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Abstract

Quantitative susceptibility mapping (QSM) is a magnetic resonance imaging (MRI) technique that 

can assess the magnetic properties of cerebral iron in vivo. Although brain iron is necessary for 

basic neurobiological functions, excess iron content disrupts homeostasis, leads to oxidative stress, 

and ultimately contributes to neurodegenerative disease. However, some degree of elevated brain 

iron is present even among healthy older adults. To better understand the topographical pattern 

of iron accumulation and its relation to cognitive aging, we conducted a systematic review of 47 

QSM studies of healthy aging, with a focus on five distinct themes. The first two themes focused 

on age-related increases in iron accumulation in deep gray matter nuclei versus the cortex. The 

overall level of iron is higher in deep gray matter nuclei than in cortical regions. Deep gray matter 

nuclei vary with regard to age-related effects, which are most prominent in the putamen, and 

age-related deposition of iron is also observed in frontal, temporal, and parietal cortical regions 

during healthy aging. The third theme focused on the behavioral relevance of iron content and 

indicated that higher iron in both deep gray matter and cortical regions was related to decline in 

fluid (speed-dependent) cognition. A handful of multimodal studies, reviewed in the fourth theme, 

suggest that iron interacts with imaging measures of brain function, white matter degradation, and 

the accumulation of neuropathologies. The final theme concerning modifiers of brain iron pointed 

to potential roles of cardiovascular, dietary, and genetic factors. Although QSM is a relatively 

recent tool for assessing cerebral iron accumulation, it has significant promise for contributing new 

insights into healthy neurocognitive aging.
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1. Introduction

In vertebrates, iron exists in two distinct forms: heme iron, which is linked exclusively 

to circulating or accumulating blood, and non-heme iron, which is present in virtually all 

cells and is a contributor to essential biological processes in the brain such as oxygen 

transport, DNA synthesis, mitochondrial respiration, myelin synthesis, and neurotransmitter 

synthesis and metabolism (Gutteridge, 1992; Hentze et al., 2004; Koeppen, 1995 ; Rouault 

and Cooperman, 2006; Todorich et al., 2009). Early anatomical studies of post-mortem brain 

tissue reported that iron deposition was notable in deep gray matter regions related to motor 

control, particularly the globus pallidus, caudate, putamen, and substantia nigra, and that the 

amount of iron tended to increase from childhood to adolescence (Spatz, 1922). In a seminal 

study, Hallgren and Sourander (1958), conducted the first systematic analyses of age-related 

differences in iron across different regions of the brain. These authors conducted histological 

analyses of post-mortem tissue for 98 brains from individuals spanning infancy to 100 years 

of age. Hallgren and Sourander confirmed that non-heme iron concentration was particularly 

prominent in the deep gray matter regions, relative to cortical or white matter regions.

Elevated iron concentration in deep gray matter nuclei is associated with neurodegenerative 

disease, notably Parkinson’s disease, in which movement disorder is prominent (Dexter et 

al., 1987; Gerlach et al., 1994; Ghassaban et al., 2019; Gotz et al., 2004; Ke and Qian, 2003; 

Sayre et al., 2000). Elevated brain iron may also have a role in dementia. As early as 1953, 

postmortem histochemical analyses suggested that a disturbance in the cerebral metabolism 

of iron was an aspect of Alzheimer’s disease (AD) pathogenesis (Goodman, 1953). Connor 

et al. (1992), in a postmortem examination of regional tissue distribution of iron and 

iron-regulatory proteins, using immunoassay, concluded that alterations in iron-regulatory 

proteins are exacerbated in AD. In postmortem studies of AD patients, tissue histology 

has demonstrated that neuronal iron accumulation co-localizes with Aβ deposition and tau 

neurofibrillary tangles (Duce et al., 2010; Grundke-Iqbal et al., 1990; Lovell et al., 1998; 

Smith et al., 1997). Critically, however, the increased deposition of brain iron during later 

adulthood, observed by Hallgren and Sourander (1958), occurs in the absence of specific 

neurodegenerative disease and is one feature of the complex constellation of changes in 

central nervous system function typically associated with normal human aging (Martin et al., 

1998; Sfera et al., 2018; Ward et al., 2014; Zecca et al., 2004).

The development and application of neuroimaging techniques, particularly magnetic 

resonance imaging (MRI), can provide a complementary perspective to the histological 

studies, by characterizing the properties of iron in the human brain in vivo as well as ex 
vivo. Thus, while a substantial literature exists, from both structural and functional MRI, 

regarding changes in the brain during later adulthood (Dennis and Cabeza, 2008; Fjell 

and Walhovd, 2010; Grady, 2012; Raz et al., 2010), relatively few studies have addressed 

the role iron deposition specifically. Our goal in this article is to review the contributions 

that different MRI methods, particularly quantitative susceptibility mapping (QSM), have 

made to understanding age-related differences in iron deposition and the relation of iron to 

cognitive aging, in healthy individuals. A central question that we are addressing is whether 

the age-related increase in brain iron, in otherwise healthy adults, contributes to the declines 

in some aspects of cognitive functioning that are observed during later adulthood.
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Specialized structural MRI sequences, such as multiecho gradient echo sequences, are 

particularly informative regarding iron because variations in iron create local differences 

in magnetic susceptibility (Haacke et al., 2005; Liu et al., 2015a), and thus regions with 

increased iron also have higher susceptibility and a relatively fast transverse relaxation 

rate (R2) or short relaxation time constant (T2*). In these studies, the most frequently 

used quantitative MRI index of magnetic susceptibility is the relaxometry-based measure 

of R2*, which estimates iron content as a sum of relaxation due to spin-spin interaction 

(R2) and local susceptibility effects (R2’) (Brass et al., 2006; Langkammer et al., 2010). 

