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Abstract

Introduction: Diarrhea is still a significant global public health problem. There are
currently no systematic evaluation of the modeling areas and approaches to predict
diarrheal illness outcomes. This paper reviews existing research efforts in predictive
modeling of infectious diarrheal iliness in pediatric populations.

Methods: We conducted a systematic review via a PubMed search for the period
1990-2021. A comprehensive search query was developed through an iterative pro-
cess and literature on predictive modeling of diarrhea was retrieved. The following fil-
ters were applied to the search results: human subjects, English language, and
children (birth to 18 years). We carried out a narrative synthesis of the included
publications.

Results: Our literature search returned 2671 articles. After manual evaluation, 38 of
these articles were included in this review. The most common research topic among
the studies were disease forecasts 14 (36.8%), vaccine-related predictions 9 (23.7%),
and disease/pathogen detection 5 (13.2%). Majority of these studies were published
between 2011 and 2020, 28 (73.7%). The most common technique used in the
modeling was machine learning 12 (31.6%) with various algorithms used for the pre-
diction tasks. With change in the landscape of diarrheal etiology after rotavirus vac-
cine introduction, many open areas (disease forecasts, disease detection, and strain
dynamics) remain for pathogen-specific predictive models among etiological agents
that have emerged as important. Additionally, the outcomes of diarrheal illness
remain under researched. We also observed lack of consistency in the reporting of
results of prediction models despite the available guidelines highlighting the need for
common data standards and adherence to guidelines on reporting of predictive
models for biomedical research.

Conclusions: Our review identified knowledge gaps and opportunities in predictive
modeling for diarrheal illness, and limitations in existing attempts whilst advancing
some precursory thoughts on how to address them, aiming to invigorate future

research efforts in this sphere.
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1 | INTRODUCTION
Diarrhea is a global public health problem causing approximately 1.7
billion episodes in children annually,? with a significant proportion of
diarrheal morbidity and mortality occurring in low-income countries
due to resource and infrastructural challenges to the health system.>*
Diarrheal disease, if not well managed, has a plethora of poor out-
comes; malnutrition, longer duration diarrhea, dehydration, and even
death.>¢ Diarrhea is the second leading cause of mortality in children
aged <5 years globally, causing about 1.5 million deaths a year, trans-
lating into nearly one in every nine child deaths.”®

The goal of predictive modeling in healthcare is to identify the likeli-
hood of health events in patients or the population and such efforts guide
healthcare providers and policy makers in making preventive strategies
and local interventions, which ultimately reduce morbidity and mortality
as well as the associated economic and social burden.”*° The early identi-
fication of diarrheal disease and its progression, in the backdrop of limited
diagnostic capabilities in the developing world and budgetary constraints,
is a key step in assessing and treating diarrheal iliness in a cost-effective
manner, while improving quality of care and averting poor outcomes. Pre-
dictive models that are data-driven can synthesize clinical, administrative,
and socio-economic data and complement clinician judgment while pro-
viding additional insights. Additionally, the prediction of disease incidence,
seasonality, and outbreaks could help public health authorities to under-
stand transmission dynamics and seasonal patterns in advance and aid
them in planning and selecting the main response actions thereby
enhancing the efficacy and timeliness of local interventions and preven-
tive strategies translating to reduced morbidity and mortality.** %

Despite the advancement of predictive modeling in healthcare,
there is currently no systematic evaluation, to the best of our knowl-
edge, of the modeling areas and approaches in diarrheal disease. This
paper, therefore, focuses on giving a synopsis of existing attempts to
predict infectious diarrheal disease in children aged <18 years and their
shortcomings. Additionally, we seek to identify topical and methodolog-
ical gaps in knowledge that can be built upon to ameliorate predictive

modeling for infectious diarrheal disease in pediatric populations.

2 | QUESTION(S) OF INTEREST

What are the topical and methodological knowledge gaps in in predic-
tive modeling for diarrheal disease in pediatric populations?

