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Abstract

Introduction: Diarrhea is still a significant global public health problem. There are

currently no systematic evaluation of the modeling areas and approaches to predict

diarrheal illness outcomes. This paper reviews existing research efforts in predictive

modeling of infectious diarrheal illness in pediatric populations.

Methods: We conducted a systematic review via a PubMed search for the period

1990–2021. A comprehensive search query was developed through an iterative pro-

cess and literature on predictive modeling of diarrhea was retrieved. The following fil-

ters were applied to the search results: human subjects, English language, and

children (birth to 18 years). We carried out a narrative synthesis of the included

publications.

Results: Our literature search returned 2671 articles. After manual evaluation, 38 of

these articles were included in this review. The most common research topic among

the studies were disease forecasts 14 (36.8%), vaccine-related predictions 9 (23.7%),

and disease/pathogen detection 5 (13.2%). Majority of these studies were published

between 2011 and 2020, 28 (73.7%). The most common technique used in the

modeling was machine learning 12 (31.6%) with various algorithms used for the pre-

diction tasks. With change in the landscape of diarrheal etiology after rotavirus vac-

cine introduction, many open areas (disease forecasts, disease detection, and strain

dynamics) remain for pathogen-specific predictive models among etiological agents

that have emerged as important. Additionally, the outcomes of diarrheal illness

remain under researched. We also observed lack of consistency in the reporting of

results of prediction models despite the available guidelines highlighting the need for

common data standards and adherence to guidelines on reporting of predictive

models for biomedical research.

Conclusions: Our review identified knowledge gaps and opportunities in predictive

modeling for diarrheal illness, and limitations in existing attempts whilst advancing

some precursory thoughts on how to address them, aiming to invigorate future

research efforts in this sphere.
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1 | INTRODUCTION

Diarrhea is a global public health problem causing approximately 1.7

billion episodes in children annually,1,2 with a significant proportion of

diarrheal morbidity and mortality occurring in low-income countries

due to resource and infrastructural challenges to the health system.3,4

Diarrheal disease, if not well managed, has a plethora of poor out-

comes; malnutrition, longer duration diarrhea, dehydration, and even

death.5,6 Diarrhea is the second leading cause of mortality in children

aged <5 years globally, causing about 1.5 million deaths a year, trans-

lating into nearly one in every nine child deaths.7,8

The goal of predictive modeling in healthcare is to identify the likeli-

hood of health events in patients or the population and such efforts guide

healthcare providers and policy makers in making preventive strategies

and local interventions, which ultimately reduce morbidity and mortality

as well as the associated economic and social burden.9,10 The early identi-

fication of diarrheal disease and its progression, in the backdrop of limited

diagnostic capabilities in the developing world and budgetary constraints,

is a key step in assessing and treating diarrheal illness in a cost-effective

manner, while improving quality of care and averting poor outcomes. Pre-

dictive models that are data-driven can synthesize clinical, administrative,

and socio-economic data and complement clinician judgment while pro-

viding additional insights. Additionally, the prediction of disease incidence,

seasonality, and outbreaks could help public health authorities to under-

stand transmission dynamics and seasonal patterns in advance and aid

them in planning and selecting the main response actions thereby

enhancing the efficacy and timeliness of local interventions and preven-

tive strategies translating to reduced morbidity and mortality.11-13

Despite the advancement of predictive modeling in healthcare,

there is currently no systematic evaluation, to the best of our knowl-

edge, of the modeling areas and approaches in diarrheal disease. This

paper, therefore, focuses on giving a synopsis of existing attempts to

predict infectious diarrheal disease in children aged <18 years and their

shortcomings. Additionally, we seek to identify topical and methodolog-

ical gaps in knowledge that can be built upon to ameliorate predictive

modeling for infectious diarrheal disease in pediatric populations.

2 | QUESTION(S) OF INTEREST

What are the topical and methodological knowledge gaps in in predic-

tive modeling for diarrheal disease in pediatric populations?

