech-
niques have been successfully applied to EHR data in various 
domains, such as disease screening,4 diagnosis improvement,5

decision-making,6 and treatment outcome predictions.7

One area of medicine that has potential to benefit from AI 
predictions is the anticipation of potential surgical outcomes. 
Accurately predicting surgical outcomes is difficult, however, 
due to the complex nature of postoperative recovery. AI tech-
niques have been shown to outperform conventional risk 
stratification scores such as American Society of Anesthesiol-
ogists score and Surgical Apgar Score.8–11 Further, machine 

learning algorithms have been used in various specialties to 
predict surgical outcomes of postoperative complications and 
mortality.12 Some examples include predictions for postoper-
ative complications for end-stage renal disease patients, qual-
ity of life improvement for degenerative cervical myelopathy, 
and myopic regression after corneal refractive surgery.13–15

However, most of these surgical outcome prediction models 
focused on binary outcomes—success or failure—and 
included only structured data about patients’ pre- and post- 
op conditions. Surgeries can have multiple outcomes that 
need different postoperative management.16–19 In particular, 
glaucoma surgery postoperative care differs depending on the 
types of surgical failure and success.16 However, previous 
models have only predicted binary outcomes of success 
or failure and used only pre- or post-op structured EHR 
data.20–22
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Glaucoma is a disease of the optic nerve and is a leading 
cause of blindness worldwide.23 Glaucoma surgeries attempt 
to reduce intraocular eye pressure (IOP) that can lead to optic 
nerve damage and vision loss. The surgeries have 3 long-term 
outcomes: failure due to elevated IOP, failure due to low 
IOP, and surgical success.24 Glaucoma surgery outcomes are 
highly dependent on postoperative management within the 
first 3 months following surgery and this care differs accord-
ing to anticipated long-term outcomes.16,17 For example, the 
dosage of steroids, usage of antifibrotic agents, and timing of 
suture lysis may differ based on the anticipated long term 
IOP.16,17 Thus, it is clinically important to predict multiple 
surgical outcomes immediately following glaucoma surgery.

While most previous surgery prediction models use pre- 
and post-op structured patient data, there is a wealth of intra-
operative information reflecting patients’ conditions and care 
during the surgery that are useful for predicting outcomes. 
The operative note is a clinical document that records intrao-
perative information such as surgical findings, procedures 
performed, and the patient’s condition during the surgery. 
Incorporating this information into the prediction model may 
improve the model’s performance but requires extra process-
ing since operative notes are free-text documents. Natural 
language processing (NLP) can be used to process free-text 
EHR data with techniques such as deep contextualized word 
representations,25–27 information extraction,28,29 and text 
classification.30,31

Recently, deep learning multimodal models have combined 
structured EHR data and free-text data to develop prediction 
models, leveraging flexible deep neural networks that inte-
grate diverse functional blocks in a single model.32–34 In this 
study, we hypothesize that a multimodal deep neural network 
incorporating both structured EHR data and free-text opera-
tive notes can enhance the prediction of multiclass glaucoma 
surgical outcomes. We aim to evaluate the impact of includ-
ing operative notes in these multimodal models and to iden-
tify the most effective methods for extracting information 
from these notes, comparing transformer encoder blocks, 
long short-term memory (LSTM) units, and a pretrained 
large language model (LLM) called Bio-Clinical Bidirectional 
Encoder Representations from Transformers (BERT).31,35,36

Methods
Overview
We evaluate the prediction power of operative notes in multi-
modal models for multiclass glaucoma surgery outcome pre-
diction. We implemented and evaluated 3 groups of models: 
(1) structured EHR data alone, (2) operative notes alone, and 
(3) a multimodal combination of both data. We optimized 
the model architecture and hyperparameter settings of all 
models.

Setting
Oregon Health & Science University (OHSU) is a large aca-
demic medical center in Portland, Oregon. This study was 
conducted at Casey Eye Institute (CEI), OHSU’s ophthalmol-
ogy department serving all major ophthalmology subspecial-
ties. The department performs over 130 000 outpatient 
examinations annually and is a major referral center in the 
Pacific Northwest and nationally. This study adhered to the 
tenets of the Declaration of Helsinki and was approved by 

the Institutional Review Board at OHSU (IRB No. 
STUDY00020203).