3 | METHODS

Our study was conducted in line with the Preferred Reporting

Items for Systematic Reviews and Meta-Analyses (PRISMA)

guidelines.'* The systematic review protocol for this study was
developed and iteratively refined with inputs from all study co-
authors. The protocol was registered with the international pro-
spective register of systematic reviews (PROSPERO) (registration
number: CRD42021241479): an online repository of systematic
review protocols, maintained by the Center for Reviews and Dis-
semination at the University of York.

We developed a search strategy, limited to PubMed, to
retrieve publications on predictive modeling of diarrheal illness
between January 1, 1990 and December 31, 2021. The initial
search strategy used was: Diarrhea AND (Predict OR Forecast). Two
independent reviewers (Billy Ogwel and Gabriel Otieno) evaluated
the title and abstract of each retrieved publication to determine
the probable pertinence. Pertinence was assessed based on pre-
defined inclusion criteria ensuring that the publication's primary
focus addressed some aspect of predictive modeling of diarrheal
illness. We included all primary epidemiological study designs con-
ducted in any country. We excluded literature that did not
undergo a peer review: gray literature, conference proceedings,
dissertations, and posters. The full texts of potentially relevant
articles were further examined to make a decision on their
inclusion.

Citations of included publications were also reviewed and if a
citation was found pertinent but missing from the original search
results, the search query was expanded by adding a keyword
phrase extracted from the citation so as to include the relevant
citation and other similar articles. Additionally, specific keyword
phrases were used to narrow our search results by excluding irrele-
vant articles. The above process was iterated until a comprehen-
sive search was developed.

The final search query used was: (Diarrh* OR gastroenteritis) AND
(Predict* OR Forecast OR “risk scoring”) NOT (necrotizing OR app-
endicitis OR cancer OR ulcer OR IBD OR “Inflammatory bowel disease”
OR colitis OR “Eosinophilic Esophagitis” OR Crohn). The following
filters were applied to the search results: human subjects, English
language, and children (birth to 18 years). The final literature
review was done on articles that met the pre-defined inclusion
criteria (prediction of any aspect of infectious diarrhea in
pediatric populations). Risk of bias and quality of the studies
were not evaluated as this paper was descriptive in nature and
no inferences were made based on the validity of the estimates of
the performance metrics of the included studies. Difference of
opinion about inclusion of articles were resolved by discussions
among the two reviewers and where necessary a third reviewer
(Bryan O. Nyawanda). One reviewer (Billy Ogwel) extracted the
following information from the included articles: aspect of diar-
rheal illness, country, data used in modeling, modeling technique,

time period, and performance of the predictive models. In terms of
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data analysis, we carried out a narrative synthesis of included

publications.

4 | RESULTS

A total of 2671 articles from the PubMed search were reviewed. Fifty
nine of these appeared to be pertinent after review of titles and
abstracts, and underwent full-text review, where after 38 were estab-
lished to be relevant and are discussed in this paper (Figure 1). Majority
of the studies were conducted in Asia 17 (44.7%)'53! with 8 (47.1%) of
them conducted in Bangladesh alone. Eight studies (21.1%), 4 (10.5%),

40-43 44

and 2 (5.3%) reported data from Africa, >3’ Americas,
Europe,***® respectively. Seven studies (17.4%) were multi-site?®>2 of
which 4 (57.1%) were reported from the Global Enteric Multicenter
Study (GEMS).>® The most common research topics among the studies
were disease forecasts 14 (36.8%), vaccine-related 9 (23.7%), and dis-
ease/pathogen detection 5 (13.2%). Majority of these studies were pub-
lished between 2011 and 2020, 28 (73.7%). The most common
technique used in the modeling was machine learning 12 (31.6%) with

various algorithms used for the prediction tasks (Table 1).
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FIGURE 1  Flowchart of E
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4.1 | Predicting disease forecasts
Much of the existing work on predictive modeling of diarrhea
(14 [36.8%)]) is focused on predicting diarrheal disease forecasts with

15-17.32.33 \yhile nine were

five studies focusing on all-cause diarrhea,
specific to cholera.?32>29-314042 The prediction of rotavirus-specific
incidence have been incorporated in vaccine impact predictions dis-
cussed under the sub-topic vaccine-related predictions.

