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Abstract
Transmissibility, the ability to spread within host populations, is a prerequisite for a pathogen to have epidemic or 
pandemic potential. Here, we estimate the phylogenies of human infectivity and transmissibility using 1,408 genome 
sequences from 743 distinct RNA virus species/types in 59 genera. By repeating this analysis using data sets censored 
by virus discovery date, we explore how temporal changes in the known diversity of RNA viruses—especially recent 
increases in recognized nonhuman viruses—have altered these phylogenies. Over time, we find significant increases 
in the proportion of RNA virus genera estimated to have a nonhuman-infective ancestral state, in the fraction of 
distinct human virus lineages that are purely human-transmissible or strictly zoonotic (compared to mixed lineages), 
and in the number of human viruses with nearest relatives known not to infect humans. Our results are consistent 
with viruses that are capable of spreading in human populations commonly emerging from a nonhuman reservoir. 
This is more likely in lineages that already contain human-transmissible viruses but is rare in lineages that contain 
only strictly zoonotic viruses.
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Introduction
The coronavirus disease 2019 (COVID-19) pandemic has 
heightened interest in identifying pathogens most likely 
to emerge and spread in human populations (Albery 
et al. 2021; Carlson et al. 2021). One proposal, the Global 
Virome Project (Carroll et al. 2018), is to conduct compre-
hensive surveys of viral diversity in nonhuman reservoirs. 
Nonhuman mammals and birds are of greatest interest; 
human viruses are not widely shared with other taxa 
(Woolhouse et al. 2013). This idea has attracted the criti-
cism that the immense scale of the challenge makes it un-
manageable and too costly to implement (Holmes et al. 
2018). Yet, discovery remains a fundamental part of all vi-
able strategies to detect and identify high-risk pathogens 
before they spill over into humans (Bernstein et al. 2022).

A key step for making the challenge manageable is the 
development of accurate and robust methods of identify-
ing the subset of viruses that are of greatest risk to humans 
and so should be the focus of surveillance efforts. There are 
currently 2 main approaches: first, systematic ecological 
risk modeling of the viruses catalogued (see, for example, 
the Spillover project; Grange et al. 2021), and second, using 

machine learning to predict phenotypic traits from virus 
sequence data (Mollentze et al. 2021). Both approaches, 
or a combination of the two, could help identify viruses 
with the potential to infect humans even in the absence 
of human cases.

A difficulty with both approaches is that the data inputs 
available for these analyses are “incomplete, biased and 
rapidly changing with ongoing virus discovery” (Wille 
et al. 2021). A specific concern is that virus discovery has 
historically prioritized viruses of humans over those of 
other animals and viruses of livestock (living in proximity 
to humans) over those of wildlife (Gibb et al. 2022).

This kind of ascertainment bias in ecological studies is a 
problem that has been recognized for over 200 yr (White 
1789). There are several possible solutions. One is 
structured subsampling of the data to remove biases. 
Currently, this is only feasible for the small subset of viruses 
that have been extensively studied in nonhuman reservoirs, 
such as influenza A. An alternative is the discovery curve, a 
long-established tool for assessing the extent of missing di-
versity (Woolhouse et al. 2008). We describe below how we 
can extend this approach beyond simple species counts to 
capture temporal trends in other outputs of interest.
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Virus phylogeny is 1 plausible predictor of zoonotic and 
epidemic risk, with novel viruses that are closely related to 
known human viruses being of greater concern (Grange 
et al. 2021). Here, we construct sequence-based phylogen-
etic trees for 52 out of all 59 genera containing human 
RNA viruses and use the trees to study the phylogenetics 
of 2 key traits, the ability to infect humans and the ability 
to transmit within human populations (whether directly 
or indirectly via a vector or through environmental 
contamination).

