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Abstract

Evaluating causal effects in the presence of interference is challenging in network-based studies 

of hard-to-reach populations. Like many such populations, people who inject drugs (PWID) 

are embedded in social networks and often exert influence on others in their network. In our 

setting, the study design is observational with a non-randomized network-based HIV prevention 

intervention. Information is available on each participant and their connections that confer 

possible HIV risk through injection and sexual behaviors. We considered two inverse probability 

weighted (IPW) estimators to quantify the population-level spillover effects of non-randomized 

interventions on subsequent health outcomes. We demonstrated that these two IPW estimators 

are consistent, asymptotically normal, and derived a closed-form estimator for the asymptotic 

variance, while allowing for overlapping interference sets (groups of individuals in which the 

interference is assumed possible). A simulation study was conducted to evaluate the finite-sample 

performance of the estimators. We analyzed data from the Transmission Reduction Intervention 

Project, which ascertained a network of PWID and their contacts in Athens, Greece, from 

2013 to 2015. We evaluated the effects of community alerts on subsequent HIV risk behavior 

in this observed network, where the connections or links between participants were defined 

by using substances or having unprotected sex together. In the study, community alerts were 
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distributed to inform people of recent HIV infections among individuals in close proximity in the 

observed network. The estimates of the risk differences for spillover using either IPW estimator 

demonstrated a protective effect. The results suggest that HIV risk behavior could be mitigated by 

exposure to a community alert when an increased risk of HIV is detected in the network.
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Causal Interference; Interference/dissemination; Network Studies; People who Use Drugs; HIV/
AIDS; Inverse Probability Weights

1. Introduction.

The objective of this work is to evaluate causal effects in the presence of interference 

(also known as dissemination or spillover) where usual assumptions, such as partial or 

clustered interference Hudgens and Halloran (2008); Tchetgen Tchetgen and VanderWeele 

(2012), may no longer hold. This proves to be a challenging problem in network-based 

studies of hidden or hard-to-reach populations, such as people who inject drugs (PWID), 

where participants are frequently recruited through contact tracing. Worldwide in 2011, 

an estimated 10% of new HIV infections occur because of injection drug use, and this 

proportion was 30% outside Africa (Prejean et al., 2011; Lansky et al., 2014; Mathers et al., 

2008). In Greece through 2010, there were only a few sporadic cases of HIV transmission 

among PWID and the HIV epidemic was traditionally concentrated among men having 

sex with men. From 2002 to 2010, less than 20 HIV cases were reported annually among 

PWID, representing 2% to 4% of newly diagnosed HIV infections per year. In 2011, the 

number of reported HIV cases among PWID increased 16-fold from the number reported in 

2010 to a total of 260 cases. The emergence of the HIV outbreak among PWID in Athens 

coincided with an economic recession, highlighting its possible role in the outbreak due to 

the temporal ordering (Paraskevis et al., 2013). Investigation of the outbreak demonstrated 

that clustered HIV transmission among PWID was rare until 2009. Starting in 2010, a large 

proportion of HIV sequences from newly diagnosed PWID could be grouped into PWID-

specific phylogenetic clusters, indicating that parenteral transmission with contaminated 

syringes or other injecting equipment was now occurring in this population. Prior to 2011, 

prevention and harm reduction services, including medication for opioid use disorder and 

syringe exchange distribution programs, were available; however, access to these services 

remained low among PWID. Most of the newly diagnosed PWID (about 70%) in 2011 were 

residents of Athens, suggesting that the outbreak was also geographically localized. (Sypsa 

et al., 2014; Nikolopoulos et al., 2015)

Effective interventions were urgently needed to prevent further transmission in Athens. The 

Transmission Reduction Intervention Project (TRIP) was a successful attempt to recruit 

and intervene in this population by contact tracing the injection and sexual networks of 

recently-infected PWID. The program then referred people found to be recently infected to 

engage in HIV treatment and care both to protect their own health and to reduce onward 

transmission of HIV to others, particularly during the early stage of HIV when there is 

a known increased risk of HIV transmission Nikolopoulos et al. (2015). Interestingly, this 
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network study design can be used to investigate the connections or ties among people who 

are infected and uninfected, and thus can address questions about why certain groups of 

people who are uninfected remain that way despite having risk network ties to people who 

both have high viral loads and engage in risky behavior (Williams et al., 2018). The TRIP 

recruitment strategy successfully found more recently infected PWID than other strategies, 

such as a respondent driven sample or venue-based recruitment. These findings suggest that 

using strategically network-based approaches can accelerate seeking, testing, and treating 

recently-infected PWID. Moreover, reducing viral loads as early as possible is likely to 

decrease the expected number of transmissions in a community (Nikolopoulos et al., 2016).

Public health interventions often have disseminated effects, also known as indirect or 

spillover effects (Benjamin-Chung et al., 2017; Desrosiers et al., 2020). There can be 

disseminated effects of HIV behavioral interventions, suggesting that intervening among 

highly-connected individuals may maximize benefits to others (Rewley et al., 2020). Akin 

to other populations, PWID are embedded in social networks and communities (e.g., 

injection drug, non-injection drug, sexual risk network) in which they possibly exercise 

an influence upon other members (Hayes et al., 2000; Ghosh et al., 2017). This influence 

can be measured as a disseminated effect of specific interventions among individuals 

who were not exposed themselves but possibly receive intervention benefits from their 

connections to those exposed to the intervention. In PWID networks, interventions (e.g., 

educational training about HIV risk reduction, medical interventions such as pre-exposure 

prophylaxis, or treatment as prevention) may have disseminated effects, and intervention 

effects frequently depend on the network structure and intervention coverage levels. 

Disseminated effects may be larger in magnitude than direct effects (i.e., effect of receiving 

the intervention while holding the exposure of other individuals fixed), suggesting that 

an intervention has substantial effects in the network beyond those exposed themselves 

(Buchanan et al., 2018).

The current methodologies used to evaluate direct and disseminated effects among 

members of hidden or hard-to-reach populations in networks remain limited. In particular, 

relatively few methodological approaches for observational network-based studies have 

been developed, and methods that incorporate the observed connections (links, ties, 

or edges) in the underlying network structure are needed to understand the spillover 

mechanisms. In our setting, connections in the network refer to sexual and/or drug use 

partnerships. Recent methodological developments relaxed the no interference assumption 

and allowed for interference within clusters, known as partial interference (Sobel, 2006; 

Hong and Raudenbush, 2006; Hudgens and Halloran, 2008; Tchetgen Tchetgen and 

VanderWeele, 2012; Liu and Hudgens, 2014). In partial interference approaches, a clustering 

of observations is used to define the interference set (e.g., study clusters, provider practices, 

or geographic location) that allow for interference within but not across clusters; however, 

the information on connections within a particular cluster is typically not measured or 

utilized in the analytical approach (Aronow and Samii, 2017). Another approach defines 

interference by spatial proximity or network ties (Liu, Hudgens and Becker-Dreps, 2016; 

Forastiere, Airoldi and Mealli, 2021), allowing for overlapping interference sets (i.e., groups 

of individuals in which interference is assumed to be possible). In Liu, Hudgens and Becker-

Dreps (2016), an IPW estimator was proposed for a generalized interference set that allowed 
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for overlap between interference sets; however, the asymptotic variance was estimated under 

the assumption of partial interference defined by larger groupings or clusters of participants 

in the study. In a separate paper, the subclassification estimator and generalized propensity 

score were used to quantify effects, and a bootstrapping procedure with resampling at 

the individual-level or the cluster-level was used to quantify the variance (Forastiere, 

Airoldi and Mealli, 2021). However, these approaches either rely on partial interference 

defined by larger clusters or resort to bootstrapping to derive estimators of the variance. In 

practice, ignoring the overlapping interference sets while estimating the variance can lead to 

inaccurate inference and resampling approaches, particularly in a network setting, can also 

be computationally intensive.

While previous work allows for overlapping interference sets for point estimation, the 

asymptotic variances were estimated under the assumption of partial interference or used 

bootstrapping techniques (Liu, Hudgens and Becker-Dreps, 2016; Forastiere, Airoldi and 

Mealli, 2021). Our paper addresses an important gap by developing inverse probability 

weight estimators and deriving a closed-form variance estimator that allows for overlapping 

interference sets, possibly leading to a more statistically efficient estimator in network-based 

studies due to the use of additional information on connections between individuals. In our 

paper, we propose two inverse probability weighted (IPW) estimators where the interference 

set is defined as the set of the individual’s nearest neighbors within a sociometric network; 

that is, a network in which all or some of participants’ direct and indirect contacts are 

ascertained (Hadjikou et al., 2021). The first IPW estimator is a novel application of 

the estimator of the approach in Liu, Hudgens and Becker-Dreps (2016) to a sociometric 

network-based study setting. Originally, the asymptotic variance estimators were developed 

for clustered observational studies without explicit consideration of the connections in 

the study. We relax the partial interference assumption for variance estimation such that 

interference sets are uniquely defined by nearest neighbors for each individual. The second 

IPW estimator uses a generalized propensity score developed by Forastiere, Airoldi and 

Mealli (2021); however, we propose a weighted estimator instead of a stratified estimator for 

comparison to the first IPW estimator in this paper. For both estimators, we assume that the 

nearest neighbors comprise the interference sets and use this structure to calculate a novel 

closed-form variance estimator by applying M-estimation. We focus on comparing these 

two alternative IPW estimators in a network study with a non-randomized intervention and 

statistical inference approaches using M-estimation.