Cohort
The study included patients aged 18 years or older who 
underwent primary trabeculectomies (Current Procedural 
Terminology codes 66170 and 66172) from January 1, 2010 
to May 31, 2021, at OHSU CEI. We collected structured 
EHR data and operative notes for the study patients from the 
enterprise-wide clinical warehouse. Patients were excluded if 
they: (1) were under 18 years old; (2) did not have a complete 
operative note; (3) had a trabeculectomy combined with 
other procedures except phacoemulsification; (4) had less 
than 1 year of follow-up visit data.

Input features: structured EHR data
The structured data features were composed of preoperative 
EHR features and early postoperative features. The preopera-
tive data included demographic information, glaucoma diag-
nosis, active medication usage before the surgery, chronic 
systemic diseases, procedure type, conjunctiva conditions, the 
best recorded distance visual acuity measures (converted to 
continuous logMAR values),37 and the highest IOP recorded 
6 months prior to surgery. For demographic information, 
patient’s age, gender, ethnicity, insurance information, and 
smoking history were included. The postoperative features 
included IOP measures at multiple time points (at day 1, day 
2 to day 14, and day 15 to day 30) and the best visual acuity 
measured within 30 days (again, converted to logMAR). All 
categorical features were converted into binary features. 
Numeric features were normalized, and linear imputation 
was used to handle the missing data. In addition, all features 
with less than 2% variance were removed. The final input 
structured dataset contained 75 features.

Input features: free-text operative notes
Operative notes are free-text clinical documents that record 
detailed information about the surgery, including all steps 
carried out in the procedure, medications or materials uti-
lized, surgical findings, complications discovered intraopera-
tively, and the estimated blood loss. In our study, we used the 
primary trabeculectomy operative notes for each eye. All 
notes were preprocessed by removing special characters and 
punctuation, converting to lowercase, removing custom stop 
words, and tokenizing the text. Tokenization divides text 
into smaller units called tokens, which can be individual 
words, punctuation marks, or subword units. Tokenization 
helps standardize text input for further NLP task. The toke-
nized operative notes were then mapped to custom 50D word 
embeddings by training the unsupervised word2vec model38

with 50D word embeddings. The word2vec model is a neural 
network-based technique that learns to map words to vectors 
of real numbers, capturing semantic relationships among 
them. We optimized the dimensions of word embeddings (50, 
100, 300) with the classification models, and the 50D word 
embeddings showed the best performance. The operative 
notes were processed to a fixed length of 512 tokens to 
ensure the consistency of the input text; longer notes (n¼25) 
were truncated, and the shorter notes were padded. The 
word2vec model was trained on approximately 5000 
glaucoma-related operative notes from the CEI data ware-
house. We utilized the Gensim toolkit39 with the Continuous 
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Bag of Words40 model to conduct the training in the Python 
3.9.0 environment.41

Outcome variable: surgical outcome
Outcomes for trabeculectomy surgeries at 1 year are: (1) sur-
gical success, (2) surgical failure due to elevated IOP, and (3) 
surgical failure due to low IOP (hypotony). Surgical failure 
due to elevated IOP was defined as postoperative IOP higher 
than 21 mmHg or less than 20% IOP reduction from preop-
erative baseline for 2 consecutive follow-up visits after 
3 months, or reoperation for glaucoma due to continuous 
high IOP. Similarly, surgical failure due to hypotony was 
defined as postoperative IOP of 5 mmHg or lower on 2 con-
secutive follow-up visits 3 months after surgery, or reopera-
tion due to hypotony. Eyes not meeting failure criteria were 
considered surgical successes.

Models
We developed 3 groups of classification models to identify 
glaucoma patients with high risk of surgical failures after 30- 
day postsurgery: (1) models that used structured EHR data 
alone, (2) models that used unstructured operative notes 
alone, and (3) multimodal models that combined structured 
and unstructured data inputs. These models were imple-
mented using Pytorch,42 Scikit-learn,43 and Hugging Face’s 
Transformers44 in the Python environment.41 We experi-
mented with several architectures for the transformer-based 
and LSTM-based multimodal neural networks. For the trans-
former encoder blocks, our primary investigations used archi-
tectures akin to BERT. The best configuration comprised 12 
transformer layers, 768 hidden units per layer, and 10 atten-
tion heads. Additionally, our evaluations of the LSTM mod-
els revealed that an architecture with a singular layer, 50 
hidden units, and a unidirectional structure yielded the opti-
mal results.