Although relaxometry-based estimates of iron correlate highly with chemically determined 

iron concentration obtained postmortem (Brass et al., 2006; Langkammer et al., 2010), the 

R2* index and related relaxometry measures are potentially influenced by background field 

inhomogeneity unrelated to iron content (Haacke et al., 2015; Wang and Liu, 2015). Further, 

R2* can be affected by either paramagnetic (e.g., iron) or diamagnetic sources.

QSM is another quantitative MRI index of magnetic susceptibility that has several 

advantages over relaxometry-based measures (Langkammer et al., 2012; Li et al., 2011; Liu 

et al., 2011; Liu et al., 2015a). QSM is a more direct measurement of the intrinsic property 

of tissue and is independent of magnetic field strength. As compared to relaxometry, 

QSM has improved contrast of deep gray matter nuclei (Barbosa et al., 2015; Liu et al., 

2013) and better sensitivity to the effects of age (Bilgic et al., 2016; Li et al., 2014) and 

neurodegenerative disease (He et al., 2015). For example, different regional patterns of iron 

deposition, as assessed by QSM, are expressed in AD (Acosta-Cabronero et al., 2013; Ayton 

et al., 2013) and cerebrovascular small vessel disease (Moon et al., 2016; Sun et al., 2017). 

Our primary goal here is to consider the degree to which QSM may shed light on age-related 

differences in cognition during healthy aging. In particular, does brain iron contribute to 

cognitive aging, or alternatively, are the effects of age and iron on cognition independent, 

until some threshold of neuropathology is crossed?

2. Methodological Considerations for QSM Studies of Aging

QSM is primarily sensitive to iron content in the case of gray matter and myelin 

content in the case of white matter, corresponding to positive (paramagnetic) and negative 

(diamagnetic) susceptibility values, respectively (Deh et al., 2018; Li et al., 2012; Li et al., 

2011; Liu et al., 2015b). Thus, throughout the articles discussed here, we consider positive 

versus negative susceptibility values to correspond primarily to the relative contribution 

of iron versus myelin. The neurobiological source of magnetic susceptibility, however, is 

complex and not a one-to-one correspondence (Liu et al., 2015b). For example, whereas iron 

deposition is highest within deep gray matter nuclei, contributing to positive susceptibility 

values, these regions are also myelinated, though to a lesser degree than cortical neurons. 

Similarly, the susceptibility of white matter is determined primarily by myelin concentration, 

but iron is also present, in the oligodendrocytes forming the myelin and in the mitochondria 

in the axons (Meguro et al., 2008). As a result, average susceptibility values within a 

region of interest represent different signal sources. Although positive susceptibility is 

likely dominated by iron, the negative values are more difficult to interpret. Methods for 

addressing this difficulty are still in development. One approach is to use the absolute value 

(i.e., unsigned) combination of positive and negative values in separate maps of gray matter 
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and white matter (Betts et al., 2016). A second approach is to use biophysical modeling 

to separate the voxelwise distributions of paramagnetic (e.g., iron) and diamagnetic (e.g., 

myelin) susceptibility signals based on the frequency shift and transverse relaxation rates 

(Shin et al., 2021). A third algorithm, termed DECOMPOSE-QSM, uses the phase and 

magnitude from a gradient echo acquisition sequence to separately estimate paramagnetic 

susceptibility, diamagnetic susceptibility, and reference susceptibility within each voxel 

(Chen et al., 2021a), which has recently been applied to study neurodegeneration in AD 

(Ahmed et al., 2023).

QSM values, derived from the phase measured by gradient echo sequences, are influenced 

by the scan acquisition parameters, especially echo time (Sood et al., 2017). For example, 

the myelin water signal cannot be detected by later echo times (Liu et al., 2015b). For 

these reasons, it is preferable to use multiple echo times when acquiring a gradient echo 

sequence. Although it is possible to acquire single echo gradient echo sequences, they are 

much more prone to streaking artifacts (Liu et al., 2015b). After acquiring a gradient echo 

dataset, researchers also have several options for unwrapping the phase image, removing the 

background field, and ultimately constructing the susceptibility map (Ravanfar et al., 2021), 

such as the morphology enabled dipole inversion (Liu et al., 2012) or sparse linear equation 

and least-squares algorithm (Li et al., 2015b).