The rest of the paper is structured as follows. In Sections 2, we introduce the TRIP 

study design and setting. In Section 3 and 4, we define the notations and assumptions 

for nearest neighbors settings, then the estimands of interest for this setting. We provide 

definitions of the two IPW estimators with specific assumptions for each, and demonstrate 

that the estimator is consistent and asymptotically normal, and obtain a closed-form 

estimator of the corresponding variances in Section 5. In Section 6, a simulation study was 

conducted to demonstrate the finite-sample performance of both estimators and the results 

are summarized. The methods were then utilized to assess the direct and disseminated 

effects of community alerts on HIV risk behavior in the sociometric network study of PWID 

and their contacts, Transmission Reduction Intervention Project (TRIP) from 2013 to 2015 
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in Athens, Greece in Section 7. We discuss limitations of this approach and next steps for 

methodological work to quantify causal effects in network-based studies in Section 8.

2. TRIP Study Design.

The Transmission Reduction Intervention Project (TRIP) included PWID and their HIV risk 

networks and initially found individuals who were recently diagnosed with HIV (known 

as seeds) and their possible HIV risk partners through sexual and injection routes of 

transmission (Nikolopoulos et al., 2016; Psichogiou et al., 2019; Giallouros et al., 2021; 

Hadjikou et al., 2021; Pampaka et al., 2021). TRIP also recruited seeds with long-term HIV 

infection. TRIP used contact network tracing (i.e., nomination and coupon referrals) and 

venue recruitment methods to locate those who were at risk for HIV infection based on their 

proximity in the network to other recently-infected individuals. PWID who were participants 

in the ARISTOTLE study at HIV testing centers in Athens were initially recruited into 

the TRIP study if they were found to be recently infected or long-term infected with HIV. 

ARISTOTLE was a seek, test, treat, and retain intervention that used respondent-driven 

sampling to target PWID residing in Athens and aimed to contribute to the control of 

HIV transmission among PWID in Greece (Sypsa et al., 2014). Each recently-diagnosed 

and long-term infected individual was asked to identify their recent sexual and drug use 

partners and their partners’ partners in the six months prior to the interview. For the recently-

diagnosed seeds, these direct contacts and their contacts’ contacts were then recruited and 

asked to identify their sexual and drug use partners, who were also recruited and linked 

back to other individuals recruited in the study. For seeds with long-term HIV infection, 

their contacts were recruited (i.e., one wave of contact tracing) and these individuals 

were recruited and their connections to other participants were ascertained. If any of these 

contacts were identified as recently infected with HIV, then their contacts and the contacts of 

their contacts (i.e., two waves of contact tracing) would be recruited as well and connections 

to other participants in the network were ascertained (Figure 1); otherwise, one wave of 

contact tracing was performed. The study also recruited HIV-negative individuals from 

allied projects who served as controls. The HIV-negative individuals were isolates (i.e., no 

connections to others in the network) unless reported as a contact by another participant. 

This resulted in a network consisting of individuals recently diagnosed with HIV and 

their possible HIV risk partners and the connections in the network were defined by sex 

or injection drug use partnerships. This information was used to create a final observed 

network in which each recruited individual is linked to all other individuals who named 

them as a contact or was named as a contact by them, regardless of recruitment order.

Participants were interviewed at a baseline visit and 6-months after the baseline visit using 

a questionnaire to ascertain demographics, sexual and injection behaviors and partners in 

the prior 6 months, drug treatment, and antiretroviral treatment. In addition to HIV testing, 

the study provided access to treatment as prevention (TasP) for those with HIV, referrals 

for medical care, and distributed community alerts to inform members of the community 

about temporary increases in the risk for HIV acquisition. These alerts were paper flyers 

provided to participants and posted in locations frequented by members of the local PWID 

community. Participants were followed to ascertain demographics, risk behaviors, and 

substance use through interviews, HIV serostatus, timing of HIV infection, and HIV disease 
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markers, including HIV viral load, through phylogenetic techniques approximately 6 months 

later. Complete details on the study design and recruitment can be found in Nikolopoulos 

et al. (2016); Psichogiou et al. (2019); Giallouros et al. (2021); Hadjikou et al. (2021); 

Pampaka et al. (2021).

For this study, we used data from the Athens, Greece site which was collected from 2013 

to 2015 during the HIV outbreak that began following the economic recession in 2008 

(Nikolopoulos et al., 2015; Williams et al., 2018). The network structure in TRIP included 

356 participants and 542 shared connections. One of the participant was recruited twice 

as a network member of a recent seed and as a network member of a control seeds with 

long-term HIV infection. In our analysis, we only used the information for this participant 

corresponding to their records as a network member of a recent seed. In the network, 79 

participants were isolates (i.e. not sharing connection with other network members) and 

removed for our analysis as spillover is not possible for isolates. In addition, 2 participants 

were removed due to missing values on HIV risk behavior in the past 6 months reported at 

baseline and 59 participants were removed from the network due to loss to follow-up that 

resulted in missing information at the 6-month visit, including HIV risk behavior, which was 

the the outcome of interest. Figure 2 represents the TRIP network with 216 participants after 

excluding isolates who were participants not connected with any other participants in the 

network and 25 participants (11.6%) of the 216 participants were exposed to the community 

alerts. The network characteristics and distribution of participant attributes are summarized 

in Table 1.

3. Notation.

We employ a potential outcomes framework for causal inference and assume the sufficient 

conditions for valid estimation of causal effects, which have been well-described (Ogburn 

et al., 2014; Liu, Hudgens and Becker-Dreps, 2016; Forastiere, Airoldi and Mealli, 2021). 

However, we relax the no dissemination or interference assumption (Rubin, 1980). In our 

setting, we evaluate the effect of a non-randomized intervention on a subsequent outcome in 

an observed network, where information is available on the nodes (i.e., each participant) and 

their links (i.e., HIV risk connections through sexual or injection behavior). We evaluate the 

effect of being exposed to community alerts on HIV risk behaviors (i.e., sharing injection 

equipment) reported at the 6-month follow up. According to the network-based study design 

of TRIP that recruited at least one wave of contact tracing for each participant of an 

HIV-infected seed, we anticipate that there could be dissemination or spillover between two 

individuals connected by an link (i.e., possible influence of their neighbors’ intervention 

exposure on an individual’s outcome). Based on reported connections, we assume that 

smaller groupings or neighbors for each individual can be identified in the data. Following 

Forastiere, Airoldi and Mealli (2021) and Liu, Hudgens and Becker-Dreps (2016), we make 

the nearest neighbors interference assumption (NIA). The NIA is a network analog to the 

partial interference assumption used for clusters (Sobel, 2006; Hudgens and Halloran, 2008); 

however, partial interference does not assume a unique interference set for each individual, 

but instead the set is the same for all individuals in a cluster. The NIA assumption applies to 

the nearest neighbors uniquely defined for each participant in the study, so the connections 

between individuals and their neighbors can now be explicitly considered in the estimands 
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and estimation. This implies that the potential outcomes of a participant depend only on 

their own exposure and that of their nearest neighbors and not on the exposures of others 

in the network beyond the nearest neighbors, positing that an individual only has spillover 

from their first degree contacts. In other words, if the exposures of an individual and their 

neighbors are held fixed, then changing the exposures of others outside the nearest neighbors 

and the individual does not change the outcome for the individual.

Consider a finite population of n individuals and each individual self-selects their exposure 

to a study intervention. Let i = 1, …, n denote each participant in the study and let Ai be the 

binary exposure of participant i with Ai = 1 if exposed to an intervention and 0, otherwise. 

Let Zi denote the vector of pre-exposure covariates for participant i. These participants are 

connected through an observed network C that can be represented by a binary adjacency 

matrix E C = eij i, j = 1
n ∈ 0,1 n × n, with eij = 1 if participants i and j share an edge or 

connection, and eij = 0, otherwise. We assume eii = 0. Each participant is represented as 

a node in the network. The set of nodes in network C is denoted by V C . Given an 

observed network, a component is a connected subnetwork that is not part of any larger 

connected subnetwork. A network that is itself connected has exactly one component. If 

C has m components, we denote the components Cν ∣ ν = 1, …, m . Denote the nearest 

neighbors of participant i by Ni = j:eij = 1  and Ni
* = Ni ∪ i  denote the nearest neighbors 

and participant i. The degree of individual i (or number of nearest neighbors) is denoted as 

di = ∑j = 1
n eij = Ni . We denote the vector of intervention exposures for the nearest neighbors 

for participant i as ANi = Aj j:eij = 1. In this setting, the outcome of participant i depends not 

only on their own exposure, but also on the vector of their neighbors’ exposures ANi (NIA). 

In other words, we let Ni be the interference set of individual i in which the neighbors’ 

exposures may affect the outcome of individual i. We also denote the vector of pre-exposure 

covariates for the nearest neighbors for participant i as ZNi = Zj j:eij = 1. Denote realizations of 

exposures Ai by ai and ANi by aNi. Similarly, denote realizations of covariates Zi by zi and ZNi

by zNi.

Let yi ai, aNi  denote the potential outcome of individual i if they received intervention 

ai and their nearest neighbors received the vector of interventions denoted by aNi. Let 

Y i = yi Ai, ANi  denote the observed outcome, which holds by causal consistency. Therefore, 

the potential outcomes are assumed to be deterministic functions and the observed outcomes 

are assumed to be random variables. In our study setting, Ai represents an indicator for 

whether participant i is exposed to community alerts and the pre-exposure covariates 

include HIV status ascertained in the TRIP study, date of first interview, education status, 

employment status, and report of shared drug use equipment (e.g. syringe) in last 6 months 

prior to baseline. The observed outcome Y i is the status of sharing injection equipment in the 

last 6 months prior to the 6-month follow-up visit.