3 | METHODS

Our study was conducted in line with the Preferred Reporting

Items for Systematic Reviews and Meta-Analyses (PRISMA)

guidelines.14 The systematic review protocol for this study was

developed and iteratively refined with inputs from all study co-

authors. The protocol was registered with the international pro-

spective register of systematic reviews (PROSPERO) (registration

number: CRD42021241479): an online repository of systematic

review protocols, maintained by the Center for Reviews and Dis-

semination at the University of York.

We developed a search strategy, limited to PubMed, to

retrieve publications on predictive modeling of diarrheal illness

between January 1, 1990 and December 31, 2021. The initial

search strategy used was: Diarrhea AND (Predict OR Forecast). Two

independent reviewers (Billy Ogwel and Gabriel Otieno) evaluated

the title and abstract of each retrieved publication to determine

the probable pertinence. Pertinence was assessed based on pre-

defined inclusion criteria ensuring that the publication's primary

focus addressed some aspect of predictive modeling of diarrheal

illness. We included all primary epidemiological study designs con-

ducted in any country. We excluded literature that did not

undergo a peer review: gray literature, conference proceedings,

dissertations, and posters. The full texts of potentially relevant

articles were further examined to make a decision on their

inclusion.

Citations of included publications were also reviewed and if a

citation was found pertinent but missing from the original search

results, the search query was expanded by adding a keyword

phrase extracted from the citation so as to include the relevant

citation and other similar articles. Additionally, specific keyword

phrases were used to narrow our search results by excluding irrele-

vant articles. The above process was iterated until a comprehen-

sive search was developed.

The final search query used was: (Diarrh* OR gastroenteritis) AND

(Predict* OR Forecast OR “risk scoring”) NOT (necrotizing OR app-

endicitis OR cancer OR ulcer OR IBD OR “Inflammatory bowel disease”

OR colitis OR “Eosinophilic Esophagitis” OR Crohn). The following

filters were applied to the search results: human subjects, English

language, and children (birth to 18 years). The final literature

review was done on articles that met the pre-defined inclusion

criteria (prediction of any aspect of infectious diarrhea in

pediatric populations). Risk of bias and quality of the studies

were not evaluated as this paper was descriptive in nature and

no inferences were made based on the validity of the estimates of

the performance metrics of the included studies. Difference of

opinion about inclusion of articles were resolved by discussions

among the two reviewers and where necessary a third reviewer

(Bryan O. Nyawanda). One reviewer (Billy Ogwel) extracted the

following information from the included articles: aspect of diar-

rheal illness, country, data used in modeling, modeling technique,

time period, and performance of the predictive models. In terms of
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data analysis, we carried out a narrative synthesis of included

publications.

4 | RESULTS

A total of 2671 articles from the PubMed search were reviewed. Fifty

nine of these appeared to be pertinent after review of titles and

abstracts, and underwent full-text review, where after 38 were estab-

lished to be relevant and are discussed in this paper (Figure 1). Majority

of the studies were conducted in Asia 17 (44.7%)15-31 with 8 (47.1%) of

them conducted in Bangladesh alone. Eight studies (21.1%), 4 (10.5%),

and 2 (5.3%) reported data from Africa,32-39 Americas,40-43 and

Europe,44,45 respectively. Seven studies (17.4%) were multi-site46-52 of

which 4 (57.1%) were reported from the Global Enteric Multicenter

Study (GEMS).53 The most common research topics among the studies

were disease forecasts 14 (36.8%), vaccine-related 9 (23.7%), and dis-

ease/pathogen detection 5 (13.2%). Majority of these studies were pub-

lished between 2011 and 2020, 28 (73.7%). The most common

technique used in the modeling was machine learning 12 (31.6%) with

various algorithms used for the prediction tasks (Table 1).