Researchers must also decide whether to use relative susceptibility values or to reference 

susceptibility values against a particular reference region. Although most researchers agree 

that susceptibility values should be referenced against a control region, there is considerable 

debate regarding the appropriate reference region (e.g., ventricles or white matter). This 

is a particularly important issue in aging, where the accuracy of tissue segmentation 

(e.g., avoiding iron-rich choroid plexus in the ventricles) and age-related differences in 

underlying tissue properties (e.g., degree of myelination, presence of lesions) can contribute 

to differences in susceptibility (Deistung et al., 2017; Ravanfar et al., 2021). However, prior 

studies have shown that the effect of referencing did not change the observed age-related 

differences in QSM values (Acosta-Cabronero et al., 2016; Li et al., 2014).

Variability among QSM studies in aging may also reflect differences in the analytical 

approach. Some studies use a region-of-interest approach, which can be conducted at the 

participant level, whereas others use a voxelwise approach, which can identify smaller 

clusters but requires group-level registration and some degree of spatial smoothing. 

Voxelwise analyses of cortical regions are particularly vulnerable to biased susceptibility 

measures in blood vessels, lesions, and regions near the air-tissue interface (Chen et al., 

2021a; Liu et al., 2015b). One approach to address artifactual sources of susceptibility, 

especially around the edges of the brain and near the air-tissue interface, is to erode the 

edges of the susceptibility maps (Bhattarai et al., 2020; Howard et al., 2022). Another 

approach to reduce the number of artifactual susceptibility values is to threshold and remove 

the most extreme 15% of values (Garzón et al., 2017; Persson et al., 2020).
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3. Scope of Review

We conducted an integrative literature review between March and April 2023 with PubMed 

searches using two search terms related to age (ag*ing; older adults) and three related to 

QSM (QSM; Quantitative Susceptibility Mapping; magnetic susceptibility). We conducted 

six searches, representing each combination of one age term combined via AND with one 

QSM term. These search queries identified a total of 114 unique publications. From these 

publications, we selected studies that met all of the following five criteria: 1) appeared in an 

English language journal, through 2023; 2) reported in vivo MRI scans of the human brain; 

3) was an empirical research report (i.e., reviews were excluded); 4) included cognitively 

healthy human participants over 60 years of age; and 5) examined relations between a QSM 

measure of the brain and either age, cognitive performance, or other MRI measures (when 

limited to a sample of healthy older adults). Studies that examined relations between aging 

and R2*-based MRI measures were only included in the current review if these measures 

were examined in combination with QSM-based MRI measures.

Of the 114 originally identified publications, we excluded 20 for not including cognitively 

healthy adults older than 60 years of age, 13 for not being original research reports, six for 

not including human participants, one ex vivo study, and 27 that did not report some relation 

between a QSM measure of the brain and either age, cognitive performance, or another MRI 

measure within healthy older adults. Thus, a total of 47 published articles (identified with 

an asterisk in References) from the original search queries met the criteria for the current 

review. Eight of these involved a comparison of patients (e.g., Parkinson’s disease, AD, 

multiple sclerosis) and healthy controls, and in these instances, we report only the findings 

of the healthy participants, as our focus here is on cognitive aging in healthy adults. We 

discuss the 47 included studies in terms of five themes: deep gray matter susceptibility; 

cortical susceptibility; the relation of susceptibility to neurocognitive function; multimodal 

imaging studies; and moderators of susceptibility in healthy aging. The studies associated 

with each theme, and the various forms of evidence supporting the themes, are presented in 

Tables 1–5. Note that findings from an individual study may contribute to more than one 

theme.

4. Deep Gray Matter Susceptibility Patterns in Healthy Aging

As noted previously (Section 1, Introduction), the histology data of Hallgren and Sourander 

(1958) demonstrated that the concentration of iron was higher for deep gray matter regions 

(4.76 – 21.30 mg/100 g tissue) than for cortical regions (2.92 – 5.03 mg/100 g tissue). 

These authors also observed, however, that within the deep gray matter regions, age-related 

differences in iron were independent of the overall level of iron. The globus pallidus (along 

with the substantia nigra and red nucleus) exhibited the highest concentration of iron overall, 

but iron in the globus pallidus did not increase markedly following 30 years of age. In 

contrast, iron content in the putamen and caudate nucleus, while lower overall, continued to 

increase beyond 50–60 years of age.

One theme of QSM studies (Table 1) is that susceptibility varies in relation to deep gray 

matter region, and age, in a manner consistent with the Hallgren and Sourander (1958) 
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histological data. For example, Gong et al. (2015) reported that susceptibility values were 

highest for the globus pallidus, substantia nigra, and red nucleus, consistent with Hallgren 

and Sourander. Similarly, Gong et al. reported that the magnitude of the age-related increase 

in susceptibility was greater for the putamen than for other deep gray matter regions. These 

authors also distinguished left and right hemisphere components of gray matter nuclei 

and found that susceptibility was relatively higher for the left side of the caudate and 

substantia nigra. This hemispheric asymmetry may reflect dopamine levels associated with 

lateralized motor function (Xu et al., 2008), although this hemispheric effect appeared to be 

independent of the age-related effects in susceptibility.