The studies that predicted forecasts of all-cause diarrhea used
data collected from China,*>” Indonesia,16 Mali,32 and Botswana.*®
The modeling techniques used in these predictions were Machine
learning (Multiple Linear Regression; Random Forest [RF] Regression;
Support Vector (SVM) Regression; Gradient Boosting Regression;
Convolutional Neural Network; Neural Network (NN) Regression),
Auto regression models (autoregressive integrated moving average
[ARIMA/X];
[SARIMA/X]), compartmental susceptible-infected-recovered-suscepti-

seasonal-auto-regressive-integrated-moving-average

ble (SIRS) model, multiplicative Holt-Winters method, and parsimonious
model (PM; Table 2). The data used in the above modeling included:
morbidity, meteorological/climate and search indices data. The results

from the studies varied: Fang et al.'® reported that the RF model

Total Records Identified
through PubMed search
(N=2,671)

A

Records Screened based
on title and/or abstract
(N=2,671)

Records Excluded
(n=2,612)

A

Records Excluded
(N=21)
Posters (n=2)
No outcomes of interest (n=16)
Adult studies (n=3)

Full-text records
assessed for eligibility
(N=59)

Records included
(N=38)
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TABLE 1 Characteristics of included studies in predictive
modeling for diarrheal disease.

N =238
Characteristics n (%)
Region
Asia 17 (44.7)
Africa 8(21.1)
Americas 4 (10.5)
Europe 2(5.3)
Multi-site 7 (18.4)
Topics
Disease forecasts 14 (36.8)
Vaccine-related 9(23.7)
Disease/pathogen detection 5(13.2)
Outcomes 4 (10.5)
Strain dynamics 3(7.9)
Determinants of diarrheal disease burden 2(5.3)
Seasonality 1(2.6)
Year of publication
1990-2000 1(2.6)
2001-2010 7 (18.4)
2011-2020 28 (73.7)
2021 2(5.3)
Modeling techniques
Machine learning algorithms 12 (31.6)
SIS-/SIRS-like compartmental models? 6(15.8)
Dynamic, deterministic compartmental models 5(13.2)
Logistic regression 4(10.5)
Auto regression Model 3(7.9)
Multiplicative Holt-Winters method 1(2.6)
Linear regression 1(2.6)
Fourier analysis 1(2.6)
Fitness models 1(2.6)
Data assimilation: ensemble Kalfman filter 1(2.6)
Gravity models 1(2.6)
Multiple regression models 1(2.6)
Spatially-explicit stochastic model 1(2.6)

2S1S- (susceptible-infectious-susceptible)/SIRS-like (susceptible-infectious-
recovered-susceptible) compartmental models.

outperformed the ARIMA/X models with a mean absolute percentage
error (MAPE) of approximately 20.0%; Medina et al.*2 realized a
MAPE circa 25.0% using the multiplicative Holt-Winters method; Pan-
gestu et al.X® reported an accuracy of 78.6% on the SARIMA model;
Wang et al.'” found the PM model to outperform all the other models
in three metrics; the SIRS model built by Heaney et al.>® had a mean
Root Mean Square Error (RMSE) and correlation of 0.79 and 0.99,
respectively between the observations and simulations across all wet
season outbreaks, while across dry season outbreaks, the mean RMSE

and correlation were 1.33 and 0.99, respectively (Table 3).