To do this, the viruses are classified by infection/trans-
mission (IT) level (Woolhouse et al. 2013): level 1 (L1) 
viruses are not known to infect humans; L2 viruses can in-
fect humans from a nonhuman reservoir but do not spread 
within human populations, i.e. are strictly zoonotic; L34 
viruses can spread within human populations and there-
fore have the potential to cause self-limiting outbreaks 
(L3) or, if sufficiently transmissible, to cause epidemics 
(L4). We performed phylogenetic analyses on all virus gen-
era containing human-infective viruses and mapped the IT 
level of each virus onto the phylogenies. To capture evolu-
tionary changes of IT level, lineages containing only L2 or 
only L34 viruses are categorized as strictly zoonotic 
lineages and human-transmissible lineages, respectively, 
whereas lineages containing both L2 and L34 viruses are 
categorized as “mixed.” We use the trees to estimate 3 
properties: the IT level of the most recent common ances-
tor of each genus; the number of distinct lineages contain-
ing human-infective and/or human-transmissible viruses; 
and the IT level of the nearest known relative of every hu-
man virus.

However, ascertainment bias also applies to phylogenet-
ic trees and these may change as new, related viruses are 
discovered and included. To address this issue, we repeat 
the analysis using the data set censored by the year of dis-
covery of each virus, going back to the early 20th century 
in 10-year steps. This ordered series of analyses indicates 
how estimates of the 3 properties of interest would have 
changed over time, particularly as the discovery of non-
human viruses accelerated in the 21st century, and pin-
points current trends.

Results
Our data set contained 1,408 representative genome se-
quences from 743 distinct RNA virus species/types, of 
which 260 (35%) can infect humans—these come from 
59 genera across 24 families. A total of 162 species/types 
(22%) are strictly zoonotic (L2), providing 281 sequences, 
87 from humans and 194 from nonhuman mammals or 
birds. A total of 98 species/types (13%) are human trans-
missible (L34), providing 314 sequences, 167 from humans 
and 147 from nonhuman mammals or birds. The remain-
ing 813 sequences are of L1 viruses from, by definition, 
nonhuman hosts.

Known L2 and L34 species/types have accumulated at 
average rates of 1.9 and 1.2 yr−1, respectively, since 1938 
(Fig. 1a). Numbers of nonhuman L1 viruses have increased 

much faster over the same period, particularly during the 
past 2 decades (noting that we only include L1 species/ 
types from the 59 genera of interest here). There are min-
imal differences in the shape of the discovery curves for L2 
and L34 viruses with 50% of the currently recognized 
viruses in both IT levels reported by 1998 (Fig. 1b).

Though the rate of discovery of new human virus spe-
cies/types remains high, there is evidence of a comparative 
slowdown in the accumulation of higher-level taxonomic 
diversity (Fig. 1c and d). Of the 39 genera and 20 families 
containing L2 viruses, 50% were known to do so by 1994 
and 1978, respectively. Of the 42 genera and 22 families 
containing L34 viruses, 50% were known to do so by 
1989 and 1976, respectively.

Phylogenetic trees for the 52 genera containing more 
than 1 virus species/type are shown in Fig. 2. Of the other 
7 genera, 3 contain just a single L2 species/type and 4 a sin-
gle L34 species/type. The most likely ancestral state is L1 
for 44 (85%) of these 52 genera, though the expected value 
(the sum of estimated posterior support values) is lower at 
36.2 (70%). Both the absolute number and proportion of 
genera with a most likely L1 ancestral state have increased 
markedly over time, and over the last 20 yr, the absolute 
number with most likely L2 or L34 ancestral states has de-
clined (Fig. 3a and b).

From the phylogenies (plus the 7 single L2/L34 species/ 
type genera), we can identify 149 distinct lineages containing 
human viruses (supplementary data file S3, Supplementary 
Material online). Of these, 79 are strictly zoonotic (contain-
ing only L2 species/types), 58 are human transmissible (con-
taining only L34), but only 12 are mixed (containing both). 
Of the 12 mixed lineages, 11 (92%) contain enveloped 
viruses, and 4 (33%) contain vector-borne viruses. Of all 
lineages, 111 (74%) contain just a single human virus spe-
cies/type.