In this paper, we define average potential outcomes using a Bernoulli allocation strategy 

(Tchetgen Tchetgen and VanderWeele, 2012), where α represents the counterfactual scenario 

in which individuals in Ni receive the exposure with probability α and we refer to this 
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parameter as the intervention coverage for the nearest neighbors. This is essentially like 

standardizing the observed exposure vectors to study population in which the exposure 

assignment mechanism follows a Bernoulli distribution with probability α. This allows 

stochasticity in the intervention assignment for individuals who are possibly members of 

more than one nearest neighbors. In the observational study, we are not assuming that 

A1, ⋯, An are independent Bernoulli random variables; however, this distribution of exposure 

is used to define the counterfactuals. We use information collected in a sociometric network 

with a non-randomized intervention for estimation. Let π aNi; α = α∑j ∈ Ni aj 1 − α
di − ∑j ∈ Ni aj

denote the probability of the nearest neighbors of individual i receiving intervention 

exposure aNi under allocation strategy α. The allocation strategy α can also be considered as 

the intervention coverage level for the nearest neighbors. Let π ai; α = αai 1 − α 1 − ai denote 

the probability of individual i receiving exposure ai and π ai, aNi; α = π aNi; α π ai; α  denote 

the probability of individual i together with their nearest neighbors receiving the set of 

exposures ai, aNi .

4. Estimands.

We follow notations from Liu, Hudgens and Becker-Dreps (2016) to define the estimands. 

Define y‾i a, α = ∑aNi yi ai = a, aNi π aNi; α  to be the average potential outcome for individual i

under allocation strategy α and exposure ai = a where the summation is over all 2di possible 

values of aNi. Averaging over all individuals, we define the population average potential 

outcome as y‾ a, α = ∑i = 1
n y‾i a, α /n. We also define the marginal average potential outcome 

for individual i under allocation strategy α by y‾i α = ∑ai, aNi yi ai, aNi π ai, aNi; α  and define the 

marginal population average potential outcome as y‾ α = ∑i = 1
n y‾i α /n.

We consider different contrasts of these average causal effects often of interest in network-

based studies. We define these on the risk difference scale and analogous effects can be 

defined on the ratio scale. The direct effect is defined as DE− α = y‾ 1, α − y‾ 0, α , which 

compares the average potential outcomes when a participant is exposed to the intervention 

compared to when a participant is not exposed under allocation strategy α. For example, 

in TRIP study, the direct effect is a difference in the risk of reporting HIV risk behaviors 

when a participant is exposed to community alerts versus when a participant is not exposed 

with 100 ⋅ α% of their nearest neighbors exposed to alerts. The disseminated (i.e., indirect 

or spillover) effect is IE− α1, α0 = y‾ 0, α1 − y‾ 0, α0 , which compares the average potential 

outcomes of unexposed individuals under two different allocation strategies α1 and α0. The 

composite or total effect is defined as TE− α1, α0 = y‾ 1, α1 − y‾ 0, α0 , which is a function of 

both the direct and disseminated effects and is a measure of the maximal intervention effect 

(assuming that α1 > α0), comparing average potential outcomes for exposed participants 

under allocation strategy α1 to unexposed participants under allocation strategy α0. Lastly, 

the overall effect is OE− α1, α0 = y‾ α1 − y‾ α0 , which is the difference in average potential 

outcomes under two different allocation strategies.
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5. IPW Identification Assumptions and Estimators.

In an observational study of a network, interventions are typically not randomized at either 

the network or individual-level, but rather individuals and their nearest neighbors typically 

self-select their own exposures. Therefore, identification of causal effects does not benefit 

from exchangeability achieved by randomization and adjustment for a sufficient set of 

pre-exposure covariates at both the individual- and network-level is needed to quantify 

causal effects. In this section, we apply two different IPW estimators (Liu, Hudgens and 

Becker-Dreps, 2016; Forastiere, Airoldi and Mealli, 2021) to a setting with the interference 

set defined by nearest neighbors in observed networks with components. We assume that the 

observed network can be expressed as the union of m components denoted by C1, C2, …, Cm

for ν = 1, …, m (Figure 3). We quantify the variance accounting for correlation within 

components of the full observed network. Importantly, we now incorporate the nearest 

neighbor structure in the estimating equations used to calculate the closed-form variances 

because this better reflects the underlying structure through which dissemination operates 

in the observed network. Individuals who share a connection or link are more likely to 

influence each other, as opposed to individuals who are clustered together, possibly in a 

large grouping like a component. In Liu, Hudgens and Becker-Dreps (2016), information on 

their connections or distance in the network between individuals is either not available or not 

used for statistical inference and the assumption is nonetheless made that these individuals 

could all possibly influence each other within the set (i.e., a generalized interference set).

5.1. Assumptions.

ASSUMPTION 1. (Exchangeability) Assume that conditional on pre-exposure covariate vector 
Zi and the covariates of their nearest neighbors ZNi, the intervention allocation for individual 

i and their nearest neighbors Ni is independent of all potential outcomes

Pr Ai = ai, ANi = aNi ∣ Zi = zi, ZNi = zNi
= Pr Ai = ai, ANi = aNi ∣ Zi = zi, ZNi = zNi, y1 ⋅ , …, yn ⋅ .

ASSUMPTION 2. (Positivity) Assume that Pr Ai = ai ∣ Zi = zi > 0 and 

Pr Ai = ai, ANi = aNi ∣ Zi = zi, ZNi = zNi > 0 for all ai, aNi, zi, and zNi.

ASSUMPTION 3. (Treatment variation irrelavance) We assume that the treatment or 
intervention assignment mechanism does not affect the outcome. More precisely, if there 
are different versions of the intervention, we assume that those are irrelevant for the causal 
contrasts of interest and that we have one version of intervention and one version of no 
intervention. (Forastiere, Airoldi and Mealli, 2021).

ASSUMPTION 4. (Conditional exposure independence) Conditional on the exposure and 
covariates for individual i and their neighbors Ni and the neighbor-level random effect bNi*, 

the exposure Ai for individual i and the exposure for the neighbors ANi are independent. That 

is, given the nearest neighbor-level random effect bNi* and bNi*,
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Ai ANi, ZNi, bNi* ⊥ Aj ANj, ZNj, bNi* .

The nearest neighbor-level random effect bNi* accounts for possible correlation of exposures 

among individual i and their neighbors Ni. This assumption is used to estimate the 

propensity score of IPW1 (defined in Section 5.2).

ASSUMPTION 5. (Nearest neighbors interference) The outcome for an individual depends their 
own exposure and the exposures of only other individuals who are their nearest neighbors 
(Forastiere, Airoldi and Mealli, 2021). By consistency, the following holds:

Y i = Y i Ai, ANi .

For example, in Figure 3, Y 1 = Y 1 a1, a3, a5 , which is that the outcome for individual 1 is 

affected by their own exposure and the exposure of individual 3 and 5 only and no other 

individuals’ exposures in either the component or network.

ASSUMPTION 6. (Stratified interference) The outcome for an individual depends on their own 
exposure and on the total number of exposed nearest neighbors (Hudgens and Halloran, 

2008; Sobel, 2006).

ASSUMPTION 7. (Reducible propensity score assumption) The individual exposure Ai does 

not depend on neighbors’ covariates ZNi and neighbors’ exposures ANi do not depend on 

individual covariates Zi (Forastiere, Airoldi and Mealli, 2021).

P Ai ∣ Zi, ZNi = P Ai ∣ Zi andP ANi ∣ Ai, Zi, ZNi = P ANi ∣ Ai, ZNi .

Exchangeability (Assumption 1), positivity (Assumption 2), and treatment variation 

irrelevance (Assumption 3) are necessary assumptions for causal inference under the 

potential outcomes framework (Rubin, 1980). Due to the lack of randomization of the 

intervention, we require a conditional exchangeability assumption for both the individual 

and their neighbors, which allows for identification of causal contrasts related to both 

the individual’s exposure and the allocation strategy for their neighbors. The positivity 

assumption ensures we have individuals and their neighbors exposed (and not exposed) 

at each level of the covariates. We also assume treatment variation irrelevance for the 

intervention, which ensures we have only one version of being exposed to the intervention 

and one version of not being exposed, which clarifies how we define the potential outcomes 

related to each intervention exposure. In this work, we assume that only the first degree 

neighbors’ exposures can influence an individual’s outcome, which allows us to focus 

locally in the network to evaluate spillover. Assumption 6 and 7 apply to IPW2 only and are 

discussed in Section 5.2; however, assumption 6 may also be applied to IPW1 (defined in 

Section 5.2) when there are concerns about positivity violations.
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5.2. Estimators.

Under the Assumptions 1, 2, 3, 4 and 5, the first IPW estimator is an adaptation of the one 

proposed by Liu, Hudgens and Becker-Dreps (2016), and we define the interference sets by 

the nearest neighbors for each individual in the observed network, and then use this nearest 

neighbor structure within each component when deriving the closed-form variance estimator 

in Section 5.3. Define the IPW estimator for exposure a with allocation strategy α as

Y IPW 1 a, α = 1
n i = 1

n yi Ai, ANi I Ai = a π ANi; α
f1 Ai, ANi ∣ Zi, ZNi

,

(1)

where f1 Ai, ANi ∣ Zi, ZNi  is the nearest neighbors-level exposure propensity score. We 

assume that conditional on the nearest neighbor-level random effect and the exposure and 

covariates for individual i and the neighbors Ni, the exposures of nearest neighbors ANi

and the exposure of individual Ai are independent. In other words, the dependency between 

the exposures for individual i and their neighbors is captured by both the fixed exposures 

and covariates and nearest neighbor-level random effect. To model the propensity score, 

the probability of exposure following a Bernoulli distribution and conditional on observed 

baseline covariates is given by

f1 Ai, ANi ∣ Zi, ZNi =
−∞

∞

j ∈ Ni
*

pj
Aj 1 − pj

1 − Ajf bNi*; 0, ψ dbNi*,

where Ni
* = Ni ∪ i ,

pj = Pr Aj = 1 ∣ Zj, bNi* = logit−1 Zj ⋅ γ + bNi* ,

and f bNi*; 0, ψ N 0, ψ . Here, bNi* is the nearest neighbors-level random effect accounting for 

possible correlation of exposures among individual i and their neighbors Ni.