In their QSM study, Li et al. (2023) investigated six deep gray matter nuclei, for 220 

individuals 10–70 years of age. In addition to susceptibility, these authors analyzed 

estimated iron content, for each deep gray matter region, from the multiplicative product 

of susceptibility and regional volume (adjusted for total intracranial volume). For both 

susceptibility and iron content, the putamen exhibited the most pronounced increase with 

age. Li et al. noted that whereas susceptibility increased with age for all deep gray matter 

regions, individual age-related trends could be either linear (substantia nigra), quadratic 

(putamen, caudate, and globus pallidus), or exponential (red nucleus, dentate nucleus). 

However, Li et al. did not directly compare the deep gray matter regions in terms of the 

absolute value of either susceptibility or iron content.

Whereas QSM studies reliably confirm the age-related increase in iron in the putamen, 

findings for other gray matter regions, particularly the thalamus, are mixed. Zhou et 

al. (2020) reported a statistically significant increase in thalamic susceptibility with age, 

consistent what they observed for other deep gray matter regions, but the effect size was 

small, r = 0.164. Gong et al. (2015) reported that the thalamus did not show any significant 

age-related effect, in contrast to the age-related increase in susceptibility for other deep gray 

matter regions. Taege et al. (2019) and Treit et al. (2021) reported significant age-related 

declines in susceptibility for the thalamus.

Several functional and structural properties of the thalamus may contribute to this variation 

in age-related effects. Deep gray matter nuclei are primarily associated with motor 

functioning, but the thalamus comprises heterogeneous sub-nuclei (e.g., pulvinar) implicated 

in sensory and cognitive functions, especially visual attention (LaBerge, 2000; LaBerge 

and Buchsbaum, 1990). The thalamus is relatively high in myelin, within the internal 

and external inter-medullary lamina, and the combination of these different sources of 

paramagnetic and diamagnetic signals may contribute to variability (Betts et al., 2016). 

Finally, it is important to note that the majority of the studies to date are cross-sectional, 

and thus age-related differences are necessarily confounded with individual differences. 

Although longitudinal studies have confirmed age-related increase in deep gray matter 

susceptibility (Gustavsson et al., 2022; Li et al., 2021), additional exploration of regional 

longitudinal trends is needed.
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5. Cortical Susceptibility Patterns in Healthy Aging

The majority of the studies in Table 1 used a region of interest approach that focused 

exclusively on susceptibility values that are averaged across voxels from anatomically 

defined deep gray matter regions. Although some studies compared deep gray matter and 

selected supratentorial cortical regions (Gustavsson et al., 2022; Li et al., 2014), the majority 

focused on the deep gray matter regions. That is a logical and necessary first step, given 

the relatively lower levels of iron observed in cortex relative to deep gray matter nuclei in 

the absence of disease, as noted previously. However, in view of the anatomical connections 

between deep gray matter and cortical regions, and the role of deep gray matter regions 

in the coordination of sensorimotor functions (Alexander et al., 1986; Cummings, 1993; 

Graybiel and Saka, 2004; LaBerge, 2000), the effects of iron deposition in cortical regions 

other than deep gray matter are also important. The articles included in Table 2 illustrate 

a second theme in QSM research, the age-related variation in susceptibility across cortical 

regions, for healthy adults.

The application of voxelwise, whole-brain QSM measures has been a significant 

methodological advance in research on cortical susceptibility and aging. Two articles in 

2016 reported whole-brain QSM patterns. Betts et al. (2016) conducted a voxelwise QSM 

analysis of 20 younger adults and 20 older adults at 7T, with the additional feature of 

constructing separate maps for positive and negative susceptibility. These authors observed 

that increased susceptibility for the older adult group was evident in deep gray matter 

regions, as expected, but also in supratentorial cortical regions, particularly superior frontal 

regions surrounding primary motor cortex. In addition, the clusters of negative susceptibility, 

primarily in white matter tracts, tended to be more negative (i.e., increasingly diamagnetic) 

for older adults relative to younger adults. Similarly, Acosta-Cabronero et al. (2016) 

conducted a voxelwise QSM analysis (at 3T) of 116 individuals 20–79 years of age, and 

because they sampled age as a continuous variable, they could define clusters of interest 

from the age-susceptibility correlation, rather than from a group contrast as in Betts et al. 

(2016).

In addition to confirming the strong age-related trends for increased susceptibility of deep 

gray matter, Acosta-Cabronero et al. (2016) observed significant age-related increases in 

susceptibility in sensorimotor cortex and prefrontal, insular, and dorsomedial frontal cortex, 

consistent with the Betts et al. (2016) findings. Acosta-Cabronero et al. found that age-

related susceptibility effects in white matter tended to be positive, in contrast to Betts et 

al., though Acosta-Cabronero et al. did not separate positive and negative QSM maps as 

Betts et al. had done. Acosta-Cabronero et al. found that cortex rostral to the central sulcus 

(motor, premotor, dorsal prefrontal, dorsomedial surface, and insula) was more prone to iron 

accumulation with age than more posterior cortical regions, leading them to propose that the 

motor system, broadly defined, has a tendency to accumulate iron with age.