Overall, evidence from our study indicates that human 
transmissibility has independently evolved on at least 70 oc-
casions across a wide range of taxa. This conclusion is drawn 
from the estimation of transitions from L1 or L2 to L34 in all 
phylogenies (Figs. 2 and 4). In at least 15 genera and 14 fam-
ilies, human transmissibility has evolved more than once 
(Fig. 4a and b). Lineages containing human-transmissible 
viruses (only L34 or L34 plus L2 viruses) are not dispropor-
tionately present across genome type or enveloped/none-
nveloped (Table 1 and Fig. 4c and d). However, they are 
significantly underrepresented relative to strictly zoonotic 
lineages among vector-borne viruses (Table 1 and Fig. 4e).

The number of distinct, identifiable human virus lineages 
has grown over time (Fig. 3c), faster than the numbers of 
human virus species/types (cf. Fig. 1a). However, the abso-
lute number of mixed lineages is now falling, and the pro-
portion of mixed lineages has been falling over the past 
50 yr (Fig. 3c and d).

There is clear evidence of phylogenetic clustering of IT 
level. At the time of discovery, L34 viruses were 3.9× 
more likely to have a L34 nearest relative than L2, and L2 
viruses were 3.0× more likely to have a L2 nearest relative 
than L34 (P < 0.001). However, the IT level of the nearest 
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known relatives of human viruses has changed for 37% of 
L2 viruses and 61% of L34 viruses since they were first dis-
covered (Fig. 5). The majority of human viruses with no 
congeneric relative at the time of discovery (26 to 30 
out of 47, where the range allows for some ambiguity in 
nearest relative for subset of phylogenies) are now consid-
ered most closely related to a L1 virus. Of human viruses 
originally with a L2 or L34 nearest relative, at least 28% 
(47 to 57 out of 165) now have a L1 nearest relative. Less 
than 10% (15 to 16 out of 162) L2 viruses now have a 
L34 nearest known relative and less than 20% (11 to 19 
out of 98) L34 viruses a L2 nearest known relative (Fig. 5).

Discussion
Virus evolution, discovery, and emergence are distinct con-
cepts, and it is not always clear how knowledge of one 
might inform knowledge of the others. Here, we have 

filtered patterns in RNA virus phylogenies (evolution) 
through a lens of increasing knowledge of virus diversity 
(discovery) to draw inferences about future risk to humans 
(emergence). Our focus is transmissibility—the key trait 
that determines epidemic potential. Only 37% of the hu-
man RNA viruses in our data set are human transmissible 
(L34), so it is important to identify risk factors specific to 
this subset.

The substantial increase in effort invested in virus detec-
tion in the past 20 yr (Ladner 2021) has had no obvious im-
pact on the rate of discovery of human RNA viruses, 
whether they are human transmissible (L34) or strictly 
zoonotic (L2; Fig. 1). Fewer new human viruses were dis-
covered in the period 2010 to 2019 (23) than 1960 to 
1969 (28). There is even clearer evidence of a slowdown 
in the accumulation of higher taxa (genera and families) 
containing L2 and/or L34 viruses (Fig. 1), a pattern consist-
ent with a limited diversity of these viruses (Woolhouse 

a b

c d

Fig. 1. Discovery curves. a) Accumulated numbers of L1, L2, and L34 virus species/types over time. b) As a) showing cumulative fractions. 
c) Accumulated fractions of virus genera containing L2 or L34 virus species/types or both (note that some genera contribute to both curves). 
d) Accumulated fractions of virus families containing L2 or L34 virus species/types or both (note that some families contribute to both curves).
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and Adair 2013). These observations suggest that new hu-
man RNA viruses are becoming harder to find; it is even 
possible that the majority of extant human RNA viruses 

have already been discovered (Woolhouse and Adair 
2013). In marked contrast, there has been a rapid and ac-
celerating increase in numbers of known nonhuman 

Fig. 2. Bayesian maximum clade credibility (MCC) trees for members of 52 virus genera (excluding 7 single species genera) using polymerase 
protein sequences (listed in supplementary data file S4, Supplementary Material online). Phylogenies show the most probable transitions be-
tween nonhuman viruses (L1), viruses infective to humans (L2), and viruses transmissible in human populations (L34).
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viruses (L1; Fig. 1). Our understanding of the phylogenetic 
origins of human viruses has changed as a consequence 
and is likely to continue to do so as it is widely anticipated 
that many more L1 viruses remain to be discovered 
(Carlson et al. 2021; Wille et al. 2021).