The marginal population-level average potential outcome estimator is

Y IPW 1 α = 1
n i = 1

n yi Ai, ANi π Ai, ANi; α
f1 Ai, ANi ∣ Zi, ZNi

.

(2)

Under the Assumptions 1, 2, 3, 5, 6 and 7, the second IPW estimator uses an individual 

and nearest neighbors propensity score as defined in Forastiere, Airoldi and Mealli (2021). 

The potential outcomes of individual i depend on the total number of exposed neighbors, 

si = ∑j ∈ Ni aj  (and let Si = ∑j ∈ Ni Aj). In particular,
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y ai, aNi = y ai, si .

The IPW estimator for exposure a with coverage α is defined as

Y IPW 2 a; α = 1
n i = 1

n yi Ai, Si I Ai = a π Si; α
f2 Ai, Si ∣ Zi, ZNi

,

(3)

and the IPW marginal estimator as

Y IPW 2 α = 1
n i = 1

n yi Ai, Si π Ai, Si; α
f2 Ai, Si ∣ Zi, ZNi

.

(4)

Let

π Si; α =
di

Si
αSi 1 − α

di − Si

be the probability of individual i has Si exposed neighbors and

π Ai, Si; α = π Si; α π Ai; α

denote the probability of exposure for individual i together with Si exposed neighbors.

The propensity score f2 Ai, Si ∣ Zi, ZNi  is the joint probability distribution of individual 

exposure and nearest neighbors exposure given the covariates Zi and ZNi. Here, we express 

this as a product of the individual propensity score, f22 Ai ∣ Zi , and nearest neighbors 

propensity score, f21 Si ∣ Ai, ZNi .

We assume that the individual exposure Ai follows a Bernoulli distribution

P Ai = ai ∣ Zi = p2, i
Ai 1 − p2, i

1 − Ai

with probability p2, i defined as the individual propensity score, modeled as a function of a 

covariate vector using a logit link

p2, i = Pr Ai = 1 ∣ Zi = logit−1 Zi ⋅ γ .

Furthermore, we assume that the total number of exposed neighbors ∑ANi follows a 

binomial distribution
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P Si = si ∣ Ai, ZNi =
di

Si
p1, i

Si 1 − p1, i
di − Si

with probability p1, i modeled as a function of the nearest neighbors covariate vector using a 

logit link

p1, i = Pr Si = si ∣ Ai, ZNi = logit−1 Aiβ + ℎ ZNi ⋅ δ′ ,

where ℎ ZNi  is an aggregate function of the vector ZNi. For instance, the proportion 

of females or males in the nearest neighbors or average age of an individual’s nearest 

neighbors.

We assume that conditional on the nearest neighbors covariates and the exposure for 

individual i, the exposures of nearest neighbors ANi are independent and identically 

distributed. In other words, the dependency between neighbors’ exposure is captured 

by the correlation with the exposure for individual i and the covariates of the nearest 

neighbors.1 Therefore, the propensity score f2 Ai, Si ∣ Zi, ZNi  can be factor into two marginal 

distributions f21 and f22 as follows:

f2 Ai, Si ∣ Zi, ZNi = f21 Si ∣ Ai, ZNi f22 Ai ∣ Zi

=
di

Si
p1, i

Si 1 − p1, i
di − Si ⋅ p2, i

Ai 1 − p2, i
1 − Ai

Under allocation strategy α, α0, and α1, we consider the following risk difference estimators of 

the direct, disseminated (indirect), composite (total), and overall effects:

DEr α = Y IPW r 1, α − Y IPW r 0, α ,

IEr α1, α0 = Y IPW r 0, α1 − Y IPW r 0, α0 ,

TEr α1, α0 = Y IPW r 1, α1 − Y IPW r 0, α0 ,

1In principle, we could compute the nearest neighbors propensity score f21 Si ∣ Ai, ZNi  as a product of the individual propensity 

scores for all neighbors for all exposure combinations aNi such that Si = si under the assumption of independence of Ai given a 

nearest neighbor-level random effects and individual exposure and covariates. This would be one correct way of computing the nearest 
neighbors propensity score. Instead in this estimator, we use an alternative solution where the nearest neighbors propensity score is 
estimated assuming a binomial model conditional on a summary statistics of the nearest neighbors covariates. This approach, while 
approximate, is more straightforward and works when the dependency among neighbors’ exposures cannot be attributed to a latent 
factor shared by all units belonging to the same nearest neighbor set in the network.
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OEr α1, α0 = Y IPW r α1 − Y IPW r α0 ,

where r = 1,2 corresponds to the two IPW estimators that we defined above.

PROPOSITION 1. If the propensity scores f1 Ai, ANi ∣ Zi, ZNi  and f2 Ai, Si ∣ Zi, ZNi  are known, 

then E Y IPW r a, α = y‾ a, α  and E Y IPW r α = y‾ α .

Proof of Proposition 1 is shown in Appendix A of the Supplementary Material (Lee et al., 

2022). Using these unbiased estimators when the propensity score is known, the estimation 

of the causal effects will also be unbiased because the causal effects are contrasts of these 

marginal quantities.

5.3. Large sample properties of the inverse probability of sampling weighted estimator.

The large sample variance estimators can be derived using M-estimation theory (Boos 

and Stefanski, 2013). We assume that the observed network can be expressed as the 

union of components; that is, non-overlapping groups of individuals (Liu, Hudgens and 

Becker-Dreps, 2016). Consider a social network with n individuals and m components 

denoted by C1, C2, ⋯, Cm  with ν = 1, …, m. Let Y νi, Aνi, Zνi denote the outcome, exposure, and 

covariates for individual i in component ν, respectively. Let V Cν  be the set of nodes in Cν, 

and Y ν = Y νi ∣ i ∈ V Cν , Aν = Aνi ∣ i ∈ V Cν , Zν = Zνi ∣ i ∈ V Cν . The observable random 

variables Y ν, Aν, Zν  for ν = 1, …, m are assumed to be independent but not necessarily 

identically distributed with distribution Fν. We assume that the m components are a random 

sample from the infinite super-population of groups and the size of each component is 

bounded (Boos and Stefanski, 2013).

Recall, for IPW1, the parameters of the exposure propensity score model include coefficients 

for the fixed effects and the random effect, while for IPW2, the parameters include 

coefficients for the fixed effects from two logistic models (see Section 5.2). Let Θ = γ, ψ
the set of coefficients of fixed effects and the random effects in the propensity score f1

when using IPW1, and Θ = γ, β, δ′  be the set of coefficients in the propensity score f2

when using IPW2. To generalize notation, we set the dimension of Θ to be p and refer 

to these parameters as η in the estimating equations below. Let Y Cν = Y Cν0, Y Cν1, Y Cν2  be the 

component-level average potential outcomes defined as

Y Cν0 =
i ∈ V Cν , aNi

yi ai = 0, aNi π aNi; α ,

Y Cν1 =
i ∈ V Cν , aNi

yi ai = 1, aNi π aNi; α ,
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Y Cν2 =
i ∈ V Cν , ai, aNi

yi ai, aNi π ai, aNi; α .

To conduct inference, we use m independent components, while preserving the underlying 

connections of an individual’s nearest neighbors comprising the network structure of each 

component. That is, by extending Liu, Hudgens and Becker-Dreps (2016), every individual 

is now assigned their own propensity score based on the observed network structure defined 

by their nearest neighbors (see Section 5.2). Whereas in Liu, Hudgens and Becker-Dreps 

(2016), statistical inference was conducted by assuming partial interference in which the 

study population was partitioned into non-overlapping groups and all individuals in a group 

were assigned one group-level propensity score. To simplify the notation in this section, we 

write the propensity score f2 Aνi, Sνi ∣ Zνi, ZNνi  as f2 Aνi, ANνi ∣ Zνi, ZNνi  and let the observed 

outcome for individual i in component ν be denoted by Y νi = Y νi Aνi, ANνi . Note that the 

potential outcomes are random due to the random sampling of the m components. With 

this partition of the network, the inverse probability weighted estimator for exposure a and 

strategy α presented in Section 5.2 equals

Y IPW r a, α = 1
n ν = 1

m

i ∈ V Cν

Y νiI Aνi = a π ANνi; α
fr Aνi, ANνi ∣ Zνi, ZNνi

.

(5)

Let θ = Θ, θ0α, θ1α, θα , where θ0α = y‾ 0, α = 1/n∑ν = 1
m Y Cν0, θ1α = y‾ 1, α = 1/n∑ν = 1

m Y Cν1, and 

θα = y‾ α = 1/n∑ν = 1
m Y Cν2. Let θ̂ = Θ̂, θ̂0α, θ̂1α, θ̂α . Similar to the approach in Liu, Hudgens and 

Becker-Dreps (2016), let the average component size in the study population be defined 

as k = E V Cν , which is the mean component size in the population. We use this to 

redefine the inverse probability weighted estimators in equation 5 because equally weighting 

individuals ignoring components may result in biased estimators (Basse and Feller (2018)). 

With the average component size, the inverse probability weighted estimator for exposure a
and strategy α presented in Section 5.2 equals

Y IPW r a, α = 1
m ν = 1

m 1
k i ∈ V Cν

Y νiI Aνi = a π ANνi; α
fr Aνi, ANνi ∣ Zνi, ZNνi

.

(6)

The estimating equations corresponding to the estimator in equation (5) are defined as 

follows

ψη Y ν, Aν, Zν; θ = 1
k i ∈ V Cν

∂logfr Aνi, ANνi ∣ Zνi, ZNνi
∂η , η ∈ Θ,
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ψ0 Y ν, Aν, Zν; θ; α = 1
k i ∈ V Cν

Y νiI Aνi = 0 π ANνi; α
fr Aνi, ANνi ∣ Zνi, ZNνi

− θ0, α,

ψ1 Y ν, Aν, Zν; θ; α = 1
k i ∈ V Cν

Y νiI Aνi = 1 π ANνi; α
fr Aνi, ANνi ∣ Zνi, ZNνi

− θ1, α,

and

ψ2 Y ν, Aν, Zν; θ; α = 1
k i ∈ V Cν

Y νiπ Aνi, ANνi; α
fr Aνi, ANνi ∣ Zi, ZNνi

− θα .

