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Abstract

Localized persistent cortical neural activity is a validated neural substrate of parametric working 

memory. Such activity “bumps” represent the continuous location of a cue over several seconds. 

Pyramidal (excitatory (E)) and interneuronal (inhibitory (I)) subpopulations exhibit tuned bumps 

of activity, linking neural dynamics to behavioral inaccuracies observed in memory recall. 

However, many bump attractor models collapse these subpopulations into a single joint E/I(lateral 

inhibitory) population and do not consider the role of interpopulation neural architecture and 

noise correlations. Both factors have a high potential to impinge upon the stochastic dynamics of 

these bumps, ultimately shaping behavioral response variance. In our study, we consider a neural 

field model with separate E/I populations and leverage asymptotic analysis to derive a nonlinear 

Langevin system describing E/I bump interactions. While the E bump attracts the I bump, the 

I bump stabilizes but can also repel the E bump, which can result in prolonged relaxation 

dynamics when both bumps are perturbed. Furthermore, the structure of noise correlations within 

and between subpopulations strongly shapes the variance in bump position. Surprisingly, higher 

interpopulation correlations reduce variance.
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1. Introduction.

Storing information “in mind” for short periods of time is essential for the performance of 

daily tasks [24]. Parametric working memory (as used in tasks requiring a delayed estimate 

of a continuous quantity) uses spatially localized persistent neural activity in the prefrontal 

cortex, parietal cortex, and frontal eye fields [16, 24] generated in neural circuits with strong 

local recurrent excitation and broad inhibition [9, 31, 44]. Neurophysiological recordings 

from nonhuman primate subjects performing visuospatial working memory tasks have 

shown that localized bumps of persistent activity encode remembered parametric quantities 

for a few seconds [9, 31, 21, 24]. For example, in the oculomotor delayed response task, 

a location cue is momentarily presented on a circle displayed on a monitor, then a delay 
period occurs during which the video is blank, and finally the subject is prompted to report 
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their memory of the cued location. During the delay period, neural recordings identify cells 

tuned to specific cue locations around the circle and reveal that the strongest (peak) firing 

neurons represent the encoded location [24, 21, 22]. Peaked and localized activity wanders 

stochastically during the delay period, representing a time-dependent degradation of cue 

location memory consistent with subsequent response errors [8, 48].

Neural field and spiking models are capable of producing peaked, localized activity that 

wanders via spatially structured connectivity that weakens as the distance between neural 

cue location preference increases with excitation having a narrower spatial footprint [47, 

27, 44, 31]. Bumps can be defined as standing pulse solutions usually with two key 

dynamical properties important for encoding memories of continuum variables: (1) they 

are self-sustained in the absence of stimulus (representing memory over a delay period) 

and (2) they exhibit marginal stability such that they can occur at any location in the 

network and integrate translational perturbations [27]. Such solutions have garnered interest 

due to the rich dynamical features that arise when varying the form of connectivity, 

introducing propagation delays, adding slow negative feedback, or considering stochasticity 

[4,27,31,12,19]. Response statistics and neural activity during oculomotor delayed response 

tasks are also well characterized by the output of bump attractor models with some form of 

stochasticity incorporated [48,9,3].

Previous psychophysical studies of delayed estimation of continuous quantities show subject 

errors scale linearly with the delay period [43, 46]. Such behavior can be accounted for 

by models whose low-dimensional dynamics evolve as Brownian motion, like a particle 

subject to diffusion. This is consistent with a bump attractor stochastically perturbed by 

noise, wandering along a marginally stable ring attractor [31, 8]. Extended models have 

also considered neural circuit mechanisms that help stabilize the movement of bumps to 

noise perturbations by breaking the marginal stability of the ring attractor. For example, 

spatially heterogeneous recurrent excitation leads to low-dimensional dynamics akin to a 

particle stochastically perturbed along a washboard potential, slowing the rate of diffusion 

[32]. Likewise, short-term facilitation locally potentiates synaptic excitation where the bump 

is istantiated, akin to a slowly moving local potential well that traps the particle near the 

true location of the original stimulus [44, 30]. In addition to stabilizing bumps within trials, 

short-term facilitation also transfers memory of the previous trial stimulus to the next, 

creating systematic errors referred to as serial dependence [35,7].

Despite advancements in understanding how these modifications to bump attractor models 

affect their stochastic dynamics, a detailed examination of the role of separate excitatory 

and inhibitory (E and I) population dynamics has been overlooked, and I-I interactions are 

often ignored entirely. Inhibition is often assumed to be flat and global in stochastic bump 

attractor models [9], but we know prefrontal cortical synaptic inhibition exhibits nontrivial 

preference-dependent interactions [24], which could have yet unidentified effects on the 

dynamics of bumps and the fidelity of memory systems that rely on them.

Here, we use a stochastic neural field model to investigate the wandering dynamics and 

interactions of separate E and I activity bumps. We focus on how a separate and spatially 

extended I population shapes the variance of a bump attractor encoding a remembered 
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location along a continuum. First, we introduce the neural field equations, notation 

conventions, and parameters whose effects on the variance of the bumps’ final position 

will be analyzed (section 2). We then review the existence and stability of both E and I
bump solutions [47, 27, 4, 14, 37, 20], paving the way for examining how deterministic 

and stochastic perturbations deform and shift the attractor solution. We examine the impact 

of modifying both the amplitude and spatial extent of neural architecture, as well as the 

firing rate thresholds on the stability of solutions (section 3). Stable and unstable branches 

of bumps annihilate at a discontinuous saddle node bifurcation given sufficiently high firing 

rate thresholds.

Our stochastic analysis involves two different methods of identifying the impact of noise 

on the bump attractor: (1) a linear perturbative analysis (strongly coupled limit between 

the E and I bumps) in the limit of weak noise and (2) an interface-based analysis where 

we track the threshold crossing points of the E/I bumps (section 4). Thus, we develop 

two corresponding theoretical predictions of bump position variance, the second of which 

captures nonlinear interactions between the E/I bumps in a Langevin system that is a better 

match to full model simulations. This higher-order analysis starts by obtaining distinct and 

nonlinearly coupled equations for the bump interfaces. Bump position variance changes 

non-monotonically as a function of most model parameters, so intermediate tuning of 

network architecture maximizes memory degradation. Finally, we identify the impact of 

noise correlations between the E and I populations, finding they actually serve to reduce 

bump position variance.

2. The model.

To determine the effects of separately evolving E and I populations on bump attractor 

dynamics, we analyze a stochastic neural field model: a coupled system of nonlinear 

integro-differential equations describing interactions of spatially extended E and I neural 

subpopulations (Figure 1(a) and [47]). Recurrent connectivity targeting position x from y at 

time t is described by convolving a x * b x = ∫−∞
∞ a x − y b y dy  the synaptic kernel and the 

firing rate output of the neurons from which synapses originate. Along with additive noise 

terms, we obtain the stochastic neural field equations:

du x, t = −u x, t + wee x *f u x, t − wei x *f v x, t dt + ϵ
1
2dW e,

(2.1a)

τdv x, t = −v x, t + wie x *f u x, t − wii x *f v x, t dt + ϵ
1
2dW i,

(2.1b)

where u x, t  and v x, t  denote the E and I synaptic input profiles at location x at time 

t. We assume each unit of the time variable t is equivalent to 10 ms on the order of 

typical E membrane and synaptic time constants [25]. The sigmoidal firing rate function 
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f u = 1
1 + e−η u − θ  with threshold θ and gain η determines the strength of the firing rate 

output based on the input u. Analytical results can be obtained in the high gain limit 

η ∞  such that

f u = H u − θ = 1, u − θ ≥ 0,
0, u − θ < 0,

(2.2)

is the Heaviside function. The E and I population firing rate thresholds, θu and θv, can 

differ. Given a Heaviside firing rate nonlinearity, it is possible to exactly characterize the 

dynamics of the model using interface equations that track the evolution of level sets u = θu

and v = θv in space and time [14,18]. The strength of synaptic connectivity weakens with the 

spatial distance between positions x and y and is given by the distance-dependent synaptic 

weight profile functions wab x − y a, b ∈ e, i . For explicit calculations, we take these to be 

symmetric exponentials

wab x = Aabe− x
σab ,

(2.3)

where a, b ∈ e, i  and Aab, σab ∈ ℝ ≥ 0 (nonnegative constants). Commonly used values 

throughout for the weight profiles are presented in Table 1. Parameters for wee were chosen 

to non-dimensionalize the E to E connectivity (setting Aee = 0.5 and σee = 1). Other parameters 

for the I to I and cross-population synaptic profiles were generally chosen to be broader 

than the synaptic footprint of E to E connections, and we generally assume the commonly 

identified 80% E and 20% I neuron ratio [1] in turn approximately determines the effective 

synaptic amplitude from those populations.