4.1 | Predicting disease forecasts

Much of the existing work on predictive modeling of diarrhea

(14 [36.8%]) is focused on predicting diarrheal disease forecasts with

five studies focusing on all-cause diarrhea,15-17,32,33 while nine were

specific to cholera.23-25,29-31,40-42 The prediction of rotavirus-specific

incidence have been incorporated in vaccine impact predictions dis-

cussed under the sub-topic vaccine-related predictions.

The studies that predicted forecasts of all-cause diarrhea used

data collected from China,15,17 Indonesia,16 Mali,32 and Botswana.33

The modeling techniques used in these predictions were Machine

learning (Multiple Linear Regression; Random Forest [RF] Regression;

Support Vector (SVM) Regression; Gradient Boosting Regression;

Convolutional Neural Network; Neural Network (NN) Regression),

Auto regression models (autoregressive integrated moving average

[ARIMA/X]; seasonal-auto-regressive-integrated-moving-average

[SARIMA/X]), compartmental susceptible-infected-recovered-suscepti-

ble (SIRS) model, multiplicative Holt-Winters method, and parsimonious

model (PM; Table 2). The data used in the above modeling included:

morbidity, meteorological/climate and search indices data. The results

from the studies varied: Fang et al.15 reported that the RF model
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included studies of predictive
modeling in diarrheal disease.
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outperformed the ARIMA/X models with a mean absolute percentage

error (MAPE) of approximately 20.0%; Medina et al.32 realized a

MAPE circa 25.0% using the multiplicative Holt-Winters method; Pan-

gestu et al.16 reported an accuracy of 78.6% on the SARIMA model;

Wang et al.17 found the PM model to outperform all the other models

in three metrics; the SIRS model built by Heaney et al.33 had a mean

Root Mean Square Error (RMSE) and correlation of 0.79 and 0.99,

respectively between the observations and simulations across all wet

season outbreaks, while across dry season outbreaks, the mean RMSE

and correlation were 1.33 and 0.99, respectively (Table 3).

The studies that focused on the prediction of cholera forecasts

utilized data from two countries: six from Bangladesh23-25,29-31 and

three from Haiti.40-42 The modeling techniques employed by these

studies were SIRS models, auto regression models, logistic regression

(LR), multiple regression, gravity models, spatially-explicit stochastic

model, and data assimilation: ensemble Kalfman filter. The modeling

was based on the following data: morbidity, climate, environmental,

mobility, sewage discharge, terrestrial water storage, and satellite

data. The results were diverse: Jutla et al.31 reported an accuracy of

75.0% on the multiple regression model; Bengtsson et al.42 reported

an Area Under the Curve (AUC) of 79.0% on the mobile phone-based

model; Pascual et al.23 got an accuracy of 75.0% on their SIRs model;

Pasetto et al.40 reported that the assimilation procedure outper-

formed other calibration schemes and it was able to forecast the spa-

tial incidence of cholera at least 1 month ahead; Bertuzzo et al.41

using a spatially-explicit stochastic model observed an overall good

agreement with the data, capturing the timing and the magnitude of

the peaks correctly (Nash–Sutcliffe index = 0.79); Daisy et al.25

achieved the best fit in the model using climate data (RMSE = 14.7,

Mean of Absolute value of Errors [MAE] = 11); Matsuda et al.29

achieved a correlation of 0.95 between simulations and actual number

of disease.

4.2 | Predicting vaccine-related topics

Rotavirus is a leading cause of diarrheal morbidity and mortality.1,54

Consequently, rotavirus vaccines have been incorporated into

national immunization programs following recommendations by the

World Health Organization (WHO).55 Nine studies focused on predic-

tions around rotavirus vaccine with seven studies focusing on vaccine

impact,28,35,38,43-45,47 one on vaccine hesitancy,27 and one on

vaccine cost-effectiveness19 (Table 3).