Let

ψν Y ν, Aν, Zν; θ =

ψη Y ν, Aν, Zν; θ
ψ0 Y ν, Aν, Zν; θ; α
ψ1 Y ν, Aν, Zν; θ; α
ψ2 Y ν, Aν, Zν; θ; α

η ∈ Θ

,

such that v = 1
m ψv Y v, Av, Zv; θ = 0. Note that θ̂ is the solution for θ for this vector of 

estimating equations. In addition, E ψν Y ν, Aν, Zν; θ = 0 (Boos and Stefanski, 2013). Let 

A θ = E −ψ̇ν Y ν, Aν, Zν; θ  and B θ = E ψν Y ν, Aν, Zν; θ ψν Y ν, Aν, Zν; θ T  with the expectation 

take across all m components in the population.

PROPOSITION 2. Under suitable regularity conditions and due to the unbiased estimating 
equations, as m ∞,  θ̂ converges in probability to θ and m θ̂ − θ  converges in distribution 

to N 0, Σ , where the covariance matrix is given by

Σ = 1
mA θ

−1
B θ A θ

−T
.

Additional details for Proposition 2 are shown in Appendix B of the Supplementary 

Material (Lee et al., 2022). A consistent sandwich estimator of Σ is given in Appendix 

B. We demonstrate how to obtain the variance for the estimator of the disseminated 

effect IEr α1, α0 . An analogous procedure can be performed to obtain the variance for the 

estimators of the direct, overall and total effects. Let
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ψν Y ν, Aν, Zν; θ =

ψη Y ν, Aν, Zν; θ
ψ0 Y ν, Aν, Zν; θ; α1

ψ0 Y ν, Aν, Zν; θ; α0

ψ1 Y ν, Aν, Zν; θ; α1

ψ1 Y ν, Aν, Zν; θ; α0

ψ2 Y ν, Aν, Zν; θ; α1

ψ2 Y ν, Aν, Zν; θ; α0
η ∈ Θ

.

Followed with Slutsky’s Theorem and an application of the Delta method as m ∞, 

IEr α1, α0  is a consistent estimator of IE− α1, α0  and m IEr α1, α0 − IE− α1, α0  converges 

in distribution to N 0, ΣIE , where ΣIE = λTΣλ and λ = 01 × p, 1, − 1,0, 0,0, 0 T . A consistent 

sandwich estimator of the variance of IE− α1, α0  is given in Appendix B. This variance 

estimator can be used to construct Wald-type confidence intervals (CIs) for the disseminated 

effects.

6. Simulation.

A simulation study was conducted to evaluate the performance of the two IPW estimators 

and their corresponding closed-form variance estimators. We focused on the evaluation 

of the finite sample bias and coverage of the corresponding 95% Wald-type confidence 

intervals. The network characteristics (e.g., number of components, number of nodes in each 

component) and parameters of potential outcome models were motivated using empirical 

estimates from the TRIP data. In this simulation study, we considered regular network where 

each node has the same number of neighbors. We first generate m network components as 

regular networks of degree four for each node. The number of nodes in each component 

is sampled from a Poisson distribution with average 10. We conducted several simulations 

where the numbers of components m is from the set {10, 50, 100, 150, 200}. Given a 

generated network, a total of 1,000 data sets were simulated in the following steps.

Step 1. A baseline covariate was randomly generated as Zi Bernoulli 0.5 . We then 

generated all possible potential outcomes

yi ai, aNi = Bernoulli p = logit−1 −1.75 + 0.5 ⋅ ai + si
di

− 1.5 ⋅ ai
si
di

+ 0.5 ⋅ Zi .

Step 2. Assign the random effect to each component in the network bν N 0, 0.52  to 

allow for correlation between the outcomes within components. The exposure was 

generated as

Ai = Bernoulli p = logit−1 0.7 − 1.4 ⋅ Zi + bν .

Step 3. We then obtain the corresponding observed outcomes from the potential 

outcomes that we generated in Step 1. The true parameters were calculated by 
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averaging the potential outcomes as described in Section 4 that we generated in Step 

1.

For each simulated data set, the Y IPW 1 a, α , Y IPW 1 α , Y IPW 2 a, α , and Y IPW 2 α  were 

computed for a = 0,1 and α = 0.25,0.5,0.75. The estimated standard errors were derived using 

the appropriate entries from the variance matrix in Appendix B, then averaged across 

simulations to obtain the average standard error (ASE). Empirical standard error (ESE) 

was the standard deviation of estimated means across all simulated data sets. Empirical 

coverage probability (ECP) is the proportion of the instances that the true parameters were 

contained in the Wald-type 95% confidence intervals based on the estimated standard errors 

among the 1000 simulations with a margin of error equal to 0.014. In our main scenario, 

we simulated networks with component size in average 10 and increased the number of 

components to evaluate the performance of IPW1 and IPW2 for estimation of the average 

potential outcomes (Tables A1 to A5). The complete simulation results are summarized in 

Appendix C of the Supplementary Material (Lee et al., 2022).

Figure 4 shows that the finite sample bias approaches zero and ECPs approach the nominal 

0.95 level when the number of components increases from 10 to 200. In Table A5, the ECPs 

of the estimator IPW1 under all allocation strategies were close to the nominal level and 

ECPs of IPW2 approach the nominal level when the allocation strategies had a coverage 

level around 50% in the observed data. To compare the performance of our variance 

estimator to an estimator for the asymptotic variance that assumes partial interference 

(Liu, Hudgens and Becker-Dreps, 2016), we used observed components in the network as 

groups to define partial interference sets. The partial interference assumption for variance 

estimation resulted in higher ASE and ECP, as compared to the asymptotic variance defined 

in Appendix B, which was closer to the ESE (Figure 5).

In addition to the main simulation scenarios that vary the number of components, we 

also used a regular network of degree 4 with 100 components to compare scenarios 

with a different exposure generating mechanism without random effects, and a scenario 

in which the stratified interference assumption is violated. In addition to this simulated 

regular network, we used the TRIP network structure to investigate the performance when 

community detection was used to further divide the network to larger number of component 

in the network. We also considered a scenario where we regenerated the network in each 

simulated dataset. Specifically, we considered the following additional five scenarios:

1. We used the exposure generating mechanism without random effects as one way 

to misspecify the propensity score

Ai = Bern p = logit−1 0.7 − 1.4 ⋅ Zi .

In Table 2, the ECPs of IPW2 were below the nominal level when the 

exposure mechanism was misspecified, while finite sample performance of 

IPW1 remained largely similar to settings with a correctly specified exposure 

mechanism.
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2. We used a different exposure generating model given by

Ai = Bern p = logit−1 −0.5 − 1.5 ⋅ Zi + bν .

Unlike the previous exposure generating model, this model results in more 

individuals who have none or 25% of their neighbors exposed in the simulated 

data (Figure 6). In Table A6, both IPW estimators have higher ECPs for 

allocation strategy 25% (IPW1: 94%, IPW2: 97%) and lower at allocation 

strategy 75% (IPW1: 68%, IPW2: 71%) in this scenario, suggesting that the finite 

sample performance of both estimators for the point estimates and ASEs were 

better under allocation strategies α for which there were more individuals with 

100 ⋅ α% of their neighbors exposed in the simulated data.

3. We considered an outcome model where the stratified interference assumption 

was violated while the exposure generating model was defined as in Step 2

Ai = Bernoulli p = logit−1 0.7 − 1.4 ⋅ Zi + bν .

We used the potential outcome model yi ai, aNi  given by

Bern p = logit−1 −1.75 + 0.5 ⋅ ai − 2 ⋅ ∑
j ∈ Ni

I Zi = Zj ⋅ aj
di

+ 5 ⋅ ∑
j ∈ Ni

I Zi ≠ Zj ⋅ aj
di

+ 0.5

⋅ Zi .

The simulation results in Table 3 showed that both estimators did not perform 

well with respect to the point estimates, as the magnitude of absolute bias 

was larger. The ECPs of IPW1 were all greater than 95% which suggested 

over-coverage. The ECPs of IPW2 had coverage above the nominal level or 

slightly below the nominal level of 95%.

4. We considered the network structure similar to our motivating study TRIP. 

Based on previous simulation results, a small number of components may 

result in poor finite-sample performance of variance estimators. To increase 

the number of components for estimation of the asymptotic variance of the 

estimated causal effects, we employed an efficient modularity-based, fast greedy 

approach to detect communities to further divide large connected components of 

the TRIP network into a total of 20 smaller components. Modularity takes large 

values when there are more substantial connections among some individuals 

than expected if the connections were randomly assigned (Clauset, Newman 

and Moore, 2004). More precisely, each node initially belongs to a separate 

component, and components are merged iteratively such that each merge yields 

the largest increase in the current value of modularity. The algorithm stops 

when it is not possible to increase the modularity any further. As a result, 
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components each comprise a unique set of participants and there are more 

links between the participants within components than across components in 

the TRIP network. By ignoring links across components, we treat the obtained 

communities as independent units to possibly improve the estimation of the 

variance. Importantly, we still define the interference sets using the nearest 

neighbors for point estimation of the causal effects. In this scenario, we use 

potential outcome model in Step 1 and exposure generating model in Step 

2. The simulation results on the TRIP network with and without community 

detection (Table 4) demonstrated that the ECPs of both IPW1 and IPW2 had 

coverage above the nominal level (97%-100%) when using the TRIP network 

with only 10 components. After further divide the network using community 

detection, the ECPs have coverage slightly below the nominal level in some 

cases. To simulate more realistic covariates, we considered a scenario with 

additional baseline covariates in a TRIP network with 20 components. Two 

binary variables, Z1, i Bernoulli 0.5  and Z2, i Bernoulli 0.5 , and two continuous 

variables, Z3, i N 1, 0.52  and Z4, i N 0,1 , were added into the exposure generating 

model

Ai = Bern logit−1 −1.4 ⋅ Z1, i + 2 ⋅ Z2, i − 1.5 ⋅ Z3, i + 1.2 ⋅ Z4, i .