The spatially structured multiplicative noise terms dW e = u x, t dW u x, t  and 

dW i = v x, t dW v x, t  are introduced with small amplitude 0 < ϵ ≪ 1, allowing 

asymptotic approximations of their stochastic effects. Multiplicative noise is 

predicted in neural fields by linearly approximating noise arising in a system-size 

expansion of a fully stochastic model [5]. Increments of spatially extended Wiener 

processes have zero mean dW a x, t = 0 a ∈ u, v  and local spatial correlations 

dW a x, t dW a y, s = Caa x − y δ t − s dtds. For simplicity, we start by assuming there are 

no correlations between the noise to the E and I populations dW u x, t dW v y, s ≡ 0

Based on prior studies of deterministic E/I population models [42, 4, 8] bump (standing 

pulse) solutions emerge in parameter regions we can identify using an existence/stability 

analysis. Recurrent excitation sustains both the E and I populations, and inhibition prevents 

the spread of the E population activity. In the absence of noise, we obtain bump profiles 

that are even symmetric and translation symmetric. Using threshold crossing conditions, we 

develop implicit formulas for the half-width variable au av  for the E (I) bump, which ensure 
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existence, defined as the distance from the bump’s center of mass to the interface (Figure 

1(b)). The I bump’s half-width av (Figure 1(c)) can vary nonmonotonically along certain 

parameter axes, such as increasing firing rate thresholds, θu and θv, simultaneously. When 

noise is applied to stable E/I activity bumps, they “wander” due to their neutral stability. 

In addition to small deformations of the bump profile itself, a bump’s center of mass 

wanders stochastically (Figure 1(d), and see Figure A.1 for an additional example). While 

past asymptotic analyses assumed this wandering was roughly Brownian motion [8,31], we 

will show that by relaxing this assumption we can better characterize nonlinear interactions 

between the bumps in the distinct E and I populations and how this shapes wandering 

dynamics.

Each bump has a region over which neural activity (u or v) is superthreshold (above θu or θv . 

We define the corresponding E/I population active regions to be x1 t , x2 t  and x3 t , x4 t , 

respectively [27]. These active regions are bounded by the interfaces (threshold crossings) 

since u x1,2 t , t = θu and v x3,4 t , t = θv. Note, large deviations could lead to multiple disjoint 

active region segments in each layer, but we assume each bump’s active region is fully 

connected here (see [14,18,36] for elaborations on this problem). In the absence of noise, the 

interfaces relate directly to the half-widths in that au = x2 − x1 /2 and av = x4 − x3 /2

Stochastic motion of the bumps will be tracked by estimating the center of mass Δu t  Δv t
of the active region of the E I  bump

Δu t = x1 t + x2 t
2 ,  Δv t = x3 t + x4 t

2 .

(2.4)

Overall, we are interested in both how network parameters shape the form and stability 

of bumps and how this translates into the bump’s stochastic dynamics in the presence of 

noise. Our ensuing analysis will initially rely on techniques in local stability, as well as 

weak perturbations, but a major advancement will be the use of interface techniques to 

provide higher-order corrections to the effective nonlinear equations describing stochastic 

bump motion.

3. Deterministic analysis.

Our estimates for expected bump wandering (variance of center of mass) utilizes 

linearization about stable stationary solutions. This necessitates an analysis of stationary 

bump solutions’ (static bump solutions in the absence of perturbations) existence 

and stability in varying parameter regimes for the deterministic system. Using (2.1) 

without noise [4,27], we demonstrate the existence of stationary solutions through direct 

construction. For proofs of uniqueness of solutions with a Heaviside firing rate see [4,10].

3.1. Stationary solutions.

Assuming solutions are stationary u x, t = U x  and v x, t = V x  and using the Heaviside 

firing rate function (2.2), (2.1) becomes
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U(x) = ∫
ℝ

wee(x − y)H U(y) − θu dy − ∫
ℝ

wei(x − y)H V (y) − θv dy,

(3.1a)

V (x) = ∫
ℝ

wie(x − y)H U(y) − θu dy − ∫
ℝ

wii(x − y)H V (y) − θv dy .

(3.1b)

We seek bumps with simply connected active regions U > θu and V > θv −au, au  and −av, av . 

Exploiting the solutions’ translational invariance along ℝ (opting for a center of mass at 

x = 0) and expected evenness (i.e., U − x = U x  and − x = V x ) we obtain the system

U(x) =∫
−au

au

wee(x − y)dy −∫
−av

av

wei(x − y)dy,

(3.2a)

V (x) =∫
−au

au

wie(x − y)dy −∫
−av

av

wii(x − y)dy .

(3.2b)

Integrating our chosen exponential synaptic weight functions wab x = Aabe
− x
σab , a, b ∈ e, i , 

we find the explicit formulas for c ∈ au, av :

∫
−c

c

wab(x − y)dy =

2Aabσabe
−x
σab sinh c

σab
, x > c,

2Aabσab 1 − e
−c
σab cosh x

σab
, x < c,

2Aabσabe
x

σab sinh c
σab

, x < − c .

(3.3)

Substituting (3.3) into (3.2) and utilizing the threshold crossing conditions θu = U ±au  and 

θv = V ±av , we obtain an implicit set of equations for the half-widths, which depends on 

whether the E or I bump is wider:
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θu = 2Aeeσeee
−au
σee sinh au

σee
−

2Aeiσeie
−au
σei sinh av

σei
, au ≥ av,

2Aeiσei 1 − e
−av
σei cosh au

σei
, au < av,

(3.4a)

θv = − 2Aiiσiie
−av
σii sinh av

σii
+

2Aieσiee
−aie
σie sinh au

σie
, av ≥ au,

2Aieσie 1 − e
−au
σie cosh av

σie
, av < au .

(3.4b)

Equation (3.4) is thus defined piecewise continuously (Figure 2(a), gold circle indicates 

where the change in cases occurs), and as we will show, cusps appear at these case switches 

in plots of eigenvalues and variance estimates.

Note, the above set of threshold conditions assume that both the E and I populations 

have nontrivial active regions. There is a second class of bump solutions where there is 

no active region in the I population. As we will show, these bumps always tend to be 

linearly unstable, as there is no active inhibition to prevent the spread of excitation upon 

perturbation. Applying this assumption to (3.2), we obtain the simplified system,

U(x) =∫
−au

au

wee(x − y)dy,

(3.5a)

V (x) =∫
−au

au

wie(x − y)dy,

(3.5b)

with E bump half-width given by

θu = U ±au = ∫
−au

au
wee ±au − y dy

or (for our particular weight functions) the formula

θu = 2Aeeσeee
−au
σee sinh   au

σee

Cihak et al. Page 7

SIAM J Appl Dyn Syst. Author manuscript; available in PMC 2024 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(3.6)

For such a solution to be self-consistent, we also must ensure that V < θv everywhere. 

Assuming the peak of the subthreshold I bump occurs at x = 0, this is ensured by the 

condition

V 0 =
−au

au

wie y dy = 2Aieσie 1 − e
−au
σie < θv .

There are, thus, two branches of bump solutions. One branch of “broad” bumps has 

superthreshold active regions in both the E and I populations au > 0 and av > 0 . For 

sufficiently high thresholds, we typically obtain marginally stable solutions, but these 

destabilize through a Hopf bifurcation for sufficiently low firing rate thresholds (see Figure 

2(a) and subsequent stability analysis). In contrast, when the I bump is subthreshold 

V 0 < θv , we obtain unstable “narrow” solutions that create a separatrix between the 

broad solutions and the rest state (Figure 2(a)). Under each set of assumptions we obtain 

two distinct systems that approach the same solution defining a discontinuous saddle node 

bifurcation. The discontinuity arises from there being either two or one threshold condition 

and the peak of the I narrow bump grazing the threshold θv. We derive these results in detail 

in the following subsection.