The seven studies on vaccine impact used data from Niger,35

Ghana,38 United States,43 Kyrgyzstan,28 England and Wales,44,45 and

a multi-site study (France, Germany, Italy, Spain, and the

United Kingdom).47 These studies built predictive models using SIRs

models, periodic regression models and deterministic age-structured

dynamic model (Table 2). The models used the following data: Key

features of rotavirus epidemiology, rotavirus-associated events (death,

hospitalization, outpatient visits), vaccination, and healthcare seeking

data. The results were comparable: Park et al.35 predicted a 39%–42%

reduction on burden at a 70.0% vaccine coverage; Pitzer et al.44 pre-

dicted that incidence of severe disease would be reduced 1.1-1.7

times more than expected from the direct effects (54%–90.0% at

90.0% coverage) 5 years after roll-out; Effelterre et al.47 reported that

with vaccination coverage rates of 70.0%, 90.0%, and 95.0% the

model predicted that, in addition to the direct effect of vaccination,

herd protection induced a reduction in disease incidence (any severity)

of 25.0%, 22.0%, and 20.0%, respectively, and of 19.0%, 15.0%, and

13.0%, respectively, for moderate-to-severe disease, 5 years after

roll-out; De Blasio et al.28 predicted a reduction of 56.0%,

50.0%,52.0% for deaths, admissions, and outpatient visits,

TABLE 1 Characteristics of included studies in predictive
modeling for diarrheal disease.

N = 38

Characteristics n (%)

Region

Asia 17 (44.7)

Africa 8 (21.1)

Americas 4 (10.5)

Europe 2 (5.3)

Multi-site 7 (18.4)

Topics

Disease forecasts 14 (36.8)

Vaccine-related 9 (23.7)

Disease/pathogen detection 5 (13.2)

Outcomes 4 (10.5)

Strain dynamics 3 (7.9)

Determinants of diarrheal disease burden 2 (5.3)

Seasonality 1 (2.6)

Year of publication

1990–2000 1 (2.6)

2001–2010 7 (18.4)

2011–2020 28 (73.7)

2021 2 (5.3)

Modeling techniques

Machine learning algorithms 12 (31.6)

SIS-/SIRS-like compartmental modelsa 6 (15.8)

Dynamic, deterministic compartmental models 5 (13.2)

Logistic regression 4 (10.5)

Auto regression Model 3 (7.9)

Multiplicative Holt-Winters method 1 (2.6)

Linear regression 1 (2.6)

Fourier analysis 1 (2.6)

Fitness models 1 (2.6)

Data assimilation: ensemble Kalfman filter 1 (2.6)

Gravity models 1 (2.6)

Multiple regression models 1 (2.6)

Spatially-explicit stochastic model 1 (2.6)

aSIS- (susceptible-infectious-susceptible)/SIRS-like (susceptible-infectious-

recovered-susceptible) compartmental models.
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respectively, 5 years after vaccine roll-out at a 95.0% coverage and

54.0% effectiveness; Atchison et al.45 predicted a 61.0% reduction in

incidence (Table 3).

Freiesleben de Blasio et al.19 predicted cost-effectiveness of rota-

virus vaccine in Kazakhstan using a dynamic model. They reported

that at a 90.0% coverage, ≈880 rotavirus deaths would be averted

and an average of 54,784 life-years for children <5 years of age would

be saved in a 20-year period. Additionally, they found 40.0% and

60.0% reduction in severe and mild rotavirus gastroenteritis due to

indirect protection, respectively. Bar-Lev et al.27 predicted vaccine

hesitancy in Israel using machine learning algorithms (LR, RF, and NN).

The performances of all algorithms were close to random in this

study.