All models were trained with hyperparameters, including 
optimizers, learning rates, batch size, and dropout rates. Dur-
ing the training process, the models were optimized to mini-
mize the cross-entropy loss value. To circumvent any bias 
arising from the data imbalance, which could cause the mod-
els to consistently predict success, we fine-tuned the models 
on a validation set by monitoring the macro-averaged area 
under the receiver operating characteristic curve (AUROC) 
score and F1 score. We also incorporated class weights, with 
the weight decay (L2 regularization) set to 1e-5 to handle the 
overfitting issue. The highest-performing neural network 
models incorporated the Adam optimizer, utilizing the ReLU 
activation function. The models were trained with a batch 
size of 16 and an initial learning rate of 4e-5.

EHR structured data classification model
We trained an artificial neural network (ANN) and a random 
forest (RF) with structured input features as the baseline 
models. The ANN model features 2 dense layers with a drop-
out (0.5) layer, followed by an output layer with softmax 
function to predict the probability of surgical outcomes 
(Dimension: 75D -> 256D -> 64D -> 3D). The RF used a 
bootstrap aggregating-based ensemble method that is popular 
in many clinical prediction models.45 Five-fold cross-valida-
tion was used to tune the hyperparameters of the RF model 
and avoid overfitting.

Text classification model
We developed a classification model using the operative 
notes, comparing 2 popular text classification models: trans-
former encoder block and LSTM neural networks, since both 
had been previously shown to perform well in text classifica-
tion tasks.46 The pretrained word embeddings from our notes 
were input to the transformer encoder blocks and LSTM 
layer (50 hidden units), then connected to the 2 dense layers 
and the softmax output layer (Dimension: 50D -> 256D ->
64D -> 3D). Batch normalization and dropout (0.5) layers 
were used to prevent gradient vanishing and overfitting. The 
transformer model consisted of 10 attention heads, 12 layers 
of transformer blocks, and 768 hidden units.

Multimodal model
We developed multimodal deep learning models to verify our 
hypothesis that operative notes can improve the predictive 
model performance by combing structured input features 
with unstructured notes. Figure 1 shows the multimodal neu-
ral network architecture which combines both structured 
input features and operative notes using 3 different text proc-
essing models: transformer encoder blocks, LSTM models, 
and a LLM: Bio-Clinical BERT (note: we used this model 
only in the multimodal model and not in the text classifica-
tion models). The intermediate-fusion strategy was used to 
combine the 2 types of models. The operative notes were 
mapped to the aforementioned custom word embeddings and 
then passed through transformer encoder blocks (12 layers) 
with 10 attention heads and 768 hidden units (Figure 1A) 
and the LSTM layer with 50 hidden units (Figure 1B). A 
global average pooling layer was added to output the final 
text vector, which was then concatenated with the structured 
features. For the Bio-Clinical BERT model (Figure 1C), we 
utilized the BERT tokenizer to process the operative notes. 
The structured features were input to the model and con-
catenated with the text vector and passed through 2 dense 
layers before reaching the final output layer with a softmax 
function (Dimension: 125D -> 256D -> 48D -> 3D). Batch 
normalization and the dropout (0.5) layers were used to pre-
vent the gradient vanishing and overfitting. The code for the 
transformer-based and Bio-Clinical BERT multimodal mod-
els is publicly available on GitHub.

Model evaluation
The dataset was randomly split on the patient level: 70% of 
the data was used for training, 10% for validation, and 20% 
for testing. We used the AUROC, area under precision–recall 
curve (AUPRC), balanced accuracy, precision, recall, specific-
ity, negative predictive value (NPV) and F1 score as the main 
evaluation metrics on the test dataset. For the multiclass clas-
sification task, we calculated the macro average and One-vs- 
Rest (ovr) of AUROC and the macro average and per class of 
precision, recall, specificity, NPV, F1 score, and AUPRC. 
Additionally, we calculated a precision–recall curve for dif-
ferent thresholds.