3.2. Eigenvalues and noiseless perturbations.

Our stability analysis utilizes linearization about stationary solutions and localizes the 

perturbation evolution problem to the bump edges, as in several previous analyses of bump 

dynamics in neural fields [4, 12, 19, 42, 27]. Since there are four threshold crossing points, 

analysis of the broad solution’s stability results in four corresponding eigenvalues and 

equations associated with the degrees of freedom in the stability problem (Figure 2(b)). To 

derive our linearized system whose spectrum defines the stability of bumps, we start by 

perturbing with small smooth functions, u x, t ≈ U x + ϵψ x, t  and v x, t ≈ V x + ϵϕ x, t . 

Substituting into (3.1), expanding about the stationary solution, and simplifying to first order 

we obtain the system

ψt + ψ = wee(x) ∗ H′(U(x))ψ(x, t) − wei(x) ∗ H′(V (x))ϕ(x, t) ,

(3.7a)

τϕt + ϕ = wie(x) ∗ H′(U(x))ψ(x, t) − wii(x) ∗ H′(V (x))ϕ(x, t) ,

(3.7b)

where the distributional derivatives are given:

H′ U x = 1
U′ au

δ x − au + δ x + au ,

H′ V x = 1
V ′ av

δ x − av + δ x + av .
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Assuming separability of our perturbations, ψ x, t = ψ x eλt and ϕ x, t = ϕ x eλt, and 

substituting our exponential weight functions and H′ U x  and H′ V x , we obtain the 

corresponding eigenvalue problem:

(λ + 1)ψ(x) = Aee
U′ au

e
− x − au

σee ψ au + e
− x + au

σee ψ −au − Aei
V ′ av

e
− x − av

σei ϕ av + e
− x + av

σei ϕ −av ,

(3.8a)

(τλ + 1)ϕ(x) = Aie
U′ au

e
− x − au

σie ψ au + e
− x + au

σie ψ −au − Aii
V ′ av

e
− x − av

σii ϕ av + e
− x + av

σii ϕ −av .

(3.8b)

Note, in the above, we have assumed ψ ±au ≠ 0 and ϕ ±av ≠ 0 to obtain an equation for 

the point spectrum, but taking these values to vanish would give us an equation for the 

essential spectrum which will not contribute to instabilities [13, 45]. We form a system of 

equations by evaluating the perturbation functions at the bump edges x = ± au and x = ± av

in (3.8). Values λ for which the resulting 4×4 system is singular correspond to the four 

distinct eigenvalues in the point spectrum. Forming this system, taking the determinant, and 

factoring, we find the eigenvalues are the roots of the following pair of quadratics:

τλ2 − (I + J + τB + τC)λ + (I + J)(B + C) − (E + D)(F + G),

(3.9a)

xs

τλ2 − (I − J + τB − τC)λ + (I − J)(B − C) + (E − D)(F − G),

(3.9b)

where

B = Aee
U′ au

− 1, C = Aee
U′ au

e− 2au
σee ,

D = − Aei
V ′ av

e
− av − au

σei , E = − Aei
V ′ av

e
− av + au

σei ,

F = Aie
U′ au

e
− av − au

σie , G = Aie
U′ au

e
− av + au

σie ,

I = − Aii
V ′ av

− 1, J = − Aii
V ′ av

e− 2av
σii .

Each quadratic could also be obtained by restricting the form of perturbation (scaling and 

shifting) at the interfaces (see e.g., Figure 2(d)). Scaling perturbations expand or contract 

the bump ψ au = ψ −au  and ϕ av = ϕ −av , and we obtain (3.9a) resulting in the associated 

“scale” eigenvalues (Figure 2(b))
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λscale  = I + J + τ B + C
2τ ± I + J − τ B + C 2 + 4τ E + D F + G

2τ ,

(3.10)

which are both nonzero in general. The sign of their real part determines the linear stability 

of the bumps. For shifting perturbations ψ au = − ψ −au  and ϕ av = − ϕ −av  we obtain 

(3.9b). A straightforward calculation shows I − J B − C + E − D F − G = 0, resulting in 

the zero eigenvalue (green) corresponding to the system’s translational invariance (Figure 

2(b)). Correlated shifts in the E/I bumps’ center of mass simply translate the solution along 

the real line. Such perturbations are integrated and neither grow nor decay. The nonzero shift 

eigenvalue is given by the simple formula

λ = I − J + τ B − C
τ

(3.11)

which is real and negative. Hence the bumps are stable with respect to shifts of the E and I
bump in the opposite direction.

Eigenvalues of the narrow solutions are obtained by following the same process, which is 

greatly simplified since the I population is subthreshold and perturbations of this part do not 

contribute to instabilities or enter into the point spectrum equations. We therefore investigate 

the effect of small smooth perturbations to the E population, with the nonzero part along the 

bump edges, u x, t ≈ U x + ϵψ x, t . The resulting two eigenvalues are λ1 = 0 (corresponding 

to the marginal stability of shifts) and λ2 = 2e
−2au
σee / 1 − e

−2au
σee , which is clearly positive, 

confirming that narrow solutions are always unstable (Figure 2(c)).

We identify bifurcations in the bump solutions by checking the signs of the real parts 

of each solution branch’s eigenvalues. We find two types of bifurcations. The first is a 

Hopf bifurcation (green dot, HB in Figure 2(a,b)) occurring as the firing threshold is 

reduced, destabilizing bumps in a pattern-destroying oscillation (Figure 2(e)) [42]. This 

Hopf bifurcation boundary occurs when Re   λscale  = 0, which is given by the implicit 

formula

τAee
U′ au

1 − e
−2au
σee = τ + 1 + Aii

V ′ av
1 + e

−2av
σii .

(3.12)

The second bifurcation observed is a discontinuous saddle node bifurcation (SN in Figure 

2(a)) [15,39] where the unstable narrow and marginally stable broad solutions meet. The 

peak of the narrow I population bump rises to meet the firing threshold, and the broad I
bump active region shrinks to a single point at threshold. The meeting of two linearizations 

of different discrete dimension (4 for broad, 2 for narrow) results in a discontinuous change 
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in the corresponding Jacobian matrices yielding a nonsmooth saddle node bifurcation where 

the solution branches annihilate one another (labeled “contraction instability” in Figure 

2(f)).

3.3. Bounding stability regions in parameter space.

To identify how noise degrades stable representations of parametric working memory, we 

focus on the effect of stochastic perturbations on bumps along the broad branch. Given that 

varying certain parameters can stabilize the deterministic version of (2.1), we identify how 

the bifurcation boundaries change and stable solution regions expand/contract as parameters 

are varied (Figure 3). As discussed above, stable solutions only exist if broad bumps have 

nonpositive eigenvalues associated with their linear stability.

When varying the firing rate thresholds, we find larger I thresholds, θv, expand the range 

of stable solutions (Figure 3(a)). We speculate that setting the I population firing rate 

threshold too low makes it strongly responsive to network activity perturbations, as shown 

in oscillatory instability simulations (Figure 2(e)). Varying the strengths of synapses from 

E to I and I to E populations, we also observed bumps destabilize if E to I coupling Aie

is sufficiently strong (Figure 3(b)). Such changes increase the sensitivity of the E drive to 

the I population as bumps are expanded, leading to potential I bump overcompensation as E
bumps widen, eventually silencing both bumps.

Setting firing rate thresholds equal θu = θv = θ  and varying them along with changing the 

I timescale, τ, result in a narrowing of the range of stable bumps as firing rate thresholds 

are decreased (Figure 3(c)). Specifically, as the timescale of the I population is increased, 

the system reacts more slowly to being out of equilibrium, so the E and I bumps do not 

restabilize once perturbed. For instantaneous inhibition τ 0 , such oscillatory (Hopf) 

instabilities never occur.

We also quantified the parameter ranges of stable bumps when varying the spatial scale 

of interpopulation synaptic footprints (Figure 3(d)). Stability is again largely dependent on 

the profile of E to I population synaptic connectivity; wider connectivity (high σie) yields 

an unstable region. Similar to our previous findings, broadening the E to I profile leads to 

overcompensation of the I population in response to dynamical increases in the E population 

width.