The studies that focused on the prediction of cholera forecasts
utilized data from two countries: six from Bangladesh?®2>2931 and
three from Haiti.***? The modeling techniques employed by these
studies were SIRS models, auto regression models, logistic regression
(LR), multiple regression, gravity models, spatially-explicit stochastic
model, and data assimilation: ensemble Kalfman filter. The modeling
was based on the following data: morbidity, climate, environmental,
mobility, sewage discharge, terrestrial water storage, and satellite

data. The results were diverse: Jutla et al.3!

reported an accuracy of
75.0% on the multiple regression model; Bengtsson et al.*? reported
an Area Under the Curve (AUC) of 79.0% on the mobile phone-based
model; Pascual et al.?® got an accuracy of 75.0% on their SIRs model;

|4O

Pasetto et a reported that the assimilation procedure outper-

formed other calibration schemes and it was able to forecast the spa-
tial incidence of cholera at least 1 month ahead:; Bertuzzo et al.**
using a spatially-explicit stochastic model observed an overall good
agreement with the data, capturing the timing and the magnitude of
the peaks correctly (Nash-Sutcliffe index = 0.79); Daisy et al.?®
achieved the best fit in the model using climate data (RMSE = 14.7,
Mean of Absolute value of Errors [MAE] = 11); Matsuda et al.?’
achieved a correlation of 0.95 between simulations and actual number

of disease.

4.2 | Predicting vaccine-related topics

Rotavirus is a leading cause of diarrheal morbidity and mortality.>>*
Consequently, rotavirus vaccines have been incorporated into
national immunization programs following recommendations by the
World Health Organization (WHO).>®> Nine studies focused on predic-
tions around rotavirus vaccine with seven studies focusing on vaccine
impact,283>3843-4547  gne on vaccine hesitancy,?’ and one on
vaccine cost-effectiveness'? (Table 3).

The seven studies on vaccine impact used data from Niger,®®
Ghana,*® United States,*® Kyrgyzstan,?® England and Wales,**** and
a multi-site study (France, Germany, Italy, Spain, and the
United Kingdom).*” These studies built predictive models using SIRs
models, periodic regression models and deterministic age-structured
dynamic model (Table 2). The models used the following data: Key
features of rotavirus epidemiology, rotavirus-associated events (death,
hospitalization, outpatient visits), vaccination, and healthcare seeking
data. The results were comparable: Park et al.®> predicted a 39%-42%
reduction on burden at a 70.0% vaccine coverage; Pitzer et al.** pre-
dicted that incidence of severe disease would be reduced 1.1-1.7
times more than expected from the direct effects (54%-90.0% at
90.0% coverage) 5 years after roll-out; Effelterre et al.*’
with vaccination coverage rates of 70.0%, 90.0%, and 95.0% the
model predicted that, in addition to the direct effect of vaccination,

reported that

herd protection induced a reduction in disease incidence (any severity)
of 25.0%, 22.0%, and 20.0%, respectively, and of 19.0%, 15.0%, and
13.0%, respectively, for moderate-to-severe disease, 5 years after
roll-out; De Blasio et al.?® predicted a reduction of 56.0%,
50.0%,52.0% for deaths,

admissions, and outpatient Vvisits,
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TABLE 2 Categorization and current status of research topics on predictive modeling for diarrheal disease.

Primary Category

Disease forecast

Disease/pathogen

detection

Strain dynamics

Outcomes

Seasonality

Vaccine

Sub-category

All-cause diarrhea

Cholera

All-cause diarrhea

Viral etiology
Bacterial etiology
Rotavirus
Rotavirus
Norovirus
Shigella
Dehydration
Malnutrition
Hospitalization

Prolonged/persistent
diarrhea

Mortality

Vaccine impact

Vaccine cost-effectiveness

Vaccine hesitancy

Determinants of diarrheal disease burden

Modeling methods for existing predictive models

Random Forest, autoregressive integrated moving average (ARIMA/X), seasonal-auto-regressive-
integrated-moving-average (SARIMA/X), multiplicative Holt-Winters method, compartmental
susceptible-infected-recovered-susceptible (SIRS) model, Parsimony Model, gravity models,
Multiple Linear Regression, Random Forest Regression, Support Vector Regression, Gradient
Boosting Regression, Extreme Gradient Boosting Regression, Convolutional Neural Network,
Neural Network Regression