Over time, as more L1 viruses have been recognized and 
placed in phylogenies, 3 patterns have become apparent. 
First, both the absolute number and the fraction of RNA 
virus genera estimated to have a human-infective ancestral 
state have sharply declined (Fig. 4a and b); just 15% of mul-
tispecies genera now fall in this category, and we conjec-
ture that the decline will continue. Second, the number 
of distinct human virus lineages has increased as more 
L1 viruses have been discovered, but the number and frac-
tion that contain both L2 and L34 viruses (mixed lineages) 
are both declining (Fig. 3c and d). Again, we expect these 
trends to continue. Third, the number of human viruses 

with probable or possible L1 nearest relatives has increased 
since the viruses were first discovered (Fig. 5). For human- 
transmissible viruses, 48 to 56 out of 98 are now estimated 
to have a nonhuman-infective nearest relative, approxi-
mately double the number with a human-transmissible 
nearest relative and 4× the number with a strictly zoonotic 
nearest relative (Fig. 5b).

The appearance of a new (and extant) human- 
transmissible lineage appears to be a relatively infrequent 
event; there are just 73 known instances over the entire 
evolutionary history of the 52 genera considered here 
(Fig. 2). Less expectedly, our findings suggest that the 
same applies to strictly zoonotic lineages: just 51 in-
stances. We have previously suggested a model where 
the L2 trait is easily gained and easily lost (Woolhouse 
et al. 2013), but that model is not supported by the ana-
lysis reported here.

a b

c d

Fig. 3. Temporal patterns. a) Changes in most probable ancestral state (L1, L2, or L34) of human RNA virus genera estimated using sequences 
from species/types discovered before cutoff date shown. b) As a) showing fractions. c) Changes in the numbers of distinct human-infective RNA 
virus lineages (human transmissible, strictly zoonotic, or mixed) estimated using sequences from species/types discovered before cutoff date 
shown. d) As c) showing fractions.
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Of the major genome types, (−)ssRNA viruses appear 
least likely to adapt fully to human hosts. They are dispro-
portionately strictly zoonotic (Geoghegan et al. 2016), and 
they are rarely specialist human viruses: just 2 (−)ssRNA 
species (both of the Rubulavirus genus) are thought to in-
fect only humans, compared with 20 (+)ssRNA species 
from multiple genera (Woolhouse and Brierley 2018). 

Most vector-borne viruses are also poorly adapted to hu-
mans; just 4 species (all (+)ssRNA viruses) are capable of 
extensive spread in human populations (level 4 not level 
3), whereas strictly zoonotic vector-borne viruses (L2) 
are common (Woolhouse and Brierley 2018). A possible 
explanation is that viruses transmitted by biting arthro-
pods pass directly into the host's blood system, thereby 

a

b c

d e

Fig. 4. Numbers of distinct human-infective RNA virus lineages (n = 149) in different categories. Three lineage types are distinguished: only strictly 
zoonotic (SZ), only human transmissible (HT), and both (MX). a) Stacked bar chart of strictly zoonotic, human-transmissible, and mixed lineage 
counts by genus. b) By virus family. c) By enveloped/nonenveloped. d) By virus genome type. e) By vector borne/nonvector borne.
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bypassing infection barriers without necessarily possessing 
traits associated with human transmissibility.