The main panels of Figure 3 assume Aii = 0, which is common in studies of (2.1) due to 

the small amplitude of such connections. We also examined small, nonzero amplitude I to I
connections Aii = 0.01, see insets in Figure 3) and found stable regions expand likely due to 

dampening of I population reactions.

4. Analysis of stochastic bump motion.

Considering stochasticity emerging from neural and synaptic variability [17], multiplicative 

noise in the neural field model (2.1) (taking ϵ > 0) causes stable bumps to wander like 

a particle subject to Brownian motion. The extent of this wandering has been linked to 
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subject response errors on delayed estimation tasks [48, 8]. We are primarily interested in 

identifying how architectural features of the E/I neural circuit impact wandering [31, 30, 

44, 32] as described by the time-dependent variance of the bumps’ center of mass. We can 

estimate this variance analytically using two different approaches. The first we refer to as the 

“strongly coupled limit” approximation, motivated by work from [31], which assumes the 

E/I bump has a single position (the E and I bumps do not stray too far from one another). 

To first order, this approximation treats the bump as wandering by pure diffusion, and so 

its stochastic motion is only characterized by a diffusion coefficient. However, the resulting 

formulas have limitations for certain parameter regimes on the timescale of interest since 

they do not consider that the bumps can drift apart. While we typically do expect the bump 

positions to separate from one another, we assume this separation is small. As we will 

show when deriving a complementary interface approximation, this separation is substantial 

enough to significantly affect the variance. One exception would be the limit in which the 

I population responds infinitely rapidly τ 0 , and so its bump’s position precisely tracks 

that of the E bump. Our second approach, the “interface-based approximation,” tracks bump 

interfaces (following threshold crossing points) [36, 14, 27]. Pairing this together with a 

weak coupling assumption as in [28] allows us to estimate the time-dependent changes in the 

distinct E and I bumps centers of mass.

4.1. Strongly coupled limit approximation.

In the strongly coupled limit, we assume solutions to (2.1) take the form of stable 

bumps with positions weakly perturbed by the same amount U x − Δu  and V x − Δv  with 

Δu = Δv = Δ. Thus, the E and I bumps are assumed to move together, and we have

u(x, t) = U(x − Δ(t)) + ϵ1/2Φ(x − Δ(t), t) + ϵΦ1(x − Δ(t), t)…,

(4.1a)

v(x, t) = V (x − Δ(t)) + ϵ1/2Ψ(x − Δ(t), t) + ϵΨ1(x − Δ(t), t)…,

(4.2b)

where Δ t  is the O ϵ1/2  position perturbation (with dΔ = O ϵ1/2 ; Φ and Ψ are, respectively, 

the leading order profile perturbations; and Φ1 and Ψ1 are, respectively, the higher-order 

profile perturbations to the E and I bumps. Substituting (4.1) and truncating (2.1) to first 

order and taking averages, we find that the stationary solutions remain the same as before. 

Moving to O ϵ1/2 , we find

dΦ
τ ⋅ dΨ = ℒ Φ

Ψ dt + ϵ−1/2dΔ t U′ x
τ ⋅ V ′ x +

U x dW u

V x dW v
,

(4.2)

where we define the linear operator

Cihak et al. Page 12

SIAM J Appl Dyn Syst. Author manuscript; available in PMC 2024 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ℒ p
q =

−p + wee * f′ U p − wei * f′ V q
−q + wie * f′ U p − wii * f′ V q .

Note that, due to translation symmetry of the noise-free system, the null space of the linear 

operator ℒ) (any vector of functions v such that ℒv = 0) is spanned by U′, V ′ . To briefly 

show this, recall the stationary solutions take the form

U x =
ℝ

wee x − y f U y dy −
ℝ

wei x − y f V y dy,
V x =

ℝ
wie x − y f U y dy −

ℝ
wii x − y f V y dy .

Differentiating with respect to x and applying integration by parts yield

U′ x   =
ℝ

wee x − y f′ U y U′ y dy −
ℝ

wei x − y f′ V y V ′ y dy,
V ′ x   =

ℝ
wie x − y f′ U y U′ y dy −

ℝ
wii x − y f′ V y V ′ y dy,

exactly the form of the functions p and q spanning the N ℒ

We ensure a bounded solution to (4.2) by requiring the inhomogeneous part to be orthogonal 

to the null space of the adjoint of the linear operator N ℒ* . There exists a single vector 

spanning N ℒ* , denoted φ1 x , φ2 x . Enforcing our conditions for bounded solutions via 

requiring the inner product of the nullspace φ1 x , φ2 x  and inhomogeneity ℎ1 x , ℎ2 x
vanishes ∫ℝ φ1 x ℎ1 x + φ2 x ℎ2 x dx = 0; we isolate the bump position increment:

dΔ t = − ϵ1/2 ℝ φ1 x U x dW u x, t + φ2 x V x dW v x, t dx
ℝ φ1 x U′ x + τV ′ x φ2 x dx .

Since the above is simply a weighted integral over the spatiotemporal noises, to first order, 

we have a Brownian stochastic differential equation (SDE) for the bump position. Given 

noise is white in time, we find that the mean over realizations is Δ t = 0, and the variance 

is

Δ t 2 = ϵ ℝ φ1 x U x ⋅ Nu x + 2Nc x + φ2 x V x ⋅ Nv x dx

ℝ φ1 x U′ x + τV ′ x φ2 x dx 2 t,

(4.3)

where

Nu x = Cu x * φ1 x U x ,
Nc x = Cc x * φ2 x V x ,
Nv x = Cv x * φ2 x V x ,

and the spatial correlation functions are defined: 

W u x, t W u y, t = Cu x − y t, W v x, t W v y, t = Cv x − y t, and W u x, t W v y, t = Cc x − y t. 
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Note, there is a weighted contribution to the linear scaling variance from both the noise of 

the E and I populations.

To calculate the nullspace of the adjoint linear operator ℒ*, we must first derive the adjoint 

using the definition based on the L2 inner product ℒv, u = v, ℒ*u , by which we find

ℒ* p
q =

−p + f′ U wee * p + wie * q
−q − f′ V wei * p + wii * q .

We rearrange the equation ℒ* φ1 x , φ2 x T = 0, so

φ1(x) = f′(U)∫
ℝ

wee(x − y)φ1(y) + wie(x − y)φ2(y) dy,

(4.4a)

φ2(x) = − f′(V )∫
ℝ

wei(x − y)φ1(y) + wii(x − y)φ2(y) dy .

(4.4b)

In the case of the Heaviside firing rate function we again can determine the distributional 

derivative of the Heaviside acting on the bump solution and obtain

φ1 x
φ2 x =

δ x + au + Aδ x − au

−ℬδ x + av + Cδ x − av
.

(4.5)

Plugging (4.5) into (4.4) and solving for the constants, we find A = − 1, C = ℬ, and 

ℬ = wei au − av − wei au + av
wie au − av − wie au + av

. Thus we find that

φ1 x
φ2 x =

δ x + au − δ x − au

−ℬ δ x + av − δ x − av
.

(4.6)

Finally, substituting (4.6) into (4.3), we have

Δ t 2 = ϵ D1 − D2 + D3

2 U′ au + ℬτ V ′ av
2 t,

(4.7)

where
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D1   = θu Cu 0 − Cu 2au ,
D2   = 2ℬ θuθv Cc au − av − Cc au + av ,

D3   = θvℬ2 Cv 0 − Cv 2av .

The contributions arising due to noise correlations within the E and I populations, D1 and 

D3, are positive. In contrast, the diffusion contribution from the cross-population correlation 

term Cc is negative assuming the correlation function is monotone decreasing. Thus, noise 

correlations between the E and I populations reduce wandering. Here, we assume Cc ≡ 0 .
Later, we discuss the effects of nonzero correlated noise components across the E and I
populations and compare these theoretical results to numerical simulations.