4.3 | Predicting disease/pathogen detection

Five studies focused on disease/pathogen detection: two all-cause

diarrhea18,39; one viral-only etiology49; one viral/bacterial

etiology48; one rotavirus.37 Other than the rotavirus model, there

are no other existing pathogen-specific prediction models. Two

studies focused on the prediction of diarrheal infection. Both stud-

ies used machine learning algorithms in the modeling of demo-

graphic health survey data in Bangladesh18 and Nigeria,39

respectively. Maniruzzaman et al.18 reported the SVM model with

radial basis kernel outperformed other models yielding 65.6%

accuracy, 66.3% sensitivity, and 52.3% specificity. Abubakar and

Olatunji39 reported an accuracy of 95.6% on their artificial neural

network model.

Brintz et al.48 used data from the GEMS study to predict both

viral and bacterial etiologies in diarrhea utilizing RF and LR models

with the following results: AUC = 82.5%; specificity = 85.0%;

sensitivity = 59.0%; Negative Predictive Value (NPV) = 82.0%; Posi-

tive Predictive Value (PPV) = 64.0%. Garbern et al.49 predicted viral-

only etiology deploying machine learning algorithms (RF and LR

regression) on data from Mali and Bangladesh yielding 75.4% AUC.

Ayers37 used classification trees on the GEMS Kenya data to predict

rotavirus infection realizing 61.3% AUC.

TABLE 2 Categorization and current status of research topics on predictive modeling for diarrheal disease.

Primary Category Sub-category Modeling methods for existing predictive models

Disease forecast All-cause diarrhea Random Forest, autoregressive integrated moving average (ARIMA/X), seasonal-auto-regressive-

integrated-moving-average (SARIMA/X), multiplicative Holt-Winters method, compartmental

susceptible-infected-recovered-susceptible (SIRS) model, Parsimony Model, gravity models,

Multiple Linear Regression, Random Forest Regression, Support Vector Regression, Gradient

Boosting Regression, Extreme Gradient Boosting Regression, Convolutional Neural Network,

Neural Network Regression

Cholera SIRS-like models, data assimilation: ensemble Kalfman filter, individual-based spatially-explicit

stochastic model, logistic regression, SARIMA, model, auto regression model, multiple

regression models

Disease/pathogen

detection

All-cause diarrhea Naïve Bayes, linear discriminant analysis, quadratic discriminant analysis, support vector machine,

Artificial Neural Network

Viral etiology Random Forest, logistic regression

Bacterial etiology Random Forest, logistic regression

Rotavirus Classification trees

Strain dynamics Rotavirus Fourier analysis

Norovirus Fitness models

Shigella Logistic regression, Neural Network, support vector machines

Outcomes Dehydration Logistic regression/recursive partitioning model

Malnutrition Linear regression

Hospitalization None

Prolonged/persistent

diarrhea

None

Mortality None

Seasonality Principal-Component Analysis, K-means clustering, classification and regression trees

Vaccine Vaccine impact SIS- (susceptible-infectious-susceptible), SIRS-like compartmental models, ensemble models,

dynamic, deterministic compartmental model, periodic regression models, age-structured

compartmental mode

Vaccine cost-effectiveness Dynamic model

Vaccine hesitancy Logistic regression, Random Forest, and Neural Networks

Determinants of diarrheal disease burden Classification and Regression Trees (CART)
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4.4 | Predicting diarrheal outcomes

There were only four studies focused on diarrheal outcomes; three on

dehydration20,21,36 and one on linear growth faltering.51 Despite risk

factors for death,56-60 hospitalization,61-64 and prolonged/persistent

diarrhea65-68 being documented, there were no predictive models

developed on these outcomes. The three publications on dehydration

utilized data from Bangladesh,20 Rwanda,36 and India.21 The primary

modeling technique in all the studies was LR with historical, demo-

graphic, clinical, and nutritional data being used. The new DHAKA

Dehydration Score developed by Levine et al.20 yielded AUC of

79.0% and 78.0%, for severe and some dehydration, respectively.