SIRS-like models, data assimilation: ensemble Kalfman filter, individual-based spatially-explicit
stochastic model, logistic regression, SARIMA, model, auto regression model, multiple
regression models

Naive Bayes, linear discriminant analysis, quadratic discriminant analysis, support vector machine,
Artificial Neural Network

Random Forest, logistic regression

Random Forest, logistic regression

Classification trees

Fourier analysis

Fitness models

Logistic regression, Neural Network, support vector machines
Logistic regression/recursive partitioning model

Linear regression

None

None

None
Principal-Component Analysis, K-means clustering, classification and regression trees

SIS- (susceptible-infectious-susceptible), SIRS-like compartmental models, ensemble models,
dynamic, deterministic compartmental model, periodic regression models, age-structured
compartmental mode

Dynamic model
Logistic regression, Random Forest, and Neural Networks

Classification and Regression Trees (CART)

respectively, 5 years after vaccine roll-out at a 95.0% coverage and
54.0% effectiveness; Atchison et al.** predicted a 61.0% reduction in
incidence (Table 3).

Freiesleben de Blasio et al.'? predicted cost-effectiveness of rota-
virus vaccine in Kazakhstan using a dynamic model. They reported
that at a 90.0% coverage, ~880 rotavirus deaths would be averted
and an average of 54,784 life-years for children <5 years of age would
be saved in a 20-year period. Additionally, they found 40.0% and
60.0% reduction in severe and mild rotavirus gastroenteritis due to
indirect protection, respectively. Bar-Lev et al.?” predicted vaccine
hesitancy in Israel using machine learning algorithms (LR, RF, and NN).
The performances of all algorithms were close to random in this

study.

4.3 | Predicting disease/pathogen detection

Five studies focused on disease/pathogen detection: two all-cause

18,39.
s

diarrhea one viral-only etiology®’; one viral/bacterial

etiology*®; one rotavirus.?” Other than the rotavirus model, there
are no other existing pathogen-specific prediction models. Two
studies focused on the prediction of diarrheal infection. Both stud-
ies used machine learning algorithms in the modeling of demo-
graphic health survey data in Bangladesh'® and Nigeria,®’
respectively. Maniruzzaman et al.'® reported the SVM model with
radial basis kernel outperformed other models yielding 65.6%
accuracy, 66.3% sensitivity, and 52.3% specificity. Abubakar and
Olatunji®’ reported an accuracy of 95.6% on their artificial neural
network model.

Brintz et al.*® used data from the GEMS study to predict both
viral and bacterial etiologies in diarrhea utilizing RF and LR models
with the following results: AUC = 82.5%; specificity = 85.0%;
sensitivity = 59.0%; Negative Predictive Value (NPV) = 82.0%; Posi-
tive Predictive Value (PPV) = 64.0%. Garbern et al.*° predicted viral-
only etiology deploying machine learning algorithms (RF and LR
regression) on data from Mali and Bangladesh yielding 75.4% AUC.
Ayers®” used classification trees on the GEMS Kenya data to predict

rotavirus infection realizing 61.3% AUC.
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4.4 | Predicting diarrheal outcomes

There were only four studies focused on diarrheal outcomes; three on

202136 and one on linear growth faltering.> Despite risk

61-64

dehydration
factors for death,>¢°C hospitalization, and prolonged/persistent
diarrhea®® being documented, there were no predictive models
developed on these outcomes. The three publications on dehydration
utilized data from Bangladesh,2° Rwanda,®® and India.?! The primary
modeling technique in all the studies was LR with historical, demo-
graphic, clinical, and nutritional data being used. The new DHAKA
Dehydration Score developed by Levine et al.?° yielded AUC of
79.0% and 78.0%, for severe and some dehydration, respectively.
Levine et al.3¢ also reported AUC of 72.0%, 73.0%, and 80.0% for the
WHO severe dehydration scale, Centers for Disease Control and Pre-
vention (CDC) scale, and Clinical Dehydration Scale, respectively. In

the model developed by Zodpey et al.?*

the sensitivity, specificity,
PPV, Cohen's kappa, and overall predictive accuracy were 81.0%,
81.0%, 81.0%, 61.0%, and 86.0%, respectively. Brander et al.°! used
the GEMS data to predict linear growth faltering based on a LR model

that yielded 67.0% AUC.