4.2. Interface-based approximation theory.

Complementing our strongly coupled limit approximation of bump wandering, we also 

derive interface equations that approximate the stochastic dynamics of the bump in response 

to multiplicative noise in (2.1). While the strongly coupled limit approximation assumes the 

E and I bumps move as one, numerical simulations reveal that this is not the case (see Figure 

4(a,c)). For instance, the I bump tends to be more susceptible to profile deformations and 

may wander more, making the strongly coupled limit less valid. Higher-order corrections of 

the variance estimate can be obtained using interface theory to develop nonlinearly coupled 

Langevin equations for estimating the E and I bumps’ coupled centers of mass.

Interface theory for bumps in neural fields tracks the level sets of neural activity variables 

where firing rate thresholds are crossed. This approach was originally pioneered in the 

case of noiseless single-bump neural field models [27] and then subsequently for traveling 

fronts in inhomogeneous neural fields [11], as well as solutions in planar neural fields [14]. 

More recently, these approaches were adapted to obtain higher-order approximations for the 

timescale of front initiation [18], as well as the stochastic motion of multiple interacting 

bumps [36]. Here, we further adapt this work [36] to account for the motion of separate 

bumps in the E and I neural populations of (2.1).

As defined previously, the active regions of the E and I bumps are x1 t , x2 t  and x3 t , x4 t , 

respectively. Without noise perturbations, we would expect these interfaces to remain 

constant for the equilibrium bump solution, but noise perturbs these values, so they wander 

over time. However, unlike in the strongly coupled limit, we do not expect this wandering 

to be pure Brownian motion but rather the result of a nonlinearly coupled system of SDEs. 

To obtain these SDEs, we start by writing the level set condition for the interfaces in each 

neural population (E and I):

u x1 t , t = u x2 t , t = θu, v x3 t , t = v x4 t , t = θv,

(4.8)

where θu and θv are the firing rate thresholds of the E and I populations. For a Heaviside firing 

rate, we substitute (4.8) into (2.1) and obtain
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du = −u +∫
x1(t)

x2(t)

wee(x − y)dy −∫
x3(t)

x4(t)

wei(x − y)dy dt + ϵ
1
2dW e,

(4.9a)

τdv = −v +∫
x1(t)

x2(t)

wie(x − y)dy −∫
x3(t)

x4(t)

wii(x − y)dy dt + ϵ
1
2dW i .

(4.9b)

Differentiating (4.8), we obtain consistency equations for the interfaces xj t :

∂xu xj t , t dxj + du xj t , t = 0, j = 1,2;
∂xv xj t , t dxj + dv xj t , t = 0, j = 3,4 .

We then approximate the above exact evolution equations by assuming the spatial gradients 

at the interfaces remain constant and odd symmetric throughout the evolution motivated by 

the form of the strongly coupled limit expansion:

U′ au   ≡ αu t ≈ ∂u x1 t , t
∂x = − ∂u x2 t , t

∂x ,

V ′ av   ≡ αv t ≈ ∂v x3 t , t
∂x = − ∂v x4 t , t

∂x .

Subsequently, we drop O ϵ  terms to obtain the relations

du x1(t), t = − αudx1(t),

(4.10a)

du x2(t), t = αudx2(t),

(4.10b)

dv x3(t), t = − αvdx3(t),

(4.10c)

dv x4(t), t = αvdx4(t) .

(4.10d)
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Plugging the formulas in (4.10) into (4.9), we obtain the following system of nonlinear 

Langevin equations describing the stochastic evolution of the interfaces:

dx1 = − 1
αu

−θu + Wee x1; x1, x2 − Wei x1; x3, x4 dt + ϵ
1
2dW e x1, t ,

(4.11a)

dx2 = 1
αu

−θu + Wee x2; x1, x2 − Wei x2; x3, x4 dt + ϵ
1
2dW e x2, t ,

(4.11b)

τdx3 = − 1
αv

−θv + Wie x3; x1, x2 − Wii x3; x3, x4 dt + ϵ
1
2dW i x3, t ,

(4.11c)

τdx4 = 1
αv

−θv + Wie x4; x1, x2 − Wii x4; x3, x4 dt + ϵ
1
2dW i x4, t ,

(4.11d)

where the coupling functions are given by the integrals over the active regions

Wjk x; xa, xb =
xa

xb

wjk x − y dy .

To derive estimates for the evolution of the centers of mass of the E and I bumps, we apply 

the definitions Δu = x1 + x2 /2 and Δv = x3 + x4 /2 from (2.4) to (4.11) and combine equations 

to obtain

dΔu = 1
2αu

−2Wee x1; x1, x2 + Wei x1; x3, x4 − Wei x2; x3, x4 dt+ ϵθu dW u x2, t − dW u x1, t ,

(4.12a)

dΔv = 1
2ταv

2Wii x3; x3, x4 + Wie x4; x1, x2 − Wie x3; x1, x2 dt+ ϵθv dW v x4, t − dW v x3, t .

(4.12b)

Assuming position perturbations remain small we approximate 

x1 = Δu − au, x2 = Δu + au, x3 = Δv − av, and x4 = Δv + av with Δu, Δv = O ϵ1/2 . Plugging in these 

approximations, linearizing about the stationary solutions, and simplifying yield the 

multivariate OrnsteinUhlenbeck (OU) process:
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dΔu(t) = 1
αu

Δu − Δv ⋅ wei au − av − wei au + av dt+ ϵθu dW u Δu + au, t − dW u Δu − au, t ,

(4.13a)

τdΔv(t) = 1
αv

Δv − Δu ⋅ wie au + av − wie au − av dt+ ϵθv dW v Δv + av, t − dW v Δv − av, t .

(4.13b)

Note, wei and wie are even and monotonic in distance, so we define the positive quantities

Mu   = αu
−1 ⋅ wei au − av − wei au + av > 0,

Mv   = τ−1αv
−1 ⋅ wie au − av − wie au + av > 0 .

Then we have the matrix-vector representation of the multivariate OU process, 

dΔ = KΔdt + dW, where Δ = Δu

Δv
, K = Mu − Mu

Mv − Mv
 is the coupling matrix, and

dW =

ϵθu
2αu

dW u Δu + au, t − dW u Δu − au, t

ϵθv
2ταv

dW v Δv + av, t − dW v Δv − av, t

is the correlated Wiener process noise. Following methods for solving linear SDEs [23], we 

can determine the mean and variance of Δu and Δv to obtain estimates of the diffusion of each 

population. First we diagonalize K:

K = 1
Mv − Mu

1 Mu

1 Mv

0 0
0 − Mv − Mu

−Mv Mu

−1 1
.

Thus our eigenvalues are λ1, 2 = 0, − Mv − Mu , and the eigenvectors are v1 = (1, 1)T  and 

v2 = Mu, Mv
T  respectively. Note, this implies that there is a marginally stable direction 

along perturbations of the bump that move both the E and I bumps the same amount, 

and there is an attractive (stable) direction for perturbations that move the E and I bumps 

differently. Similar results have been found for coupled lateral I layers for which each layer 

individually supports a self-sustaining bump in the absence of cross-population coupling 

[20, 28, 6]. The mean is given by Δ = eKtΔ 0 , and so

λ1,2 = 0, − Mv − Mu

Δu

Δv
= 1

Mv − Mu

MvΔv 0 − MuΔu 0 − Mu Δu 0 − Δv 0 e− Mv − Mu t

MvΔv 0 − MuΔu 0 + Mv Δv 0 − Δu 0 e− Mv − Mu t .
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Next we seek the covariance Δ t ΔT t = ∫0
t eK t − s DeKT t − s ds, where the covariance 

matrix of the noise term D is found to be

D =
Du Dc

Dc Dv

(4.14)

with

Du = ϵθu

2αu
2 Cu 0 − Cu 2au ,

Dv = ϵθv

2τ2αv
2

Cv 0 − Cv 2av ,

Dc = ϵ θuθv
4ταuαv

Cc Δu − Δv + au − av − Cc Δu − Δv + au + av −Cc Δu − Δv − au − av + Cc Δu − Δv − au + av .