The results are summarized in Table 5. The estimators had coverage below the 

nominal level using IPW1; however, IPW2 performed slightly better in terms of 

ECP.

5. In the previous scenarios, we considered a network that is generated once (or 

fixed) and simulated 1000 datasets based on the one network. To evaluate the 

impact of uncertainty in the network structure, we also considered a scenario 

where we regenerated the network in each simulated dataset. We first generate a 

degree four regular network with 100 components, then Step 1–3, repeated 1000 

times for each dataset (Table 6). The results are mostly comparable to the results 

that generated one simulated network and simulated 1000 datasets on a fixed 

network (Table A3).

7. Evaluation of disseminated effects of community alerts in the 

Transmission Reduction Intervention Project.

We applied the estimators proposed in Section 5.2 to estimate the causal effects of 

community alerts at baseline on report of risk behavior at the six-month visit. We assumed 

that TRIP was an undirected network because the links were defined by if two individuals 

engaged had sex or injected drugs together in the six months before the baseline interview 

as reported by at least one participant in the dyad. This was an attempt to reduce the impact 

of possible missing links in the analysis due to stigma of sexual and drug use behaviors. The 

community alerts intervention status of the index participant and their neighbors was defined 

with respect to the baseline visit date of the index participant. The network structure in TRIP 

had 10 connected components with 216 participants and 362 shared connections (average 
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degree is 3.35) after excluding isolates and 59 participants who were lost to follow-up before 

their six-month visit. Among the 216 participants in TRIP, 25 participants (11.6%) received 

a community alert about the increased risk for HIV acquisition in close proximity in their 

network from the study team. We evaluated if information in the community alerts was 

disseminated to their the nearest neighbors and ultimately, if this resulted in a reduction 

in risk behavior among others in the network beyond those who were exposed to the alert 

themselves (Figure 2). Among participants with complete information on the questions 

related to sharing injection equipment, we considered the report of sharing injection 

equipment (or not) at the 6-month visit as the binary outcome, including sharing a syringe, 

cooker, filter or rinse water, or backloading to share injection drugs. The following baseline 

covariates were included in the adjusted models: HIV status, shared drug equipment (e.g., 

syringe) in last six months, the calendar date at first interview, education (primary school, 

high school, and post high school), and employment status (employed, unemployed/looking 

for a work, canť work because of health reason, and other). HIV status was ascertained 

in this study from a blood sample from each participant collected by a health program 

physician (Nikolopoulos et al., 2016). Given the study population included PWID in one 

geographic location, we assume that social desirability leading to possible reporting bias 

is comparable between the two exposure groups. Under this assumption, the reporting bias 

could be effectively eliminated when estimating contrasts between exposure groups.

We consider each of the assumptions in Section 5.1 in this setting. TRIP is an observational 

study with a nonrandomized intervention. Conditional exchangeability is required to identify 

causal effects. We also assume that if there are multiple versions of the community alerts 

that these different versions are irrelevant for causal contrasts of interest and this results 

in one version of exposure to the community alerts intervention and one version of no 

exposure to this intervention. TRIP recruited at least one wave of contact tracing for each 

participant of an HIV-infected seed; therefore, we expect that there could be dissemination 

or spillover between two individuals connected by a first-degree link (i.e., possible influence 

of their neighbors’ intervention exposure on an individual’s outcome). Based on the complex 

structure of the TRIP network resulting in possibly many different vectors of ANi, a stratified 

interference may be more appropriate to ensure that the positivity assumption holds. For 

the reducible propensity score assumption, the neighbors’s covariates were not significantly 

associated with their index individual’s exposure and the neighbors’s exposure was not 

significant associated with the index individual’s covariates, so Assumption 7 used for IPW2 

may be plausible in this analysis (data not shown).

For the analysis, we reported the point estimates and corresponding Wald-type 95% 

confidence intervals of each causal effect using both IPW1 and IPW2 estimators under 

allocation strategies 20%, 30%, 40%, and 50% because the most of individuals in the 

TRIP study had 20% to 50% of their nearest neighbors exposed to community alerts. The 

normality of random effects in IPW1 was tested using a diagnostic test for mixed effects 

model in Tchetgen Tchetgen and Coull (2006) and this resulted in a p-value = 0.012 under 

the null hypothesis that the mixing distribution is normal. Due to this result and better 

finite-sample performance for IPW2 with a smaller number of components (see Section 

6), we recommend IPW2 as a more appropriate estimator in this setting given the small 
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number of components in the TRIP network. Based on the simulation scenario 4 results that 

showed better finite sample performance for 20 components, we used community detection 

to further divide the TRIP network into 20 components to possibly improve the finite-sample 

performance of the variance estimators. We report the variance estimates with and without 

dividing TRIP network 10 observed components to 20 components in Table 7. In addition to 

including the full set of covariates to adjust for measured confounding in the weight models, 

we conducted sensitivity analyses to evaluate the impact of different sets of covariates 

on the model results. We first considered univariate models; that is, adjustment for only 

one covariate at a time. Second, we estimated the effects using the full set of covariates, 

excluding one covariate at a time. Lastly, we estimated the effects without adjustment for 

any covariates. The results were largely robust to the set of measured covariates used to 

adjust for confounding. In addition, the results that used community detection to further 

divide TRIP into 20 components to estimate the asymptotic variances were comparable 

to an analysis that used the 10 observed components. All models results are summarized 

in Appendix D of the Supplementary Material (Lee et al., 2022). The study protocol was 

reviewed and approved by the University of Rhode Island Institutional Review Board. All 

analyses were conducted using R (version 3.6.2), and R packages: igraph: Network Analysis 

and Visualization (version 1.3.4), lme4: Linear Mixed-Effects Models using ‘Eigen’ and S4 

(version 1.1–30), and numDeriv: Accurate Numerical Derivatives (version 2016.8–1.1).

Direct, indirect, total, and overall effect estimates and their corresponding Wald-type 95% 

confidence intervals of both estimators for different allocation strategies α = 0.2,0.3,0.4 and 

0.5 adjusting for all measured confounding variables are reported in Table 7. All estimates 

of the risk differences for both estimators IPW1 and IPW2 were protective, excluding 

the indirect effect under allocation strategy 30% and 20%, IE1 0.3,0.2 = 0.01 using IPW1 

and IE2 0.3,0.2 = 0.00 using IPW2; however, these did not achieve statistical significance. 

These results suggest that the likelihood of reporting HIV risk behavior was reduced 

not only by an participan’s exposure to community alerts, but also by the proportion of 

an participan’s nearest neighbors exposed to community alerts from the study team. We 

report the confidence interval obtained using 10 components. Specifically, the estimated 

direct effect was DE1 0.5 = − 0.18 (95% CI: −0.49, 0.14), estimated using IPW1 and 

DE2 0.5 = − 0.21 (95% CI: −0.56, 0.15) when estimated with IPW2; that is, we expect 

18 fewer reports of risk behavior per 100 participants if a participant receives the alert 

compared to if a participant does not receive an alert with 50% intervention coverage (i.e., 

50% of their neighbors receiving alerts) when estimated using IPW1 (21 per 100 fewer 

using IPW2). The indirect effect is IE1 0.5,0.2 = − 0.03 (95% CI:−0.07, 0.00), estimated 

using IPW1 Under allocation strategies 20% versus 50% and IE2 0.5,0.2 = − 0.02 (95% 

CI:−0.04, −0.01) when estimated with IPW2; in other words, we expect 4 fewer reports 

of risk behavior per 100 participants if a participant does not receive an alert with 50% 

intervention coverage compared to only 20% intervention coverage when estimated using 

IPW1 (2 per 100 fewer using IPW2). The total effects TE1 0.5,0.2 = − 0.21 (95% CI:−0.53, 

0.11) estimated using IPW1 and TE2 0.5,0.2 = − 0.23 (95% CI:−0.58, 0.12) estimated using 

IPW2. We expect 21 fewer reports of risk behavior per 100 participants when estimated 
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using IPW1 if a participant receives an alert with 50% of their nearest neighbors alerted 

versus if a participant does not receive an alert and only 20% of their nearest neighbors 

receive an alert (23 per 100 fewer using IPW2). The overall effects, OE1 0.5,0.2 = − 0.11

(95% CI:−0.27, 0.05) using IPW1 and OE2 0.5,0.2 = − 0.13 (95%CI:−0.32, 0.06) using 

IPW2. When estimated using IPW1, we expect 11 fewer reports of risk behavior per 100 

participants if 50% of the nearest neighbors and participant i receive alerts compared to if 

only 20% of the nearest neighbors and participant i receive alerts (13 per 100 fewer using 

IPW2).

8. Discussion.

In this paper, methods for evaluating disseminated effects were developed for the setting 

of network-based studies by leveraging a nearest neighbor interference set. The proposed 

approach uses connections (i.e. links) between individuals in a network and allows for 

overlapping interference sets within each component of the network. The two proposed 

estimators were shown to be consistent and asymptotically normal. Importantly, a consistent, 

closed-form estimator of the asymptotic variance was derived. The simulation study 

demonstrated that the two IPW estimators had reasonable finite-sample performance in 

terms of consistency and empirical coverage for a large number (> 100) of components in 

the observed network. The proposed variance estimators incorporate the observed network 

structure by assigning each individual a unique propensity score defined by their own 

nearest neighbors in which the nearest neighbors for individuals can overlap. We compared 

the performance of our variance estimators to the estimators for the asymptotic variances 

that assume partial interference with component-level propensity scores (Liu, Hudgens and 

Becker-Dreps, 2016) by using the observed network components as partial interference sets. 