Results
Table 1 shows the descriptive characteristics of the patients 
in the study cohort. A total of 1540 eyes from 1326 patients 
who underwent trabeculectomy between January 2010 and 
May 2021 met the inclusion criteria. At 1 year, 193 (13%) 
eyes were defined as surgical failure due to hypotony, 183 
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(12%) eyes were defined as surgical failure due to elevated 
IOP, and 1164 (75%) eyes were defined as surgical success. 
The patient demographic showed that the majority of 
patients were Caucasians (86%) and females (57%), with a 
diagnosis of primary open-angle glaucoma (72%). The 
patient’s average age was 64 years and most patients had 
Medicaid (49%), followed by commercial insurance (42%). 
The mean IOP before the surgery was near 21 mmHg and the 
mean logMAR visual acuity was 0.25, which is equivalent to 
Snellen of 20/36.

Figure 2 presents the macro receiver operating characteris-
tic curves on the test dataset for: (1) the ANN and RF models 
with structured input features alone, (2) the text classification 
models (text-transformer and text-LSTM) with operative 
notes alone, and (3) the transformer, LSTM, and Bio-Clinical 
BERT multimodal models (MNN-transformer, MNN- 
LSTM, and MNN-BioClinicalBERT) with both structured 
EHR data and operative notes. Table 2 shows macro-average 
evaluation metrics, including the precision, recall, specificity, 
NPV, balanced accuracy, F1 score, AUPRC, and AUROC for 

the 6 models. The transformer multimodal neural network 
had the highest macro-average AUROC (0.750), AUPRC 
(0.564), and F1 score (0.583), followed by Bio-Clinical BERT 
multimodal neural network (AUROC¼0.735; 
AUPRC¼0.538; F1 score¼ 0.526), and the LSTM multimo-
dal neural network (AUROC¼0.725; AUPRC¼ 0.537; F1 
score¼0.491). The predictive models with structured EHR 
data or operative notes alone showed lower model perform-
ance for AUROC, AUPRC, and F1 score.

ROCs and P–R curves of each class and macro average on 
the test dataset for the transformer multimodal neural net-
work are shown in Figures 3 and 4. Also in Table 3, the eval-
uation metrics for each class were depicted for the 3 
multimodal neural networks. The model shows the highest 
AUROC (0.787, ovr) for the elevated IOP surgical failure 
group, followed by the hypotony surgical failure group 
(0.756, ovr), and the surgical success group (0.707, ovr). In 
addition, the model had the highest recall (0.692) for hypot-
ony surgical failure, while the surgical success group had the 
highest precision (0.884) and F1 score (0.775). Overall, the 
model showed a better discriminate ability to predict the ele-
vated IOP surgical failure (AUROC¼0.787; 
AUPRC¼0.463; F1-score¼ 0.512) than hypotony surgical 
failure (AUROC¼0.756; AUPRC¼ 0.373; F1- 
score¼0.462).

Discussion
In this study, we used deep learning models to predict multi-
class surgical outcomes for glaucoma patients and evaluated 
the predictive power of operative notes in these models. We 
also compared methods to extract information from the oper-
ative notes in a multimodal deep learning model. We had 3 
key findings: (1) operative notes provide useful predictive 
information, (2) the transformer-based multimodal neural 
network model outperformed the baseline model, and the 
other multimodal models using Bio-Clinical BERT and 
LSTM, and (3) using multiclass surgical outcome prediction 
for glaucoma patients provides relevant information for clini-
cal decision-making.

Our first key finding was that operative notes can be used 
to improve surgical outcome prediction by incorporating 
structured EHR data. To the best of our knowledge, this 
work is the first study investigating the usage of free-text 
operative notes in a multimodal predictive model for surgical 

Figure 1. Overview of multimodal neural network architectures used: (A) transformer-based model, (B) LSTM-based model, and (C) Bio-Clinical BERT- 
based model. Abbreviations: LSTM, long short-term memory; BERT, Bidirectional Encoder Representations from Transformers.