Thus, in contrast to region of interest analyses, voxelwise analyses provide a more 

comprehensive view of iron deposition across the whole brain and have yielded novel 

findings. The voxelwise approach, however, has several features that should be considered 

when interpreting these results. The threshold for cluster significance in a voxelwise analysis 
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is based on the contrast or correlation with an independent variable, for example, age, 

disease status, or a behavioral outcome, and thus the clusters of interest will vary in relation 

to threshold definition. In addition, unless gray and white matter tissue compartments are 

separated, the paramagnetic and diamagnetic components of the QSM outcome variable 

will combine in their contributions to cluster definition, which complicates interpretation. 

Finally, voxelwise analyses are inherently conservative by correcting for the multiple 

comparisons made across the population of voxels, and these analyses may miss more subtle 

effects of iron that are limited to particular cortical layers or depths (Deistung et al., 2013; 

Lee et al., 2023).

6. Relation of Susceptibility Measures to Neurocognitive Function

Whereas semantic knowledge and various forms of expertise (crystallized cognition) can 

remain constant or even improve with adult age, abilities that are dependent on perceptual-

motor speed and working memory (fluid cognition) decline during adulthood (Craik and 

Bialystok, 2006; Horn, 1982; Park et al., 2002; Salthouse, 2004). A generalized, age-related 

slowing of central nervous system function appears to be a fundamental dimension of 

age-related decline in fluid cognitive abilities (Birren, 1965; Brinley, 1965; Madden, 2001; 

Salthouse, 1996, 2017; Salthouse and Madden, 2007). The vast majority of structural and 

functional neuroimaging studies of aging have focused on gray matter and white matter 

in the cerebral cortex, especially structural volume and functional activation in the case of 

gray matter, and the microstructural integrity of white matter as reflected in measures of 

the diffusivity of molecular water (Dennis and Cabeza, 2008; Fjell and Walhovd, 2010; 

Grady, 2012; Raz et al., 2010). As discussed in the previous sections of this article, excessive 

levels of brain iron contribute to neurodegenerative disease, and increases in brain iron 

occur during adulthood even in the absence of disease. A third theme, from recent QSM 

studies (Table 3), is that regional increases in brain iron contribute to age-related decline in 

neurocognitive function in healthy adults.

Initial studies of cognitive aging, based largely on neuropsychological assessment, proposed 

that decline in the structure and function of the frontal lobes was responsible for age-

related decline in fluid cognitive abilities such as working memory and inhibitory function 

(Dempster, 1992; Moscovitch and Winocur, 1992; West, 2000; West, 1996). Subsequent 

research incorporating neuroimaging methods has led to a more nuanced view, in which 

age-related differences in behavioral measures reflect the connectivity of brain networks 

that vary in scale (Dennis and Cabeza, 2008; Madden et al., 2020a; Madden et al., 2017; 

Merenstein et al., 2023b; Monge et al., 2017). These networks, in turn, are comprised 

of deep gray matter and cerebral cortical regions that form anatomically and functionally 

distinct networks critical for behavior and cognition (Behrens et al., 2003; O’Muircheartaigh 

et al., 2015; Zhang et al., 2008; Zhang et al., 2010).

The deep gray matter nuclei are highly interconnected with virtually the entire cerebral 

cortex (Alexander et al., 1986; Fama and Sullivan, 2015; Haber and McFarland, 2001; 

Martin, 1996). Given the importance of deep gray matter regions to cortical network 

connections, it is likely that age-related increases in the deposition of iron in these regions 

would have consequences for cognitive function, especially the fluid abilities that are 
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most vulnerable to cognitive decline. In their 1970 review of aging and psychomotor 

slowing, Hicks and Birren (1970) proposed that the basal ganglia and their associated 

cortical targets comprised a neural mechanism of age-related psychomotor slowing. Rubin 

(1999) pointed out that evidence linking the frontal lobes to age-related decline in specific 

cognitive functions (e.g., inhibition) was no stronger than the evidence linking deep gray 

matter regions, especially the caudate, to the same form of age-related cognitive decline. 

Similarly, Grahn et al. (2008) surveyed evidence across basic neurobiological and clinical 

studies and concluded that the caudate has a significant cognitive dimension. These authors 

proposed that the caudate nucleus contributes to behavior through the excitation of correct 

action schemas and the selection of appropriate sub-goals based on an evaluation of action-

outcomes, both processes fundamental to successful goal-directed action. The putamen, 

in contrast, appears to coordinate cognitive functions related more closely to stimulus-

response, or habit, learning.