Levine et al.36 also reported AUC of 72.0%, 73.0%, and 80.0% for the

WHO severe dehydration scale, Centers for Disease Control and Pre-

vention (CDC) scale, and Clinical Dehydration Scale, respectively. In

the model developed by Zodpey et al.,21 the sensitivity, specificity,

PPV, Cohen's kappa, and overall predictive accuracy were 81.0%,

81.0%, 81.0%, 61.0%, and 86.0%, respectively. Brander et al.51 used

the GEMS data to predict linear growth faltering based on a LR model

that yielded 67.0% AUC.

4.5 | Other research topics

Strain dynamics was addressed in three studies with rotavirus,52

norovirus,22 and Shigella26 being the only pathogens investigated.

Pitzer et al.52 used Fourier analysis to predict rotavirus strain dynam-

ics based on multi-site data (Italy, Hungary, Spain, Japan,

United States, Australia). Their model explained the coexistence and

cyclical patterns in the distribution of genotypes observed in most

developed countries: predominant rotavirus strains cycle with periods

ranging from 3 to 11 years. Suzuki et al.22 predicted norovirus strain

dynamics in Japan using fitness models. They reported that the model

was effective in predicting the direction of change in the proportions

of genotypes, it predicted that GII.3 and GII.4 would contract,

whereas GII.17 would expand and predominate in the 2015-2016

season. Adamker et al.26 predicted Shigella species among Shigellosis

patients in Israel using machine learning algorithms (LR, NN, and SVM)

achieving an accuracy of 93.2%.

There were two studies on determinants of diarrheal disease.

Alexander and Burn34 used cluster analysis and Classification and

Regression Tree (CART) models to evaluate patient attributes by out-

break in Botswana. They identified two main clusters associated with

patient age while neither village nor outbreak had an influence on clus-

ter. Furthermore, CART identified sex and hospitalization as predictors

of diarrhea. Additionally, water shortages and water quality deficiencies

were identified in both outbreaks. Green et al.50 also used a CART

model to establish determinants of diarrheal illness at a country-level.

Improvements in rural sanitation was identified as the most important

predictor for reducing diarrhea. They predicted that a 65% global reduc-

tion in unmet rural sanitation would save 1.2 million lives annually.

Finally, Chao et al.46 used machine learning algorithms (Principal-

Component Analysis and K-means clustering) to characterize

seasonality of different pathogens from GEMS data. The key findings

from the study was that rotavirus was most prevalent during the dry

“winter” months and out of phase with bacterial pathogens, which

peaked during hotter and rainier times of year corresponding to

“monsoon,” “rainy,” or “summer” seasons.

5 | DISCUSSION

Notable effort has been made in predictive modeling for infectious

diarrhea in pediatric populations. The key findings from our review

are: (1) Diarrheal outcomes remain under researched; (2) with the shift

in the landscape of diarrheal pathogens post rotavirus vaccine intro-

duction, many pathogen-specific areas remain open for exploration

including disease forecasts, disease detection strain dynamics and

vaccine-related predictions; (3) the need for model ensembles to

gauge and mitigate structural uncertainties in predictions problems;

(4) need for more diverse, neoteric, and pertinent data to improve the

precision and robustness of prediction models; (5) the lack of consis-

tency on reporting of predictive models despite available guidelines

highlighting the need for common data standards need for common

data standards and adherence to guidelines on reporting of predictive

models for biomedical research.