Table 1. Demographic and clinical characteristics.

Total (1540 eyes)

Age, years
Mean (SD) 63.55 (15.69)

Sex
Male 661 (43%)
Female 879 (57%)

Race
White 1329 (86%)
Non-White Hispanics 56 (4%)
Black 50 (3%)
Asians 60 (4%)
Others 45 (3%)

Clinical characteristics
Mean intraocular pressure (mmHg) 21.07 (8.6)
Mean visual acuity (logMAR) 0.25 (0.41)
Mean number of glaucoma medications 2.59 (1.41)

Surgical outcomes
Success 1164 (75%)
Low IOP surgical failure 193 (13%)
Elevated IOP surgical failure 183 (12%)

Healthcare insurance
Medicaid 62 (4%)
Medicare 756 (49%)
Commercial insurance 641 (42%)
Unknown 81 (5%)
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outcomes. Previous studies mostly used structured data, 
including patients’ pre-existing conditions or early postopera-
tive clinical measures to develop surgical outcome prediction 
models.13–15,20,47 The result of this study demonstrated the 
multimodal neural network that combined structured inputs 
and unstructured operative notes (transformer multimodal 
neural network, macro-average AUROC¼ 0.75; 
AUPRC¼0.564; F1 score¼0.583) performed better than the 
model using structured data alone (RF model, macro-average 
AUROC¼0.712; AUPRC¼0.529; F1 score¼ 0.486) or 
operative notes alone (transformer-based text classification 
model, macro-average AUROC¼ 0.648; AUPRC¼0.416; F1 
score¼ 0.414). The operative notes included information 
that was not present in the structured EHR data, such as sur-
gical findings and techniques, medications or materials used, 

and intraoperative complications, etc. This finding indicates 
that free-text operative notes and structured inputs can com-
plement each other in predictive modeling, which may lead to 
performance improvement. This concept can be applied to 
other surgeries and specialties to improve model performance 
of surgical outcome prediction.

Our second key finding revealed that the transformer- 
based multimodal model, supplemented with custom word 
embeddings, outperformed other methods. In our study, the 
transformer-based multimodal model outperformed both 
Bio-Clinical BERT and LSTM-based models in terms of 
macro AUROC and F1 scores. This superiority is likely 
attributable to the limitations of LSTMs in handling long text 
sequences effectively. Additionally, our transformer-based 
model used custom word embeddings, which seemed to offer 

Figure 2. Multiclass receiver operating characteristic curves on the test dataset for the ANN, random forest, text-transformer, text-LSTM, transformer- 
based multimodal model, Bio-Clinical BERT-based model, and LSTM-based multimodal model. Abbreviations: S, structured data; O, operative notes; 
ANN, artificial neural network; RF, random forest; MNN, Multimodal Neural Network; LSTM, long short-term memory; BERT, Bidirectional Encoder 
Representations from Transformers.

Table 2. Comparison of model performance using macro-average metrics.

Surgical outcomes predictions (macro)

Model inputs Precision Recall Specificity NPV Balanced accuracy F1 score AUPRC AUROC

ANN S 0.492 0.470 0.723 0.730 0.597 0.476 0.521 0.708
Random forest S 0.495 0.487 0.738 0.723 0626 0.486 0.529 0.712
Text-Transformer O 0.461 0.410 0.707 0.752 0.411 0.414 0.416 0.648
Text-LSTM O 0.388 0.409 0.697 0.693 0.409 0.391 0.409 0.630
MNN-Transformer SþO 0.559 0.659 0.811 0.774 0.735 0.583 0.564 0.750
MNN-BC_BERT SþO 0.509 0.581 0.760 0.738 0.670 0.526 0.538 0.735
MNN-LSTM SþO 0.477 0.527 0.749 0.735 0.635 0.491 0.537 0.725

Abbreviations: S, structured data; O, operative notes; ANN, artificial neural network; MNN, Multimodal Neural Network; LSTM, long short-term memory; 
BC_BERT, Bio-Clinical BERT; NPV, negative predictive value; AUPRC, area under precision–recall curve; AUROC, area under the receiver operating 
characteristic.
The bold in the table is maximum values of that evaluation metrics.
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advantages in information extraction for specific tasks, com-
pared to pretrained BERT models trained on broader, larger 
medical text corpora. Before incorporating Bio-Clinical 
BERT into the multimodal architecture, we also experi-
mented with text classification using Bio-Clinical BERT on 
operative notes alone and found comparable results with the 
transformer-based model (not shown).