Previous reviews of imaging studies of brain iron suggest that age-related increase in 

deep gray matter iron, particularly in the caudate and putamen, contributes to deficits in 

neurocognitive function (Daugherty and Raz, 2013; Daugherty and Raz, 2015; Ghadery et 

al., 2015), perhaps by leading to a decrease in volume of cognitively relevant brain structures 

(Rodrigue et al., 2013). The majority of the studies included in these previous reviews, 

however, were based on MRI relaxometry rather than QSM as method of estimation for 

iron. In addition, previous research has not often compared different forms of neurocognitive 

outcome, focusing instead on a single outcome, such as working memory (Daugherty et al., 

2015; Rodrigue et al., 2013) or motor performance (Adamo et al., 2014), and is limited by 

single age-group designs. However, the initial studies from MRI relaxometry have provided 

evidence for a relation between brain iron and age-related decline in neurocognitive 

function. For example, Ghadery et al. (2015) examined R2*-based estimates of iron in 

six deep gray matter regions and three cognitive domains (psychomotor speed, executive 

function, memory, and a composite global measure), in a sample of 336 individuals 55–72 

years of age. These authors found that estimated iron load in the putamen accounted for 

18–24% of the age-related variance in executive function, global cognitive function, and 

psychomotor speed, whereas iron in the globus pallidus accounted for only 7–9% of the 

age-related variance in these measures.

In the first QSM study of the relation between brain iron and neurocognitive function (Table 

3), Li et al. (2015a) reported a significant correlation between increasing susceptibility in 

the globus pallidus and red nuclei, and decreasing manual dexterity, for 132 healthy adults 

40–83 years of age. These authors, however, focused entirely on deep gray matter regions, 

and thus the potential role of cortical iron was not assessed. In addition, although composite 

measures of manual dexterity and executive function were obtained, the behavioral measures 

were weighted more towards motor function (Purdue pegboard), and age-related differences 

in the susceptibility-behavioral relation were not tested specifically.

As illustrated by the pattern in Table 3, QSM studies focusing on the age-cognition relation 

more directly have fairly consistently indicated an association between age-related increases 

in brain iron and decline in measures of fluid cognition. For example, in a voxelwise 

analysis of 67 healthy, community-dwelling individuals 18–78 years of age, Howard et 
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al. (2022) defined clusters from the correlation between susceptibility and fluid cognition. 

Consistent with the age-related effects reported by Acosta-Cabronero et al. (2016), Howard 

et al. found that susceptibility for pre- and post-central frontal gyri, among other regions, 

was related to fluid cognition and comparable in magnitude to those in the putamen (Figure 

5 in Howard et al., 2022). In addition, increasing susceptibility in inferior temporal cortex, 

particularly in the right hemisphere, exhibited a mediating influence on the relation between 

age and fluid cognition. In a sample of 55 healthy older adults, Zachariou et al. (2020) found 

that high QSM-based iron concentration in the parietal lobe was associated with poorer 

working memory task performance. Thus, while motor and premotor cortical regions appear 

to be preferentially vulnerable to iron deposition, other cortical regions also appear to be 

involved when analyses focus on the age-cognition relation. However, some paradoxical 

effects have also been reported, in which higher levels of brain iron are associated with 

better neurocognitive performance in older adults (Kalpouzos et al., 2021; Persson et al., 

2020; Treit et al., 2021). One potential explanation for these surprising results might 

be the use of net susceptibility measures, rather than separately analyzing the positive 

(paramagnetic) signal from the negative (diamagnetic) signal. Regardless, an important 

future direction for this line of work is to distinguish regions of age-related increase in iron 

deposition (both deep gray matter and cortical) from those regions contributing specifically 

to the age-related decline in fluid cognitive abilities.

7. Multimodal Imaging Studies of Susceptibility in Aging

As noted previously, variation in the level of brain iron can have either positive or 

negative consequences for overall brain functioning, because iron is a necessary nutrient 

for neural physiology and repair, and yet excessive iron also contributes to various forms of 

neurodegenerative disease. Several neuroimaging studies represent a fourth theme of QSM 

research, the combination of two or more imaging modalities to characterize age-related 

differences in susceptibility-based estimates of brain iron (Table 4). These multimodal 

studies are informative regarding both the underlying neurobiology and behavioral sequelae 

of increased brain iron. Although several multimodal QSM studies have focused specifically 

on AD, the biomarkers relevant for AD, primarily Aβ and tau, are not present exclusively 

in disease but occur in healthy adults as well, at sub-clinical levels. Our focus here is on 

susceptibility-estimated brain iron from QSM, as combined with information from other 

imaging modalities, to characterize neurocognitive function in healthy adults.

Combining QSM with positron emission tomography (PET) indicates that increased brain 

iron tends to co-localize with Aβ, even in healthy adults (Cogswell and Fan, 2023). Van 

Bergen et al. (2018b) provided clear evidence for the co-localization of iron and Aβ in a 

study of 116 healthy older adults, combining QSM with [18F]-flutemetamol PET, which 

can localize Aβ. In a voxelwise analysis, these authors found that positive correlations 

between iron load and Aβ plaques were present in a bilateral pattern of clusters in 

basal ganglia but also several regions in the frontal, temporal, and parietal lobes. When 

these clusters were thresholded for the level of Aβ, individuals with higher levels of 

Aβ in frontal and temporal clusters exhibited lower scores on a composite measure of 

fluid cognition. Van Bergen et al. (2018a) added analyses of fluid attenuated inversion 

recovery (FLAIR) images, as an estimate of small vessel cerebrovascular disease (from the 
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presence of white matter hyperintensities), to the Aβ PET and QSM imaging. Their findings 

indicated that in the oldest-old group (85–96 years), a relatively lower cortical iron load 

was associated with a lower vulnerability to loss of cognitive function, even when combined 

with other neuropathologies (e.g., decreased cortical volume and increased prevalence of 

cerebrovascular disease).