In Figure 5, our variance estimators were more efficient and closer to the empirical standard 

error by utilizing the network structure in a nearest neighbors level propensity score as 

compared to Liu’s estimator. In the additional simulation scenario 4, the empirical coverage 

probabilities were above the nominal level (97%-100%) when using the TRIP network 

with only 10 components. This may be a result of the uncertainty due to the imbalanced 

component size observed in TRIP, where the total number of nodes was 216 and the largest 

component had size 186. After using community detection to further divide the network into 

a larger number of components m = 20 , the coverage level then decreased to average of 

93%.

Based on the simulation results, both estimators performed well in terms of finite sample 

bias. IPW2 demonstrated better performance for variance estimation (i.e., ASE was closer 

to ESE) when the number of network components was small (< 50), while IPW1 had lower 

coverage for the confidence intervals. When the number of network components was large 

(≥ 100), the estimated average standard error for IPW1 resulted in confidence intervals with 

coverage around the nominal level, while IPW2 tended to have coverage above the nominal 

level. Based on these findings, the estimation of these effects in TRIP network using 

IPW2 may be preferred over IPW1 due to the small number of network components with 

the caveat that these recommendations may be sensitive to specification in the simulation 

scenarios, including features of the study design. In addition, we explored adding additional 
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covariates with larger parameter values in the exposure generating model (Table 5). In this 

case, the estimators had slightly larger bias compared to Table 4 and ECP somewhat below 

the nominal, while IPW2 had slightly higher coverage than IPW1. As reported in Table 

3, a violation of the stratified interference assumption when the exposure mechanism is 

misspecified resulted in deviations from the nominal coverage level for both estimators.

With these methods, we now have an approach to quantify the social and biological 

influence on the determinants of risk and HIV transmission in HIV risk networks of PWIDs 

(Friedman and Aral, 2001) when evaluating the impact of interventions, such as TasP, or 

how interventions permeate a risk network (Nikolopoulos et al., 2016; Friedman et al., 

2014). These new methodologies will improve the identification of best preventive practices 

for PWID and provide evidence to expedite policy changes to improve access to HIV 

treatment and risk reduction interventions in subpopulations of high-risk drug users. In the 

TRIP study, these methods allowed for quantification of the extent to which the community 

alerts intervention reduced onward transmission to others in the community by tracking 

incident infections in the risk networks as measured through the proxy of self-reported 

HIV risk behaviors. Correctly conducted and analyzed studies among PWID will improve 

existing interventions, inform new interventions, and has the potential to reduce incident 

HIV infections in this subpopulation.

Studies of network effects among PWID are rich with future methodological problems. The 

simulation study indicated that the asymptotic variance estimators of the IPW estimators 

had coverage below the nominal level when the number of components in the network is 

limited (<50), while both IPW estimators were unbiased in finite samples (<5%; bias/true 

value). Finite sample correction for estimating asymptotic variances is needed when the 

network has small number of components. As the approach in this paper used components as 

independent units for the variance estimation, developing methodologies with heterogeneous 

correlation structures within a large size component should be included in future work. 

Furthermore, the outcome of interest may be missing due to participant loss to follow-up 

in some intervention-based studies when outcomes are ascertained post-intervention. For 

example, 21% of TRIP participants were lost to follow-up by the six-month visit. Future 

work should include development of censoring methods to evaluate the IPW outcomes in 

the presence of missing outcomes or alternative methods to also address missing links in 

the network. With regard to real data application, the impact of unmeasured confounding is 

important because this would violate the conditional exchangeability assumption; however, 

sensitivity analyses in the presence of interference currently only exist for two-stage 

randomized trials with clustering features (VanderWeele, Tchetgen Tchetgen and Halloran, 

2014). Designing sensitivity analyses to assess the bias of unmeasured confounding in 

network-based studies should be included in future research. In addition, if the spillover 

set actually included two-degree neighbors or other sets of individuals in the network, 

the nearest neighbors interference assumption would not be valid. We recommend the 

development of future methods that consider alternative definitions of the spillover set in 

the network. For example, we could also have a violation of the stratified interference 

assumption if in fact one of the neighbors was a closer contact or more important to 

the index participant. We recommend for future work the incorporation of edge weights 

into this method to reflect variations in the strength of connections relevant for spillover. 
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With these improved inferential methods, investigators will be able to answer questions 

they were previously unable to address in network-based studies, leading to more effective 

intervention implementation and far-reaching policy change to prevent HIV infection, reduce 

risk behavior, ultimately, improve HIV treatment and care among PWID. In addition to 

study HIV transmission among PWID, this method can also be applied in a wider context 

to study sexually transmitted infection diseases such as genital herpes and trichomoniasis 

among adolescents and young adults, men who have sex with men, or pregnant women.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1: 
Flowchart of participant selection in TRIP (Pampaka et al., 2021)
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Fig 2: 
The TRIP network consisted of 10 connected components. The size of each component was 

{185, 9, 6, 3, 3, 2, 2, 2, 2, 2}. The size of each component after using community detection 

to further divide the network into 20 components is {28, 26, 23, 19, 19, 18, 15, 12, 10, 9, 8, 

7, 6, 3, 3, 2, 2, 2, 2, 2}. Dark shaded nodes represent the participants who were exposed to 

community alert and gray shaded nodes represent participants who were not exposed.

Lee et al. Page 29

Ann Appl Stat. Author manuscript; available in PMC 2024 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 3: 
A sample network with two components. C1 = 1,2, 3,4, 5  and C2 = 6,7, 8,9, 10,11,12,13 . The 

nearest neighbors of node 2 are N2 = 4,5 , of node 3 are N3 = 1,4 , and of node 6 are 

N6 = 9,10,13 .
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Fig 4: 
Absolute bias (left) estimator and corresponding Wald 95% confidence intervals empirical 

coverage probability (ECP) (right) of IPW1 (top) and IPW2 (bottom) for different number of 

components in the network
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Fig 5: 
Given a network with 100 components, comparison of the average empirical standard error 

(ESE), the average standard error (ASE) based on variance estimator in Appendix B, and 

average standard error (Liu ASE) based on variance estimator in Liu, Hudgens and Becker-

Dreps (2016) of the average potential outcomes under allocation strategies 25%, 50%, and 

75%.
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Fig 6: 
The frequency of the proportion of exposed neighbors in one simulated data 

when using the exposure generating models Ai = Bern expit 0.7 − 1.4 ⋅ Zi + bν  (left) and 

Ai = Bern expit −0.5 − 1.5 ⋅ Zi + bν  (right)
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Table 1

TRIP network characteristics and participant attribute variables after excluding isolates and 59 participants 

(21%) who were lost to follow up before their six-month visit1.

Network Characteristics

Nodes 216

Edges 362

Components 10

Average Degree (SD) 3.35 (2.75)

Density 0.016

Transitivity 0.25

Assortativity 0.25

Baseline Visit

Community alert
Exposed 25 (11.6%)

Not Exposed 191 (88.4%)

HIV Status
Positive 113 (52.3%)

Negative 103 (47.7%)

Date of first interview
Before ARISTOTLE ended 110 (50.9%)

After ARISTOTLE ended 106 (49.1%)

Education

Primary School or less 64 (29.6%)

High School (first 3 years) 68 (31.5%)

High School (last 3 years) 52 (24.1%)

Post High School 32 (14.8%)

Employment status

Employed 33 (15.3%)

Unemployed; looking for work 54 (25.0%)

Can’ work; health reason 101 (46.8%)

Other 28 (12.9%)

Shared injection equipment in last 6 months
Yes 159 (73.6%)

No 57 (26.4%)

Six-month Visit

Outcome: sharing injection equipment at the 6-month visit
Yes 92 (42.6%)

No 124 (57.4%)

1
The transitivity measures the density of triads in a network. The assortativity quantifies the extent to which connected nodes share similar 

properties.
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Table 2

Results from 1000 simulated datasets on a network with 100 components for IPW1 (left) and IPW2 (right) for 

exposed a = 1 , not exposed a = 0 , and marginal estimators under allocation strategies 25%, 50%, and 75% 

using exposure generating model Ai = Bern expit 0.7 − 1.4 ⋅ Zi .

IPW1 IPW2

Bias ESE ASE ECP Bias ESE ASE ECP

Y 1,0.25 0.0013 0.048 0.046 0.91 0.0149 0.039 0.036 0.86

Y 1,0.5 −0.0003 0.027 0.028 0.96 0.0016 0.022 0.024 0.96

Y 1,0.75 −0.0032 0.041 0.041 0.93 0.0093 0.035 0.033 0.88

Y 0,0.25 −0.0051 0.039 0.040 0.94 0.0093 0.033 0.031 0.90

Y 0,0.5 −0.0018 0.028 0.029 0.95 0.0018 0.023 0.025 0.97

Y 0,0.75 0.0004 0.053 0.051 0.92 0.0195 0.045 0.042 0.83

Y 0.25 −0.0035 0.032 0.032 0.94 0.0107 0.027 0.026 0.88

Y 0.5 −0.0010 0.021 0.021 0.97 0.0017 0.016 0.018 0.97

Y 0.75 −0.0023 0.033 0.030 0.93 0.0118 0.029 0.028 0.86
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Table 3

Results from 1000 simulated datasets on a network with 100 components for IPW 1 (left) and IPW 2 (right) for 

exposed a = 1 , not exposed a = 0 , and marginal estimators under allocation strategies 25%, 50%, and 75% 

using an outcome model where the stratified interference assumption is violated.