In recent years, LLMs have attracted attention due to their 
emergent properties and multimodal capabilities. These fea-
tures give them an advantage in processing and understand-
ing complex textual information. Several LLMs, trained on 
domain-specific clinical data like Bio-Clinical BERT, are pub-
licly available. These models have found multiple applica-
tions in clinical and healthcare settings, including clinical 

Figure 3. Receiver operating characteristic curves of each class and macro average on the test dataset for the transformer multimodal neural network.

Figure 4. Precision–recall curves of each class on the test dataset for the transformer multimodal neural network.
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decision support, EHR data processing, radiology reporting, 
and patient-interaction chatbots.48–50 However, it is impor-
tant to note that these models, while promising, have limita-
tions. They are prone to issues such as hallucination, 
sensitivity to prompt variations, and brittleness.51

In this study, we used the word2vec-based custom word 
embeddings to preprocess the free-text operative notes. Pre-
vious studies have shown that transformer blocks with pre-
trained embedding gave promising results compared to 
classical deep learning models in text classification 
tasks.36,46,52 However, those studies often relied on large 
datasets comprising over a million sentences. In contrast, our 
study utilized a relatively smaller dataset—around 150 000 
sentences—to develop custom pretrained word embeddings. 
Given that data scarcity is a common challenge, our findings 
suggest that transformer encoder, when combined with cus-
tom word embeddings, can be effective even with limited 
sample sizes.

Our final key finding was that our result demonstrates that 
machine learning algorithms can be utilized to predict multi-
class outcomes, which is crucial for postoperative care 
decision-making for surgeries with multiple outcomes such as 
glaucoma. In a previous study, machine learning algorithms 
with structured EHR data were used to predict the binary 
outcome of success or failure for long-term surgical outcomes 
for glaucoma patients with AUROC of 0.74.20 In our study, 
we focused on the multiclass outcome of success, failure due 
to high IOP, or failure from hypotony, which provides more 
practical assistance for clinical decision-making, since post-
operative treatment varies drastically according to the antici-
pated long-term surgical outcome.17,53 For example, 
patients at risk for high IOP failure need early laser suture- 
lysis or suture adjustment, antifibrotic injections, higher ste-
roid dosing, and even mini-procedures such as in-office nee-
dling to break down early fibrosis. Needling performed 
within 4-6 months from the surgery was reported to be more 
successful.54 On the other hand, patients at risk for hypotony 

should not have laser suture-lysis, anti-fibrotic agent, and a 
steroid taper should be considered. All of these management 
options are performed during the postoperative period at the 
doctor’s discretion. Therefore, the model’s ability to predict 
surgical failure due to either high or low IOP can help guide 
the doctor’s management to create a personalized postopera-
tive plan. In our study, with the reasonable threshold settings, 
the optimized multimodal neural network achieved a recall 
score of 0.691 for the hypotony surgical failure cohort and 
0.543 for the elevated IOP surgical failure cohort. This result 
indicated that the model could correctly identify more than 
half of the patients with surgical failures within 1 year. With 
this result, the prediction model might be able to inform 
physicians of the potential risk for specific surgical failures so 
that the patients could receive more appropriate therapy.

Although these models have not reached ideal performance 
(ie, AUROC and F1 scores close to 1), they still represent 
advances in model development and prediction and are con-
sistent with other similar models. For example, a recently 
published study using multimodal machine learning 
approaches to predict myopic regression after corneal refrac-
tive surgery showed the performance with AUROC of 0.75.15

Similarly, prior research has shown that machine learning 
algorithms, using preoperative surgical data, could identify 
higher-risk groups for glaucoma surgical failure with 
AUROC ranging from 0.64 to 0.74 for binary surgical out-
comes.20 With recent LLM advancements, there is potential 
for future model performance improvements in multiple 
ways: (1) data augmentation with LLMs like GPT-4 can gen-
erate synthetic operative notes to mitigate data imbalances55; 
(2) clinical domain LLMs could derive custom embeddings 
that would enhance the predictive capabilities of the model56; 
and (3) multimodal capabilities of LLMs like GPT-4 may 
improve prediction accuracy by capturing richer contextual 
information.57

Despite these innovative findings, there were several limita-
tions in our study. First, an important challenge of this work 

Table 3. Performance metrics for each class for the multimodal neural networks.