Multiplying out eK t − s DeKT t − s  and then integrating yield our predictions of E and I
bump center of mass variance:

Δu(t)2 = DvMu
2 − 2DcMuMv + DuMv

2

Mv − Mu
2 t − 2e− Mv − Mu t − 1

Mv − Mu
3 DcMu

2 − DvMu
2 + DcMuMv − DuMuMv

− Mu
2 e−2 Mv − Mu t − 1

2 Mv − Mu
3 Du + Dv − 2Dc ,

(4.15a)

Δv(t)2 = DvMu
2 − 2DcMuMv + DuMv

2

Mv − Mu
2 t − 2e− Mv − Mu t − 1

Mv − Mu
3 DcMv

2 − DuMv
2 + DcMuMv − DvMuMv

− Mv
2 e−2 Mv − Mu t − 1

2 Mv − Mu
3 Du + Dv − 2Dc .

(4.15b)

In the limit as t ∞ we find that both variances are dominated by the term

Δu t 2 = Δv t 2 = DvMu
2 − 2DcMuMv + DuMv

2

Mv − Mu
2 t .

which is essentially an estimate of the variance derived from assuming the E and I bumps are 

co-located as in the strongly coupled limit approximation. Relating these two routes to one 

another, we find

ℬ = wei au − av − wei au + av
wie au − av − wie au + av

= αuMu
ταvMv

.
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Using this relation and plugging in the expressions for Du, Dv, and Dc we find that we obtain 

the diffusion coefficient expression from the strongly coupled limit prediction (4.7). At short 

times, the interface-based approximation (4.15), has contributions based on the interactions 

of the E and I bumps, which decay over time.

The main difference between the strongly coupled limit and interface-based methods is 

that the bumps are allowed to drift apart in the interface-based method, which allows us 

to separately estimate the I bump’s variance. The most general form of the approximation 

can further describe stochastic widening and contraction of the bumps, described by a 

full fourdimensional and nonlinear approximation. Even collapsing to centers of mass 

approximations, using the interface-based interactions as a starting point is more accurate 

than the strongly coupled limit, as we will subsequently show. On the other hand, the 

strongly coupled limit is more straightforward to obtain, and there are fewer arbitrary 

assumptions we must make (e.g., the static gradient approximation). Yet, the interface-based 

method allows us to obtain greater precision by using the fully nonlinear approximation over 

all the interfaces, xj, making it a better metric for variance predictions.

4.3. Variance predictions and simulations comparison.

To validate our strongly coupled limit and interface-based predictions of bump variance, we 

ran stochastic simulations of (2.1) using spatiotemporal noises to the E and I populations 

that are not correlated between populations; Cc x ≡ 0. As firing rate thresholds are increased 

(Figure 4(a,b)), both our theoretical predictions and the averaged numerical simulations 

suggest that variance changes nonmonotonically. This stands in stark contrast to results 

from previous studies, which found that the effective diffusion of bumps generally tends 

to increase monotonically with the firing threshold for single-population lateral I networks 

[31]. Interestingly, we find that the variance peaks at the precise point in parameter space 

where the noise-free E and I bumps have the same width (gold circles, Figure 4(a,b)).

Moreover, we see that the strongly coupled limit approximation adequately captures the 

effective motion of the E bump but not the I bump, which tends to stray further (Figure 4(a)). 

In contrast, the interface-based approximation is able to capture both the distinct I and E
bumps’ variance by accounting for the stochastic dynamics of the I bump being perturbed 

away from the E bumps center of mass (Figure 4(b)).

The dynamics of the I bump vary with firing rate thresholds and timescales. At higher 

firing rate thresholds, the I bump wanders more than the E bump, and the two bumps 

tend to be more weakly coupled. As the timescale increases, the I bumps center of mass 

relaxes to wander slightly away from that of the E bump, while the E bumps variance scales 

linearly in time like pure diffusion (Figure 4(c,d)). Since the I bump is sustained by the E
population, the I bump appears to weakly track the E bump’s position (see Figure A.1 for 

single simulation of such activity), which can be estimated by OU processes [31,6]. Hence, 

the I bump’s position variance can be higher than that of the E population.

To further analyze how the variance in bump position depends on changes in parameters, 

we determined how it changes along several different parameter axes (Figure 5). For 
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simplicity, we studied the variations in the E bump’s position variance and compared it 

to the interfacebased approximation. We started by varying the amplitude of interpopulation 

connectivity, either E I or I E. Weakening either of these projection amplitudes tended 

to increase bump variance (Figure 5(a,b)). Weakening cross-population connectivity leads to 

less common movement of the E/I bumps. Thus, the bumps are more weakly stable to noise 

perturbations and reequilibrate more slowly, ultimately leading to more wandering.

Aside from nonmonotonicity arising as a function of the firing rate threshold, we also 

observe that narrowing the I bump’s synaptic profile (varying the spatial extent of the 

I projections) yields a peak in variance (Figure 5(c)) which may be due to a greater 

susceptibility to noise perturbations when the width of I to E projections σei = σii is decreased, 

resulting in a peak of variance. For smaller σei = σii, we speculate that the equilibrium E bump 

width is narrower and can be more easily stabilized by I feedback. Note that the simulations 

do not match the peaks as well as in other panels likely due to approximations made in the 

interface-based approach, though the trends are still largely captured.

We also observe that lower I firing rate thresholds lead to bumps that are more stabilized 

to noise perturbations (Figure 5(d)). However, the largest peaks in bump position variance 

occur where E and I bump half-widths are most similar, i.e., where E (I) threshold crossing 

gradients are the lowest (highest) (Figure A.2).

These results assumed I to I connections are nonexistent Aii = 0. However, we found that 

even low amounts of I I connectivity, Aii = 0.01, decreased bump variance (Figure A.3).

4.4. Correlated versus uncorrelated noise.

The impact of noise correlations on neural circuit codes for delayed estimates is varied. 

Correlated noise within a neural subpopulation can improve working memory coding 

[38], but cross-population noise correlations can lead to an increase in bump attractor 

wandering that degrades memory [28]. We find in the subsequent investigation that cross-

population noise correlations between E and I populations lead to less bump wandering than 

uncorrelated noise.

Our aim is to explore the system when there is cross-population noise (corresponding to the 

case where Cc ≠ 0). To obtain greater control over the extent of correlated noise we opt to 

express our spatiotemporal noise sources in the E and I populations as

dW u, v x, t 1 − c2dW u, v x, t + cdW c x, t ,

(4.16)

where the independent spatially correlated and temporally white noise process dW c

represents a correlated stochastic component in system (2.1). We define these three noise 

terms the same as before though now we have nonzero cross-population spatial correlation 

Cc x − y t = W c x, t W c y, t . The correlation parameter c ∈ 0,1  such that c = 0 implies 

uncorrelated noise and c = 1 fully correlated noise. Correlating noise across the E and I
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populations drastically alters our variance predictions (Figures 6(a) and A.4), with increased 

correlated noise decreasing the predicted and simulated bump variances (Figure 6(b)).

We analyze the response of the E/I bump structure to correlated as opposed to uncorrelated 

shifts. Correlated shifts translated both bumps centers due to translational invariance of the 

system (Figure 6(c)). Uncorrelated shifts move the E and I bumps in opposite directions 

but then show an attraction of the I bump to the E bump, while the E bump is repulsed 

by the I bump leading the I bump to “catch up” to the shifted E bump, and the E bump 

moves further away from its original position (Figure 6(d)). Thus, uncorrelated shifts lead 

to additional drift of the bump and higher variance. This stands in stark contrast to the 

uncorrelated/correlated perturbation analysis carried out for two coupled identical lateral I
layers [28], in which opposing perturbations of two weakly connected bumps are effectively 

canceled by the attractive force between the bumps.

We also considered the effects of two small additive Gaussian inputs, more akin to the 

noisy kicks arising in stochastic simulations. When the position of these kicks was strongly 

correlated (Figure 6(e); i.e., the same application to each population), the E and I bumps 

stayed together and relaxed back to their original position. Uncorrelated kicks led to 

different perturbations in the position and profile of the E and I bumps (e.g., Figure 6(f)), 

with a relaxation where the I bump was attracted the E bump, but the E bump was repelled 

by the I bump.

Overall, we found that the separate E/I network model shows parametrically dependent 

bump wandering. First, bump position variance depends strongly on the relative widths of 

the E and I bumps, and relaxation dynamics from noise perturbations can cause the I bump to 

stray from the E bump. Second, nonmonotonic variance trends arise with respect to network 

connectivity amplitude and spatial scale parameters. Lastly, increases in interpopulation 

noise correlations reduce bump wandering by eliminating the relaxation effects that would 

otherwise extend the effects of stochastic perturbations on the E and I bumps.