Together, these observations are consistent with the hy-
pothesis that there is a phylogenetic separation between 
strictly zoonotic and human-transmissible RNA virus 
lineages, and they typically evolve independently from non-
human viruses. This pattern is only now being revealed as pre-
viously underrepresented nonhuman viruses are discovered 
in large numbers. The pattern is partly accounted for by tax-
onomy as human-transmissible and strictly zoonotic virus 
lineages are differently distributed across RNA virus taxa 
(Fig. 4). However, there is still substantial taxonomic overlap, 
and even among genera with both human-transmissible and 
strictly zoonotic viruses, there are only 12 mixed strictly zoo-
notic and human-transmissible lineages of a total of 82.

The phylogenetic pattern is consistent with epidemio-
logical experience of human RNA viruses going back over 
100 yr. There have been multiple examples of the emergence 
of new human-transmissible viruses from nonhuman 

reservoirs (including HIV-1 and SARS-CoV-2) and several ex-
amples of outbreak (L3 by definition) viruses becoming epi-
demic (L4) viruses (including Ebola virus and Chikungunya 
virus). In contrast, there have been no clear examples of strict-
ly zoonotic (L2) viruses becoming human transmissible 
(though the possibility has been raised as a concern, especially 
for the avian influenzas; Woolhouse et al. 2016).

The absence of a clear phylogenetic association between 
human infectivity and human transmissibility may reflect 
the key role that cell receptors play in determining a virus’ 
capacity both to infect and to be transmitted by humans 
(Kuiken et al. 2006; Woolhouse et al. 2012). Cell receptor 
usage varies between and sometimes within virus genera 
(Lefkowitz et al. 2018). Host switching (to humans or to 
any other new host) is facilitated by a virus using a cell recep-
tor with an amino acid sequence that is conserved between 
hosts (Woolhouse et al. 2012). However, if the receptor has a 
differential expression across human tissues, then infectivity 
may not equate with transmissibility (Kuiken et al. 2006). 

Table 1 Ancestor node traits as predictors of lineage types

Variables Coefficient Lower 95% CI Upper 95% CI χ df P value

Genome type - - - 4.22 3 0.24
Enveloped (+)ssRNA 1.69 −0.01 3.39 - - -
Non-enveloped (+)ssRNA 0.64 −0.81 2.08 - - -
dsRNA 0.77 −0.89 2.43 - - -

Vector borne −2.05 −3.47 −0.63 8.01 1 0.005

Outputs are from a binomial GLMM with genus as a random factor. The model compares strictly zoonotic (N = 79) to human-transmissible and mixed lineages (N = 70), 
reporting log odds, 95% confidence intervals (CIs), and results of Wald tests in which each fixed effect is removed from the model and tested in turn. Genome type and 
enveloped/nonenveloped are combined as a composite variable with 4 levels: (−)ssRNA, enveloped (+)ssRNA, nonenveloped (+)ssRNA, and dsRNA. Reference categories 
are (−)ssRNA and nonvector borne. Coefficient estimates are shown for each level of the variable rather than for the variable overall. N = 149.

a b

Fig. 5. Nearest relatives. Matrix showing changes in nearest known congeneric relative from time of discovery to present day for L2 species a) and 
L34 species b) including 101 species/types and 8 possible categories: L1, L2, L34, L1/L2, L1/L34, L2/L34, L1/L2/L34, and none.
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Evolutionary shifts in receptor usage can therefore lead to 
changes in human infectivity, transmissibility, or both.

One limitation to our study is the possible misclassifica-
tion of IT level. We note that 25 of the L2 virus species/ 
types, but none of the L34 viruses, in our data set were first 
discovered in nonhuman hosts and would have been classi-
fied as L1 for periods ranging from 1 to >60 yr. Some viruses 
currently classified as L1 may turn out to be able to infect 
humans in the future. Much less frequently, putative L2 
viruses may be reclassified as L34 (e.g. Nipah virus, though 
after <1 yr). However, IT level remains unchanged for the 
great majority of RNA viruses, so reclassifications seem likely 
to cause only modest shifts to the patterns reported here.