Only a handful of studies have combined diffusion-weighted imaging (DWI) with QSM. 

Two of these studies focused on diffusion properties of deep gray matter nuclei in relation to 

susceptibility in those nuclei, finding positive relations between diffusivity and susceptibility 

in the striatum (Gong et al., 2015; Yang et al., 2022). An additional study focused on 

diffusion properties of white matter found that lower neurite density in frontoparietal 

white matter was associated with higher susceptibility in adjacent frontoparietal gray 

matter regions (Zachariou et al., 2023). Higher susceptibility in deep gray matter nuclei 

has also been related to worse white matter microstructure, seen as higher diffusivity in 

association and projection tracts (Zhou et al., 2020). Together, these findings support the 

theoretical notion that the excessive accumulation of iron in gray matter regions should 

negatively interact with the function of oligodendrocytes (Todorich et al., 2009), seen as 

lower measures of white matter microstructure.

Relaxometry studies (e.g., Salami et al., 2018) suggest that deep gray matter iron may 

contribute to age-related disruption of resting-state functional connectivity in healthy aging, 

as assessed by functional magnetic resonance imaging (fMRI). Several QSM studies 

have also incorporated fMRI to similarly investigate the relation between susceptibility 

and measures of cortical activation or functional connectivity. Zachariou et al. (2020) 

combined QSM with task-related fMRI activation in an analysis of working memory 

performance, for 55 healthy older adults. These authors found that task performance was 

correlated positively with the strength of task-based functional connectivity between brain 

regions of a frontoparietal network associated with working memory. Higher cortical iron 

concentration in the parietal lobe, however, was associated with lower activation within this 

frontoparietal network and with poorer working memory performance, after controlling for 

both cerebral blood flow and brain volume. Zachariou et al. concluded that high cortical iron 

concentration disrupts communication within the frontoparietal networks supporting older 

adults’ working memory performance.

The Zachariou et al. (2020) findings are consistent with the role of iron in age-related 

decline in fluid cognition, reviewed in Section 6 of this article. Other findings, however, do 

not fit this pattern. Persson et al. (2020), for example, found that striatal iron concentration, 

for a combined sample of younger and older adults, was related positively to both task-

related fMRI activation and behavioral performance, within an implicit sequence learning 

task. Thus, exactly how brain iron deposition and fMRI activation interact with age-related 

declines in fluid cognition may depend on the nature of the behavioral task and the 

sampled brain regions. In addition, whereas Zachariou et al. (2020) limited analyses only to 

measures of positive susceptibility, Persson et al. (2020) instead used an average measure of 

susceptibility that is sensitive to iron, among several other neurobiological properties (e.g., 

the degree of myelination).
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8. Moderators of Susceptibility Measures in Aging

A handful of studies illustrate our fifth theme, the role of other neurobiological variables 

as modifiers of brain iron in healthy aging (Table 5). The potential moderating effect of 

biological sex has been most frequently assessed, but these studies overwhelmingly report 

no significant differences between males and females in susceptibility for deep gray matter 

nuclei (Acosta-Cabronero et al., 2016; Gong et al., 2015; Li et al., 2023; Li et al., 2021; 

Persson et al., 2015; Treit et al., 2021; Xu et al., 2008). There is some minimal evidence 

that females may have lower susceptibility than males, but these effects vary anatomically 

(e.g., red nucleus vs. substantia nigra; Gong et al., 2015; Li et al., 2021) and are not 

consistent across studies. Only one study has assessed sex-related differences within cortical 

regions, and similarly observed no significant group differences (Acosta-Cabronero et al., 

2016). Menstruation-related loss of iron in females has been posited as a likely mechanism 

of sex-related differences in brain iron accumulation (Tishler et al., 2012). However, most 

prior analyses have been conducted across women of all ages, including both early pre-

menopausal (age 20–30 years) and late post-menopausal (ages 65–70 years) women, and 

the interaction of these lifespan differences may contribute to a net minimal effect of 

biological sex. Future investigations of these sex-related differences may therefore benefit 

from comparisons between pre- and post-menopausal women in midlife.

The effects of several health-related variables on iron accumulation in aging have also been 

examined in a few studies. There is some preliminary evidence that a diagnosis of type 

II diabetes is associated with higher susceptibility in the dorsal striatum and red nucleus, 

potentially through the damaging effects of hyperglycemia on neuronal metabolic functions 

(Li et al., 2021). Smoking tobacco products has also been linked to elevated susceptibility 

in the thalamus (Li et al., 2021), which could theoretically be attributed to hypertension. 

However, that same study observed that being hypertensive was paradoxically linked to 

lower susceptibility in the red nucleus (Li et al., 2021), and a separate study reported no 

significant effect of hypertension in cortical or deep gray matter regions across the adult 

lifespan (Acosta-Cabronero et al., 2016). But relative to the less modifiable effect of disease 

status, one particularly promising modifiable lifestyle variable is the consumption of a diet 

that is high in nuts, fish, and healthy oils, which has been linked to lower susceptibility in 

parietal cortex and the putamen among older adults (Zachariou et al., 2021).