5. Discussion.

Stochastic bump attractor models have become a useful tool for characterizing variability 

of the systems that code for memory-based estimates of continuous variables [8,48,3,34]. 

As we show here, it is important to appreciate the nuances of E/I architecture and noise 

correlations [24] when making predictions about continuous variable estimates. Our study 

has provided a suite of new predictions concerning how interpopulation connectivity 

amplitude and spatial profiles impact bump wandering. To obtain tractable expressions 

for bump position variance predictions, one form of our approximations relied upon the 

marginal stability of solutions to the noise-free system. Prior to performing our variance 

estimates, we observed that, along several parameter axes, we obtain nonmonotonic changes 

in half-widths and two types of instabilities: an oscillatory (Hopf) instability located in 

the red unstable regions and a contraction instability located at discontinuous saddle nodes 

(Figure 3). Partial versions of the results have been observed previously in E/I population 

models [4]. We also found that stability of solutions was significantly affected by nonzero 
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I I synaptic strength (compare Figure 3 and insets). Thus, even “weak” I I connectivity 

can strongly affect the linearized dynamics of stationary bump solutions.

Our asymptotic analysis aimed at predicting the stochastic motion of bumps subject to noise 

moved beyond the standard single center-of-mass approximation often used to estimate the 

stochastic motion of bumps [37,8,31]. While a single center-of-mass approximation works 

reasonably well across some parts of parameter space, at high firing rate threshold, close to 

the discontinuous saddle node bifurcation, we find this breaks down and is better captured 

by a stochastic interface-based approximation previously developed in [36]. In particular, the 

I bump diffuses more than the E bump, which is well captured by the nonlinear Langevin 

approximation derived by approximating the motion of bump interfaces. The amplitude 

of bump wandering changes nonmonotonically in most network parameters, due to the 

change in bump half-width amplitudes, well captured by our interface-based approximation. 

Notably, interpopulation noise correlations reduced bump wandering. Uncoordinated E
and I bump motion, arising in networks with uncorrelated interpopulation noise, leads to 

additional bump drift during relaxation periods while the I bump “chased” the E bump.

Note, our variance approximations are relatively accurate over the wide range of parameters 

we chose to analyze, but there are features of the full nonlinear system that can depart 

significantly from our basic assumptions, especially those involving linearizations. One rare 

but possible source of discrepancy between our asymptotic approximations and the full 

system could arise from the emergence of multiple distinct active regions in the E and/or I
populations. Such a situation could emerge from (a) large and rare noise perturbations that 

activate a distinct region of the E and/or I population away from the bump and (b) large and 

rare noise perturbations that split bumps. While both are possible, they are extremely rare 

and so do not have a substantial impact on the numerically estimated variance. However, 

we could account for such splitting, nucleation, and annihilation events by extending our 

approximations to incorporate the appearance and merging of interfaces as in [18,36]. 

Moreover, we could account for such events in our numerical estimates with a more flexible 

definition of bumps which accounts for these transient events. Another approximation made 

in both the strong coupling limit and interface approximation is to assume the gradient of the 

activity variables at the interfaces is constant, though this is likely not true as shown in [18]. 

Nevertheless, we typically expect any deviation from this constant gradient value to be small 

and to not substantially impact the stochastic dynamics of the bump.

There are several other possible extensions of our analysis of bump stochastic motion 

in the E/I network. It is important to note that we made multiple approximations to 

collapse our stochastically evolving bump interface equations to a pair of SDEs describing 

the coupling between the E and I bump. Alternatively, we could have retained a higher-

order approximation of the bump interface gradients in order to obtain a more accurate 

approximation [18]. Recall, the interface-based approximation begins as a fully nonlinear 

description and can be used to describe dynamics near the oscillatory (Hopf) bifurcation 

or the discontinuous saddle node. Alternatively, such near-bifurcation approximations could 

also be determined by choosing a scaling for a bifurcation parameter similar to the weak 

noise amplitude as in [33, 29]. Such approaches could also describe the stochastic dynamics 
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of traveling pulses that emerge beyond bifurcations whereby bumps begin to drift at a 

constant speed due to the negative feedback brought about by the I population.

Our analysis of bump position variance across multiple parametric axes helped identify a 

number of ways to reduce bump wandering via network architectural tuning. We largely 

chose parameters roughly assuming 80% E and 20% I neurons present in the prefrontal 

cortex [1], but we could certainly explore broader ranges of parameter space beyond this 

typical fraction. Another natural extension for this work would be to consider more complex 

mechanisms for synaptic tuning, such as short-term plasticity in the E and I populations, 

to reduce the propensity for bumps to wander. Recent studies in mean field reductions 

of spiking networks have demonstrated that short-term facilitation (depression) on the E
population with global inhibition tends to decrease (increase) bump drift and diffusion [44], 

ultimately improving parametric working memory. Extensions of our model and present 

analysis could be used to further investigate how the introduction of different forms of 

short-term plasticity into either the E or I population would impact bump wandering. Not 

only could short-term plasticity reduce the effect of stochastic perturbations on bumps but 

could also make them more robust to distraction inputs [40].

Finally, our investigation into the role of cross-population noise correlations raises questions 

regarding the coding advantages brought about by noise correlations. Noise correlations 

can increase, decrease, or not affect the amount of information encoded by a neural circuit 

[2]. Most of such results have been derived in network models devoid of spatial structure. 

However, recently work has demonstrated how disruptive broadly correlated spatiotemporal 

noise can be to information transmission in spatially organized neural circuits [26]. Our 

work adds to this ongoing line of inquiry by demonstrating variability-reducing mechanisms 

possible via increased correlation in noise between E and I populations. Our bump position 

variance predictions and model are sensitive to changes in the structure of noise. An 

improved understanding of the precise form and structure of noise in prefrontal cortex 

and other areas [41] could help further constrain neural circuit models of memory-encoding 

persistent activity. Mechanistic models that connect synaptic architecture, psychophysical 

performance, and stochastic and spatiotemporal dynamics, as well as the rich structure 

of internal and external noise, can help us further understand the dynamical principles 

underlying information coding in the brain.

Acknowledgment.

We thank Sage Shaw for assistance with Python code development.

Funding:

This work was funded by National Institutes of Health grants R01-MH115557-01 and R01-EB029847-01, as well 
as NSF grant DMS-1853630.

Cihak et al. Page 24

SIAM J Appl Dyn Syst. Author manuscript; available in PMC 2024 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Appendix

Appendix

Figure A.1. 
Single simulation of E and I bump wandering. The noise amplitude is ϵ = 0.001. The I
bump wanders much further in certain parameter regimes. Synaptic weight strength Aii = 0; 

and firing rate thresholds θu = 0.42, and θv = 0.47. (a) Initial and final profiles of E and I
bumps. (b) E and I center of mass positions evolving over time. The I bump generally 

follows E wandering but also additionally wanders more wildly about E. (c) Bumps 

wandering over time. Traces represent the center of mass (green) and the E /I interfaces 

(red/blue, respectively). Colorscales represent the profile amplitude of u x, t) and v x, t . 

Other parameters are as in Table 1.
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Figure A.2. 
Isolating factors affecting variance of bumps’ wandering. Synaptic strength Aii = 0.01. (a) 

Colorscale represents the difference in relative E and I halfwidths for varying θu and θv. 

Bump position variances are maximized when au = av. (b) Colorscale of E bump position 

variance for ϵ = 0.001 amplitude noise. The black line bounds the unstable region. (c, d) 

E, I bump threshold crossing gradient (U ′ au ∣  and V ′ av  as a function of firing rate 

thresholds. Note, the E variance is largest when the threshold crossing gradient for E (I) 

is low (high). Slices further taken through these plots correspond to predictions shown in 

Figure 5(d).
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Figure A.3. 
Predicted and simulated center of mass variances. Here, we take I to I connectivity Aii = 0.01
and noise amplitude ϵ = 0.001. (a) Bump position variance as a function of Aei = A varies, 

and θu = θv = θ is varied. The inset is a closer view of the variance peaks. (b) Variance as 

a function of Aie = A as θu = θv = θ is also varied. (c) Variance as a function of spatial scale 

σei = σii and varying σie. We fix θu = θv = 0.3. The inset is a closer view of the variance peaks. 