4.5 | Other research topics

Strain dynamics was addressed in three studies with rotavirus,®?

2 and Shigella®® being the only pathogens investigated.

norovirus,?
Pitzer et al.>2 used Fourier analysis to predict rotavirus strain dynam-
ics based on multi-site data (ltaly, Hungary, Spain, Japan,
United States, Australia). Their model explained the coexistence and
cyclical patterns in the distribution of genotypes observed in most
developed countries: predominant rotavirus strains cycle with periods
ranging from 3 to 11 years. Suzuki et al.?? predicted norovirus strain
dynamics in Japan using fitness models. They reported that the model
was effective in predicting the direction of change in the proportions
of genotypes, it predicted that GI.3 and Gll.4 would contract,
whereas GII.17 would expand and predominate in the 2015-2016

season. Adamker et al.2®

predicted Shigella species among Shigellosis
patients in Israel using machine learning algorithms (LR, NN, and SVM)
achieving an accuracy of 93.2%.

There were two studies on determinants of diarrheal disease.
Alexander and Burn®* used cluster analysis and Classification and
Regression Tree (CART) models to evaluate patient attributes by out-
break in Botswana. They identified two main clusters associated with
patient age while neither village nor outbreak had an influence on clus-
ter. Furthermore, CART identified sex and hospitalization as predictors
of diarrhea. Additionally, water shortages and water quality deficiencies
were identified in both outbreaks. Green et al.”° also used a CART
model to establish determinants of diarrheal illness at a country-level.
Improvements in rural sanitation was identified as the most important
predictor for reducing diarrhea. They predicted that a 65% global reduc-
tion in unmet rural sanitation would save 1.2 million lives annually.

|46

Finally, Chao et al.*® used machine learning algorithms (Principal-

Component Analysis and K-means clustering) to characterize

seasonality of different pathogens from GEMS data. The key findings
from the study was that rotavirus was most prevalent during the dry
“winter” months and out of phase with bacterial pathogens, which
peaked during hotter and rainier times of year corresponding to

“monsoon,” “rainy,” or “summer” seasons.

5 | DISCUSSION

Notable effort has been made in predictive modeling for infectious
diarrhea in pediatric populations. The key findings from our review
are: (1) Diarrheal outcomes remain under researched; (2) with the shift
in the landscape of diarrheal pathogens post rotavirus vaccine intro-
duction, many pathogen-specific areas remain open for exploration
including disease forecasts, disease detection strain dynamics and
vaccine-related predictions; (3) the need for model ensembles to
gauge and mitigate structural uncertainties in predictions problems;
(4) need for more diverse, neoteric, and pertinent data to improve the
precision and robustness of prediction models; (5) the lack of consis-
tency on reporting of predictive models despite available guidelines
highlighting the need for common data standards need for common
data standards and adherence to guidelines on reporting of predictive
models for biomedical research.