Beyond biological sex and health-related variables, particular genetic combinations have 

been identified as a third moderating variable of susceptibility in aging, with some 

genotypes being associated with lower susceptibility values. For example, adults across the 

lifespan with less favorable combinations on genes involved in iron transport and storage, 

particularly C282Y and H63D mutations on the HFE gene (but also TF and SLC25A37; 

Elliott et al., 2018), have higher susceptibility in basal ganglia nuclei (Elliott et al., 2018; 

Kalpouzos et al., 2021). Studies of middle-aged and older adults similarly report that 

individuals with an ε4 allele on the APOE gene (involved in the transport of cholesterol 

and phospholipids in the brain) had higher susceptibility in the hippocampus, amygdala, 

caudate, and temporal and parietal cortices than those who do have not the ε4 allele (Ayton 

et al., 2017; Nir et al., 2022). Similarly, for the COMT gene (involved in endogenous 

dopamine synthesis), one study reported that older adults with the less favorable Met allele 
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combination had higher susceptibility values in the striatum and dorsolateral prefrontal 

cortex when compared to those with the more favorable Val combination (Gustavsson et 

al., 2022). Intriguingly, the difference in susceptibility values was not significant among 

younger adults in this study. Thus, the genetic influence on susceptibility patterns may 

become magnified as a function of increasing age, similar to previous reports between 

genotype combinations and diffusion-tensor based measures of white matter microstructure 

between younger-old (ages 65-80) and oldest-old (ages 80+ years) adults (Merenstein and 

Bennett, 2022).

9. Conclusions and Future Directions

QSM is a valuable tool for assessing the degree of cerebral iron accumulation in vivo and 

has shown great promise for contributing to our understanding of healthy neurocognitive 

aging. QSM has confirmed previous findings from ex vivo histology indicating that, across 

the adult lifespan, some deep gray matter nuclei (e.g., putamen) are more vulnerable to 

iron accumulation than others (e.g., thalamus, globus pallidus; Table 1). QSM has also 

confirmed and extended previous reports that, beyond deep gray matter nuclei, the frontal, 

temporal, and parietal cortical regions exhibit age-related increases in iron deposition (Table 

2). Although the magnitude of cortical iron is lower than that of deep gray matter iron, both 

deep gray matter and cortical iron accumulation are associated with age-related decline in 

several domains of fluid cognition (Table 3).

The evidence to date, however, is not yet conclusive as to whether the relation of age to 

iron, and age to fluid cognition, are independent effects, or whether brain iron deposition 

influences the relation between adult age and cognition (but cf. Howard et al., 2022). This 

line of work therefore may benefit from more fine-grained analytical scales. For example, 

depth-wise analyses of cortical iron load can separately examine age-related differences in 

susceptibility at the most superficial (pial) depths versus deeper depths near the gray matter / 

white matter boundary (Lee et al., 2023), and these measures may, in turn, differentially 

explain age-related decline in cognitive performance. Multimodal neuroimaging studies can 

also provide a more detailed understanding about the interaction between brain iron and 

other neural substrates, with preliminary support for the notion that increased iron negatively 

interacts with neuroimaging measures of brain function, white matter microstructure, and 

AD-related pathologies, even in the absence of frank disease (Table 4).

Based on the methodological variability among QSM studies in aging, research in this field 

may benefit from the development of standardized toolboxes for QSM processing, such as 

IronSmith (Zachariou et al., 2022), and large-scale imaging consortia, to help guide the 

choice of acquisition parameters for QSM studies (e.g., the Human Connectome Project; 

Glasser et al., 2016). It is also imperative that future research determine the most appropriate 

reference region for studies of aging, by comparing susceptibility measured from samples 

of cerebrospinal fluid versus susceptibility in ex vivo white matter and gray matter tissue. 

Finally, we suggest that future research separately examine both positive and negative 

sources of susceptibility to help better characterize these distinct signals and how they vary 

in relation to age and neurodegenerative disease (Ahmed et al., 2023; Betts et al., 2016; 

Chen et al., 2021a; Shin et al., 2021).
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On the behavioral side, additional analyses are needed that can separate different 

components of fluid cognition. Diffusion decision modeling of reaction time, for example, 

can distinguish nondecision time (sensory encoding and response initiation) from the rate 

of information extraction and evidence thresholds (Ratcliff et al., 2016; Voss et al., 2013). 

Application of this modeling to date suggests that the age-related decline in fluid cognition 

is dominated by increased nondecision time and cautiousness (Madden et al., 2020b; 

Merenstein et al., 2023a; Ratcliff, 2008). Because nondecision time relies on sensorimotor 

circuits comprising deep gray matter-cortical connections, the age-related increase in brain 

iron may have a specific relation to this component of reaction time. Future studies 

incorporating these new directions, and adopting longitudinal assessments where possible, 

should seek to determine how the detrimental effects of iron accumulation can be modified, 

and potentially mitigated, through neural and lifestyle interventions (Table 5).
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