(d) Variance as a function of θv as θu is varied. Parameters not mentioned are as defined in 

Table 1.
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Figure A.4. 
Predicted bump position variances for correlated and uncorrelated noise. Noise amplitude is 

set to ϵ = 0.001, and we take Aii = 0. (a) Bump position variance as a function of θu = θv = θ. 

(b) Bump position variance as a function Aei = A with θu = θv = 0.25. (c) θu = θv = 0.2 and 

σie = 3. Bump position variance as a function of σei = σii. (d) Bump position variance as a 

function of θv. We take θu = 0.2. Other parameters are as in Table 1.
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Figure 1. 
Independence of excitatory and inhibitory bumps. (a) Model schematic with separate E and 

I populations and the synaptic connections between them. Note the actual model (2.1) lies 

on a continuum with noise posed directly at the continuum limit. (b) An example pair of 

E and I bump profiles with firing rate thresholds θu = 0.35 and Aii = 0. (c) Example plot of 

solution half-widths as thresholds are varied, obtained by numerically solving the threshold 

conditions (3.4), for au and av. The particular half-width solution from panel B is identified 

by the corresponding dots. (d) Example bumps from panel B wandering over time with 

noise amplitude ϵ = 0.002. Traces represent the center of mass (green) and the E / I interfaces 

(red/blue, respectively). Colorscales represent the profile amplitude of u x, t  and v x, t . 

The centers of mass Δu and Δv are computed using the formula (2.4), after the interfaces 

xj t j = 1,2, 3,4  are identified numerically. Other parameters are as in Table 1.
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Figure 2. 
Half-widths of bump solutions and linear stability. (a) Broad/narrow half-width solutions a 

and av as a function of firing rate threshold θu = θv = θ. There is a subcritical Hopf bifurcation 

(HB, green dots) in the broad solutions and a semi-stable discontinuous saddle node 

bifurcation (SN, white dots) where the narrow and broad solutions meet. The gold circle 

identifies where the E/I bump half-widths exchange size ordering (3.4). Eigenvalues are 

plotted in association with stability of the (b) broad and (c) narrow solutions. (d) Examples 

of four perturbation types related to the scale and shift broad solution eigenvalues. (e) An 

example of an unstable broad solution destabilized via the oscillatory instability emerging 

from the subcritical Hopf bifurcation. θu = θv = 0.1. The left panels represent the E bump and 

the right panels the I bump. (f) A perturbed narrow (unstable) bump collapsing near the SN, 

where the E bump of the broad and narrow solutions have nearly the same width. Threshold 

parameters were set near the discontinuous SN, θu = θv = 0.4996, and a small perturbation 

was applied to the initial bump-like solutions causing solutions to become unstable. The left 

panels represent the E bump and the right panels the I bump. The I-I connectivity Aii = 0 in 

all. Other parameters are as in Table 1.
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Figure 3. 
Bump stability/instability across parameter space. Main panels take Aii = 0 and insets take 

Aii = 0.01. In all plots, blue regions indicate parameters for which a stable bump exists, red 

regions are where all bumps are unstable. Black boundaries identify where Hopf bifurcations 

occur. White regions are where no bump solutions exist. (a) Stability as the firing rate 

thresholds θ are varied. (b) Stability regions with varied E /I interaction amplitude Aei

and Aie . θu = θv = 0.25. (c) Stability regions with varied inhibition timescale τ and firing 

thresholds θu = θv = θ. (d) Stability regions with varied E /I interaction spatial extent σei = σii

and σie . θu = θv = 0.15. Other parameters are as in Table 1.
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Figure 4. 
Variance predictions and simulations. Numerical simulations of (2.1) were run using an 

approximate version of the interface equations derived from (4.9). Euler-Maruyama was 

used for time-stepping with noise amplitude ϵ = 0.001, the spatial interval was truncated to 

− 3π, 3π  with steps dx = 3π
1000 , timesteps are dt = 1 ms, and variances were calculated by 

marginalizing over 104 realizations per point. (a) The strongly coupled limit prediction and 

corresponding simulations over 1 second. Although this prediction works reasonably well 

for small thresholds θ, it breaks down for higher thresholds where the I bump center of mass 

differs considerably, e.g., θu + 0.05 = θv = 0.45. Note the kink and change in the variance trend 

when θ passes through a value at which the half-widths au, a exchange order (gold circle). 

Insets show single E (top panel) and I (lower panel) bump simulations at indicated threshold 

values. x is the horizontal axis and t in seconds is the vertical axis. The E(I) bump interfaces 

at each step are shown by the red(blue) lines and the bump centers are represented by the 
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green lines. (b) When comparing to estimates of variance made using the interface based 

approach, the theory more closely tracks the simulation results at higher firing rate threshold 

θ. (c) The strongly coupled limit predicts pure diffusion and linearly scaling variance, which 

underestimates variance calculated from simulations at θu + 0.05 = θv = 0.45. (d) The interface 

based estimate tracks the drifting apart of the E and I bump, leading to more accurate 

variance predictions when θu + 0.05 = θv = 0.45. All other parameters are as in Table 1.
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Figure 5. 
Excitatory bump position variances as a function of network connectivity, spatial extent, 

and firing rate threshold. Noise amplitude ϵ = 0.001 throughout. (a) Bump position 

variance mostly decreases as connectivity amplitude Aei is increased. Other parameters are 

Aii = 0, τ = 1, and θu = θv = θ. Inset zooms in on the plot at lower Aei values. (b) Bump position 

variance mostly decreases as Aie is increased. Other parameters are Aii = 0, τ = 1 . θu = θv = θ. 

(c) Bump position variance changes nonmonotonically as the spatial extent of the I
projections σei = σii) are increased. Other parameters are Aii = 0, θu = θv = 0.3, and τ = 1 . σie

is varied. Inset zooms in on variance peaks. (d) Bump position variance primarily increases 

with I population threshold θv. Other parameters are Aii = 0 and τ = 1. We also vary firing 

threshold θu. Other parameters are as in Table 1.
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Figure 6. 
Effects of interpopulation noise correlations. (a) Bump position variance as a function 

of firing rate threshold θu = θv = θ for a network with completely uncorrelated c = 0  or 

completely correlated c = 1  interpopulation noise. Interface-based theory (solid and dashed 

lines) agrees well with numerical simulations. (b) Bump position variance for fixed firing 

rate threshold θu = θv = 0.45 as a function of interpopulation noise correlations c. (c) Bump 

profile evolution in the absence of noise for firing rate threshold θu = θv = 0.25 given a 

correlated center shift perturbation at t = 0. (d) Bump profile evolution in the absence of 

noise over 1 second for firing rate threshold θu = θv = 0.25 given an uncorrelated center shift 

perturbation at t = 0. (e) Bump profile evolution for firing threshold θu = θv = 0.25 given two 

correlated “kicks” (0.1 amplitude Gaussian bumps shifted by random amount) applied to 

each population. Insets show each kick profile (black) applied to the E (red) and I (blue) 

bump profiles, with the left and right insets being the first and second kicks, respectively. 
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(f) Bump profile evolution for firing rate threshold θu = θv = 0.25 with two uncorrelated kicks 

(0.1 amplitude Gaussian bumps shifted by random amount) applied to each population. 

Insets show each E kick (dark red) and I kick (dark blue) profile applied to the E (red) 

and I (blue) bump profiles, with the left and right insets being the first and second kicks, 

respectively. Other parameters are Aii = 0, ϵ = 0.001, and otherwise as in Table 1.
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Table 1

Model parameters for (2.1).

Parameter Aee Aei, Aie Aii σee σei, σie, σii τ
Definition E-E strength I-E strength I-I strength E-E spatial scale Other spatial scales I time constant

Value 0.5 0.15 0 or 0.01 1 2 1

Parameter θu θv ϵ
Definition E firing threshold I firing threshold Noise amplitude

Value [0,0.5] [0,0.5] 0.001 or 0.002
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