Despite the advances that have been made in predictive model-
ing, a number of topical areas remain open for further research. Not-
withstanding the wide array of poor diarrheal outcomes and their
public health impact, only four studies exist focusing on dehydration
and linear growth faltering. Death, prolonged/persistent diarrhea, and
malnutrition still remain uninvestigated. Furthermore, with the change
in the landscape of diarrheal etiologies after rotavirus vaccine

introduction,®”7°

other pathogens (Escherichia coli, Cryptosporidium,
and Shigella) have emerged as important etiological agents of
moderate-to-severe diarrhea in these settings? potentially creating
the need for pathogen-specific models in the areas of disease fore-
casts, disease detection, and strain dynamics. Additionally, with pipe-
line vaccines advancing for other enteric pathogens like cholera,

Shigella, Enterotoxigenic E. coli,”*”?

vaccine-related predictions would
be useful for these vaccines in understanding the comprehensive
epidemiological impact of vaccination and providing insights into the
prospective cost-effectiveness of vaccination by forecasting vaccine-
induced changes in the epidemiology of diarrheal disease in the popu-
lation over time.”*

Although diverse and dynamic modeling approaches have been
used so far, a number of methodological propositions could help to
further improve the predictive modeling for diarrheal disease. A diver-
sity of model structures should be considered in order to gauge struc-
tural uncertainties in prediction/forecasting. To enhance the
characterization of forecasting uncertainty, model ensembles that
aggregate a range of model structures and their individual uncertainty
should be increasingly embraced.” In addition, since model parame-
ters in forecasting may be subject to uncertainties, approaches such
as Bayesian methodologies, which combine uncertainties and expert

knowledge through choice of prior probabilities, have become
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prominent and could be utilized.”® Furthermore, with the complexity

and rise of data in healthcare,”®””

we propose the increased adoption
of machine learning algorithms in prediction tasks as they have been
shown to provide additional information and understanding of the
data beyond using standard statistical approaches.®””® Finally, differ-
ent models reported different metrics for the same prediction task as
well as incompleteness in the reporting of elements of the Transpar-
ent Reporting of a multivariable prediction model for Individual Prog-
nosis Or Diagnosis (TRIPOD) statement and there is need to define
common data standards and adherence to developed guidelines on
reporting of predictive models in biomedical research’® to make com-
parisons across multiple models possible.

With regards to data sources for disease forecasts, adding more
diverse, recent, and pertinent data will improve the precision and
robustness of such models. To better predict new diarrheal events and
to inform spatial spread, incorporating population density and spatial
data into the modeling is vital.2® This can gain ascendancy with the
availability of novel universal geospatial datasets such as WorldPop and
LandScan. Furthermore, understanding spread of diarrhea could be bet-
ter understood by integrating remote sensing and satellite data, health-
care capacity, and human mobility data in the models. Additionally, we
recommend use of data from multi-site studies, where available, as they
are larger, richer, and have geographical variance that could help to miti-
gate algorithmic bias that arises from sample and prejudice biases.5
More recent data are also needed in the prediction of seasonality of
pathogens since rotavirus vaccine has been shown to affect seasonality
of rotavirus gastroenteritis®? and climate change caused by increased
global warming has also been shown to alter the distribution of infec-
tious disease vectors and the seasonal distribution of some allergenic
pollen species.2384 Finally, post-vaccination data from diverse countries
is needed to improve projections of long-term impact of rotavirus vacci-

nation by conducting further validation.**

6 | LIMITATION

There were several limitations with this review. First, by limiting this
systematic review to PubMed, we may have missed pertinent articles
not indexed within PubMed. Second, by filtering-out articles not writ-
ten in English, other predictive models for diarrheal iliness may have
been missed. Additionally, this review did not conduct risk of bias and
quality assessment of the studies, hence bias in primary studies may
have been reported leading to inaccuracy of findings. However, we
did not draw any inference based on the validity of the estimates of
the performance metrics of the included studies. Furthermore, the
comparison of statistical measures of predictions could not be directly

made across models as the outcomes being predicted were different.

7 | CONCLUSION

As the first systematic review on predictive modeling for diarrheal

iliness, we observed substantial effort to predict various aspects of

Learning Health SystemsBESES

diarrheal disease. However, many topical and methodological prob-
lems remain open and there is significant scope for improvement in
the predictive modeling of diarrhea. Future research in predictive
modeling for diarrheal illness should seek to address them to realize

more comprehensive, robust, and precise models.
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