True

IPW1 IPW2

Bias ESE ASE ECP Bias ESE ASE ECP

Y 1,0.25 0.9965 0.0039 0.068 0.074 0.96 0.0345 0.090 0.074 0.84

Y 1,0.5 0.9885 0.0041 0.033 0.047 0.99 0.0051 0.006 0.048 1.00

Y 1,0.75 0.9724 −0.0134 0.067 0.077 0.96 −0.1540 0.115 0.148 0.93

Y 0,0.25 0.9943 −0.0179 0.066 0.078 0.97 −0.1682 0.121 0.154 0.92

Y 0,0.5 0.9821 0.0015 0.034 0.048 0.99 0.0032 0.008 0.049 1.00

Y 0,0.75 0.9583 0.0060 0.069 0.074 0.95 0.0398 0.085 0.070 0.81

Y 0.25 0.9949 −0.0125 0.050 0.063 0.98 −0.1175 0.100 0.122 0.92

Y 0.5 0.9853 0.0028 0.022 0.040 1.00 0.0042 0.005 0.035 1.00

Y 0.75 0.9689 −0.0086 0.050 0.062 0.97 −0.1056 0.094 0.117 0.94
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Table 4

Results from 1000 simulated datasets on TRIP network for 10 components (left) and using community 

detection to further divide the network to 20 components (right) for exposed a = 1 , not exposed a = 0 , and 

marginal estimators under allocation strategies 25%, 50%, and 75%.

True

10 components 20 components

IPW1 IPW2 IPW1 IPW2

Bias ECP Bias ECP Bias ECP Bias ECP

Y 1,0.25 0.2473 0.0098 0.986 0.0167 0.988 0.0098 0.849 0.0036 0.890

Y 1,0.5 0.2265 0.0021 0.998 0.0112 0.986 0.0021 0.946 0.0064 0.920

Y 1,0.75 0.2058 −0.0020 0.987 0.0126 0.997 −0.0020 0.894 0.0057 0.943

Y 0,0.25 0.2304 <0.0001 0.996 0.0046 0.999 <0.0001 0.920 0.0021 0.968

Y 0,0.5 0.2778 0.0010 1.000 0.0029 1.000 0.0010 0.954 0.0017 0.974

Y 0,0.75 0.3275 0.0073 0.996 0.0038 1.000 0.0073 0.896 0.0019 0.992

Y 0.25 0.2346 0.0025 0.999 0.0133 0.971 0.0025 0.943 0.0061 0.915

Y 0.5 0.2521 0.0015 1.000 0.0121 0.993 0.0015 0.982 <0.0001 0.917

Y 0.75 0.2362 0.0004 1.000 0.0130 0.998 0.0004 0.937 0.0046 0.940
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Table 5

Results from 1000 simulated datasets on TRIP network further dividing the network into 20 components using 

IPW 1 (left) and IPW 2 (right) for exposed a = 1 , not exposed a = 0 , and marginal estimators under allocation 

strategies 25%, 50%, and 75% with exposure generating model 

Ai = Bern logit−1 −1.4 ⋅ Z1, i + 2 ⋅ Z2, i − 1.5 ⋅ Z3, i + 1.2 ⋅ Z4, i .

True

IPW1 IPW2

Bias ESE ASE ECP Bias ESE ASE ECP

Y 1,0.25 0.2493 0.0445 0.161 0.095 0.61 0.0409 0.100 0.075 0.71

Y 1,0.5 0.2274 0.0295 0.179 0.094 0.64 0.0197 0.089 0.073 0.80

Y 1,0.75 0.2057 0.0194 0.290 0.111 0.57 0.0422 0.093 0.065 0.64

Y 0,0.25 0.2295 0.0160 0.141 0.087 0.72 0.0214 0.064 0.060 0.86

Y 0,0.5 0.2765 0.0306 0.149 0.092 0.69 0.0318 0.063 0.067 0.86

Y 0,0.75 0.3264 0.0589 0.189 0.113 0.59 0.0923 0.094 0.076 0.56

Y 0.25 0.2345 0.0231 0.115 0.077 0.71 0.0263 0.054 0.055 0.84

Y 0.5 0.2520 0.0300 0.118 0.079 0.70 0.0258 0.053 0.059 0.87

Y 0.75 0.2358 0.0293 0.227 0.099 0.60 0.0547 0.072 0.058 0.62
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Table 6

Results from 1000 simulated datasets with the network regenerated for each dataset with 100 components for 

IPW 1 (left) and IPW 2 (right) for exposed a = 1 , not exposed a = 0 , and marginal estimators under allocation 

strategies 25%, 50%, and 75%.

True

IPW1 IPW2

Bias ESE ASE ECP Bias ESE ASE ECP

Y 1,0.25 0.2489 0.0023 0.0487 0.0467 0.89 −0.0099 0.0518 0.0457 0.93

Y 1,0.5 0.2270
0.0018 0.0271 0.0274 0.94 −0.0037 0.0324 0.0317 0.96

Y 1,0.75 0.2058 −0.0008 0.0425 0.0500 0.90 −0.0052 0.0275 0.0274 0.96

Y 0,0.25 0.2281 <0.0001 0.0366 0.0491 0.93 −0.0013 0.0223 0.0237 0.97

Y 0,0.5 0.2745 0.0015 0.0257 0.0298 0.97 −0.0023 0.0230 0.0246 0.96

Y 0,0.75 0.3249 0.0050 0.0479 0.0541 0.92 −0.0018 0.0161 0.0177 0.98

Y 0.25 0.2333 0.0006 0.0296 0.0388 0.94 −0.0051 0.0340 0.0329 0.94

Y 0.5 0.2508 0.0017 0.0187 0.0213 0.97 −0.0168 0.0542 0.0510 0.94

Y 0.75 0.2356 0.0007 0.0336 0.0387 0.91 −0.0081 0.0295 0.0289 0.95
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Table 7

The estimated risk differences and 95% confidence intervals (CIS) estimated using the TRIP network with the 

original 10 network components, and 95% CIs estimated by dividing TRIP network into 20 components, of the 

effects of community alerts at baseline on HIV risk behavior at 6 months adjusted for full set of measured 

confounding variables under allocation strategies 20%, 30%, 40%, and 50%

Effects Coverage α, α′
IPW1 IPW2

RD 95% CI RD 95% CI

10 components 20 components 10 components 20 components

Direct (20%, 20%) −0.06 (−0.14, 0.01) (−0.39, 0.26) 0.01 (−0.08, 0.10) (−0.19, 0.21)

Direct (30%, 30%) −0.10 (−0.24, 0.04) (−0.48, 0.29) −0.09 (−0.19, 0.02) (−0.27, 0.10)

Direct (40%, 40%) −0.14 (−0.36, 0.09) (−0.52, 0.24) −0.16 (−0.40, 0.09) (−0.38, 0.07)

Direct (50%, 50%) −0.18 (−0.49, 0.14) (−0.52, 0.17) −0.21 (−0.56, 0.15) (−0.47, 0.06)

Indirect (30%, 20%) 0.01 (−0.02, 0.03) (−0.03, 0.04) 0.00 (−0.01, 0.02) (−0.04, 0.05)

Indirect (40%, 20%) −0.01 (−0.03, 0.01) (−0.06, 0.04) −0.01 (−0.02, 0.01) (−0.09, 0.07)

Indirect (50%, 20%) −0.03 (−0.07, 0.00) (−0.10, 0.03) −0.02 (−0.04, −0.01) (−0.14, 0.10)

Indirect (40%, 30%) −0.01 (−0.03, −0.00) (−0.04, 0.01) −0.01 (−0.02, −0.00) (−0.05, 0.03)

Indirect (50%, 40%) −0.03 (−0.05, 0.00) (−0.06, 0.01) −0.01 (−0.03, −0.00) (−0.06, 0.03)

Indirect (50%, 30%) −0.04 (−0.08, 0.00) (−0.09, 0.01) −0.02 (−0.04, −0.01) (−0.11, 0.06)

Total (30%, 20%) −0.09 (−0.22, 0.04) (−0.49, 0.31) −0.08 (−0.17, 0.01) (−0.28, 0.12)

Total (40%, 20%) −0.15 (−0.36, 0.07) (−0.53, 0.24) −0.16 (−0.40, 0.07) (−0.37, 0.05)

Total (50%, 20%) −0.21 (−0.53, 0.11) (−0.54, 0.11) −0.23 (−0.58, 0.12) (−0.43, −0.02)

Total (40%, 30%) −0.15 (−0.38, 0.08) (−0.52, 0.22) −0.17 (−0.41, 0.08) (−0.37, 0.04)

Total (50%, 40%) −0.20 (−0.53, 0.13) (−0.52, 0.12) −0.22 (−0.58, 0.14) (−0.45, 0.01)

Total (50%, 30%) −0.22 (−0.56, 0.12) (−0.53, 0.09) −0.23 (−0.59, 0.13) (−0.44, −0.02)

Overall (30%, 20%) −0.01 (−0.03, 0.01) (−0.08, 0.06) −0.03 (−0.06, 0.01) (−0.07, 0.02)

Overall (40%, 20%) −0.05 (−0.12, 0.02) (−0.15, 0.05) −0.07 (−0.18, 0.03) (−0.15, 0.00)

Overall (50%, 20%) −0.11 (−0.27, 0.05) (−0.21, −0.01) −0.13 (−0.32, 0.06) (−0.21, −0.04)

Overall (40%, 30%) −0.04 (−0.10, 0.02) (−0.07, −0.01) −0.05 (−0.12, 0.02) (−0.08, −0.01)

Overall (50%, 40%) −0.06 (−0.15, 0.03) (−0.09, −0.03) −0.05 (−0.14, 0.03) (−0.08, −0.03)

Overall (50%, 30%) −0.10 (−0.25, 0.05) (−0.14, −0.06) −0.10 (−0.26, 0.05) (−0.16, −0.05)
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