Transformer multimodal neural network

Precision Recall Specificity NPV F1 score AUPRC AUROC

Success 0.884 0.689 0.724 0.433 0.775 0.855 0.707
Low IOP 0.346 0.692 0.810 0.948 0.462 0.373 0.756
High IOP 0.449 0.595 0.901 0.943 0.512 0.463 0.787
Macro average 0.559 0.659 0.811 0.774 0.583 0.564 0.750

Bio-clinical BERT multimodal neural network

Precision Recall Specificity NPV F1 score AUPRC AUROC

Success 0.863 0.672 0.575 0.353 0.745 0.847 0.673
Low IOP 0.264 0.514 0.804 0.924 0.349 0.322 0.742
High IOP 0.426 0.556 0.901 0.939 0.482 0.446 0.779
Macro average 0.509 0.581 0.760 0.738 0.526 0.538 0.735

LSTM multimodal neural network

Precision Recall Specificity NPV F1 score AUPRC AUROC

Success 0.783 0.649 0.524 0.384 0.709 0.819 0.654
Low IOP 0.314 0.458 0.860 0.916 0.373 0.382 0.710
High IOP 0.333 0.474 0.862 0.905 0.391 0.409 0.797
Macro average 0.477 0.527 0.749 0.735 0.491 0.537 0.725

Abbreviations: LSTM, long short-term memory; NPV, negative predictive value; AUPRC, area under precision–recall curve; AUROC, area under the receiver 
operating characteristic.

462                                                                                                      Journal of the American Medical Informatics Association, 2024, Vol. 31, No. 2 



is the naturally inherent imbalanced dataset in our study 
cohort. In our study, less than 25% of glaucoma patients 
were considered surgical failures, making it difficult to train 
the prediction model. Also, 86% of our patient population 
was Caucasian, our findings might have limited applicability 
to more diverse populations. Further, our model did not 
include ocular imaging data, which was not available for 
most of the patients in the study cohort. Integrating imaging 
data into the multimodality predictive model might improve 
the model performance and is a future direction for this 
research. Next, the outcome variables in our study related 
only to postoperative IOP and reoperations, but there are 
other surgical outcomes such as visual deterioration that 
occur despite well-maintained IOP. Additionally, our 
research did not provide an exhaustive explainability analysis 
for the multimodal models. Moreover, due to the nature of 
the retrospective study, we were not able to collect expert 
judgment to ensure a thorough comparison. A prospective 
clinical study for glaucoma surgeons will be needed in the 
future. Furthermore, although we collected one of the largest 
clinical observation datasets with detailed information about 
trabeculectomy outcomes, the sample size and diversity are 
still limited due to the study being from a single institution. 
Future studies will ideally include data from multiple institu-
tions. Our focus was limited trabeculectomy; future studies 
will include other glaucoma surgeries. Lastly, given our 
study’s emphasis on intraoperative and early postoperative 
data, our findings are more germane to postoperative 
decision-making than preoperative patient selection.

Conclusion
In this study, we developed multimodal prediction models for 
multiclass surgical outcomes of glaucoma surgery using struc-
tured EHR data and free-text operative notes to address the 
need for effective postoperative management. Our result 
demonstrated that intraoperative information in operative 
notes improved the prediction model’s performance. Also, we 
explored a better method to extract information from opera-
tive notes in a multimodal prediction model. We believe that 
our work can be helpful for clinical decision-making for post-
operative care in glaucoma surgeries, and the implications of 
the study can be extended to other surgical specialties to 
improve outcome predictions. In the future, we plan to incor-
porate imaging data as well as multisite data to improve the 
model performance.
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