Despite the advances that have been made in predictive model-

ing, a number of topical areas remain open for further research. Not-

withstanding the wide array of poor diarrheal outcomes and their

public health impact, only four studies exist focusing on dehydration

and linear growth faltering. Death, prolonged/persistent diarrhea, and

malnutrition still remain uninvestigated. Furthermore, with the change

in the landscape of diarrheal etiologies after rotavirus vaccine

introduction,69,70 other pathogens (Escherichia coli, Cryptosporidium,

and Shigella) have emerged as important etiological agents of

moderate-to-severe diarrhea in these settings2 potentially creating

the need for pathogen-specific models in the areas of disease fore-

casts, disease detection, and strain dynamics. Additionally, with pipe-

line vaccines advancing for other enteric pathogens like cholera,

Shigella, Enterotoxigenic E. coli,71,72 vaccine-related predictions would

be useful for these vaccines in understanding the comprehensive

epidemiological impact of vaccination and providing insights into the

prospective cost-effectiveness of vaccination by forecasting vaccine-

induced changes in the epidemiology of diarrheal disease in the popu-

lation over time.73

Although diverse and dynamic modeling approaches have been

used so far, a number of methodological propositions could help to

further improve the predictive modeling for diarrheal disease. A diver-

sity of model structures should be considered in order to gauge struc-

tural uncertainties in prediction/forecasting. To enhance the

characterization of forecasting uncertainty, model ensembles that

aggregate a range of model structures and their individual uncertainty

should be increasingly embraced.74 In addition, since model parame-

ters in forecasting may be subject to uncertainties, approaches such

as Bayesian methodologies, which combine uncertainties and expert

knowledge through choice of prior probabilities, have become
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prominent and could be utilized.75 Furthermore, with the complexity

and rise of data in healthcare,76,77 we propose the increased adoption

of machine learning algorithms in prediction tasks as they have been

shown to provide additional information and understanding of the

data beyond using standard statistical approaches.37,78 Finally, differ-

ent models reported different metrics for the same prediction task as

well as incompleteness in the reporting of elements of the Transpar-

ent Reporting of a multivariable prediction model for Individual Prog-

nosis Or Diagnosis (TRIPOD) statement and there is need to define

common data standards and adherence to developed guidelines on

reporting of predictive models in biomedical research79 to make com-

parisons across multiple models possible.

With regards to data sources for disease forecasts, adding more

diverse, recent, and pertinent data will improve the precision and

robustness of such models. To better predict new diarrheal events and

to inform spatial spread, incorporating population density and spatial

data into the modeling is vital.80 This can gain ascendancy with the

availability of novel universal geospatial datasets such as WorldPop and

LandScan. Furthermore, understanding spread of diarrhea could be bet-

ter understood by integrating remote sensing and satellite data, health-

care capacity, and human mobility data in the models. Additionally, we

recommend use of data from multi-site studies, where available, as they

are larger, richer, and have geographical variance that could help to miti-

gate algorithmic bias that arises from sample and prejudice biases.81

More recent data are also needed in the prediction of seasonality of

pathogens since rotavirus vaccine has been shown to affect seasonality

of rotavirus gastroenteritis82 and climate change caused by increased

global warming has also been shown to alter the distribution of infec-

tious disease vectors and the seasonal distribution of some allergenic

pollen species.83,84 Finally, post-vaccination data from diverse countries

is needed to improve projections of long-term impact of rotavirus vacci-

nation by conducting further validation.44

6 | LIMITATION

There were several limitations with this review. First, by limiting this

systematic review to PubMed, we may have missed pertinent articles

not indexed within PubMed. Second, by filtering-out articles not writ-

ten in English, other predictive models for diarrheal illness may have

been missed. Additionally, this review did not conduct risk of bias and

quality assessment of the studies, hence bias in primary studies may

have been reported leading to inaccuracy of findings. However, we

did not draw any inference based on the validity of the estimates of

the performance metrics of the included studies. Furthermore, the

comparison of statistical measures of predictions could not be directly

made across models as the outcomes being predicted were different.

7 | CONCLUSION

As the first systematic review on predictive modeling for diarrheal

illness, we observed substantial effort to predict various aspects of

diarrheal disease. However, many topical and methodological prob-

lems remain open and there is significant scope for improvement in

the predictive modeling of diarrhea. Future research in predictive

modeling for diarrheal illness should seek to address them to realize

more comprehensive, robust, and precise models.
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