A second limitation is the definition of “species” and 
“types.” Here, we use these taxa partly to guide selection of 
sequences for analysis, aiming to capture as much as practic-
able of the diversity of nonhuman, human-infective, and 
human-transmissible viruses. For our main analysis, we use 
lineage rather than taxon as the unit of study (Figs. 2–4). 
Where we do use counts of species/types (Figs. 1 and 5), 
this is for the purpose of capturing historical patterns in the 
most straightforward way. However, this does make the out-
puts of those analyses sensitive to the extent of splitting or 
lumping in the International Committee on Taxonomy of 
Viruses (ICTV) classifications, particularly if host range were 
used as a taxonomic indicator. We minimize this issue by ap-
plying current taxonomic classifications retrospectively ra-
ther than attempting to trace the history of virus 
taxonomy back in time. However, we note that taxonomic 
classifications may change in the future, and our analysis 
would then need to be updated—the same is true for any 
of a very large number of published studies of patterns in 
the taxonomic diversity of viruses.

The results of this study are consistent with a model of 
emerging infections whereby new human viruses with epi-
demic potential are related to other human-transmissible 
viruses but emerge independently from a nonhuman reser-
voir. Importantly, having a close relative that is strictly zoo-
notic does not appear to be a risk factor for epidemic 
potential—human-transmissible and strictly zoonotic 
viruses tend to evolve independently. This model was first 
proposed in 2019 (Lu et al. 2019) and accurately captured 
the ancestry of SARS-CoV-2, i.e. closely related to 
SARS-CoV but even more closely to SARS-like viruses in 
bats (Zhou et al. 2021). It is already discernible as a com-
mon model of emergence, even with a data set heavily 
biased toward human viruses. On current trends, as 
more and more viruses are discovered in nonhuman reser-
voirs, it seems likely to become the dominant model, help-
ing to narrow down the list of viruses with greatest 
potential to cause epidemics in human populations.

Materials and Methods
Data
Data for this study were compiled from 3 sources: our previ-
ously published human RNA virus database (Woolhouse 
and Brierley 2018), the ICTV taxonomy (2022; Lefkowitz 

et al. 2018), and the “The Global Virome in One Network data-
base” (VIRION, version 0.2.1; Carlson et al. 2022). Our main 
data set consisted of all 59 human RNA virus genera, each con-
taining at least 1 human virus species. The IT level of each 
viruswas classified as L1, L2, or L3/4, using an updated version 
of our published data set (Woolhouse and Brierley 2018). 
Five virus species (Influenza A virus, Norovirus, Sapovirus, 
Orthohepevirus A, and Aichivirus A) with recognized 
subtypes that differ in IT level were included as types 
rather than single species. Among the 59 virus genera, 52 con-
tained multiple virus species/types and more than 1 transmis-
sion level, 7 (Recovirus, Marburgvirus, Betainfluenzavirus, 
Gammainfluenzavirus, Tanzavirus, Erbovirus, and Salivirus) 
contained a single species and a single level, and Cosavirus con-
tained multiple species and a single level (see supplementary 
data file S1, Supplementary Material online for details). 
There have been recent suggestions that viruses in the 
Picobirnavirus genus are not truly human infective (Ghosh 
and Malik 2021; Reddy et al. 2023), but we include them 
here while the question remains unresolved, noting that the 
genus contributes just 2 human-transmissible lineages so 
does not materially influence our findings.

The 59 virus genera were composed of 743 virus species/ 
types, 260 of which are able to infect humans. These in-
cluded 162 strictly zoonotic species/types (classified as 
L2) and 98 human-transmissible species/types (L34). The 
remaining 483 species/types were nonhuman infective 
(L1). For each virus species/type, we obtained a sequence 
data set from the NCBI GenBank database, including 
1,408 complete or nearly complete polymerase (or func-
tional equivalent) gene sequences that were the reference 
sequences indicated in the ICTV taxonomy and were found 
naturally (i.e. excluding deliberate laboratory exposures) in 
humans, other mammals, or birds. We also linked these se-
quences to the year in which the virus species was first dis-
covered in the given host according to the VIRION 
database. We used the discovery year in humans rather 
than other hosts for human viruses (L2 and L34) if there 
was a discrepancy between VIRION database and our 
human-infective virus database. This approach was applied 
to 47% of human virus species/types, with 24% of species/ 
types showing a difference of more than 5 yr. Links to the 
sequences and associated metadata can be found in 
supplementary data file S2, Supplementary Material online.

Phylogenetic Analysis
For each genus, we translated the polymerase gene sequences 
to amino acids and aligned them using MAFFT (version 6.240; 
Katoh and Standley 2014) and then reconstructed Bayesian 
phylogenies for each of the 52 virus genera using the BEAST 
software package (V1.10.4; Suchard et al. 2018). Our primary 
focus was on the tree topology, with branch lengths scaling to 
the number of amino acid substitutions. We did not attempt 
to date the nodes, as such estimates are likely to be unreliable 
given the long-time scales involved. We used a WAG model 
with a gamma distribution across sites as the substitution 
model, an uncorrelated lognormal relaxed molecular clock 
model, and a constant size coalescent process prior over 
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the phylogenies. We allowed the branch length to be scaled 
by substitutions per site rather than by time (with ucld.mean 
equal to 1). The MCMC chains were run for 100 million itera-
tions with subsampling every 10,000 iterations and a 10% 
burn-in. We validated our phylogenies by comparing their 
topologies to the representative phylogenies at the family/ 
genus level published by the ICTV taxonomy (Lefkowitz 
et al. 2018).

We reconstructed the ancestral state of IT level using 
asymmetric discrete trait models (Lemey et al. 2009) over 
each genus-level tree to visualize and summarize the phylo-
genetic separation between strictly zoonotic and human- 
transmissible RNA virus lineages and lineages containing 
both L2 and L3/4 viruses (supplementary data file S3, 
Supplementary Material online). All of the Bayesian phylo-
genies mapped by IT level traits are provided in Fig. 2 and 
supplementary data file S4, Supplementary Material online.

To compare the lineages identified using current avail-
able sequence data to those of viruses discovered in the 
past, we generated sets of historical phylogenies by drop-
ping the tips of the original Bayesian phylogenies of the 52 
virus genera in 10-year increments reverse to time (up to 
2022, up to 2012, up to 2002, and so on until up to 1942) 
in the ape package (version 5.6-2; Paradis and Schliep 
2019) in R. We then reconstructed the evolution of IT 
level changes using the ancestral character estimation 
(ACE) function, also available in the ape package. Each 
IT level was considered as a discrete trait, and maximum 
likelihood was employed to estimate the ancestral state. 
For this analysis, we employed the all-rates-different 
model (ARD model), assuming independent transitions 
among states with varying rates. The analyses were exe-
cuted on a set of trees (total n = 210) with tips removed 
back in time from the 52 original Bayesian phylogenetic 
trees (supplementary data file S5, Supplementary 
Material online). We then compared the lineage types 
and ancestral states of the genera across different time 
periods. Similarly, we compared the nearest known rela-
tive of each L2 and L3/4 virus now to its nearest known 
relative at the time of discovery, as defined according to 
the trees.

Statistical Analysis
We used a binomial generalized linear mixed model to 
examine whether proportions of the 3 different lineage 
types (strictly zoonotic, human transmissible, and mixed) 
varied among families, genera, genome types, and between 
vector-borne/nonvector-borne viruses. The model com-
pares strictly zoonotic (N = 79) to human-transmissible 
and mixed lineages (N = 70). We constructed a composite 
variable representing the genome type and enveloped 
structure of viruses involved in transition events. This 
had 4 levels: (−)ssRNA (all enveloped), (+)ssRNA envel-
oped, (+)ssRNA nonenveloped, and dsRNA (all nonenve-
loped). Models with genus as the only random factor 
and models with both genus and family as random factors 
had similar Akaike information criterion (AIC) values 
(ΔAIC < 2); only the former are reported here.

Supplementary Material
Supplementary material is available at Molecular Biology 
and Evolution online.
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