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Abstract

Analyzing the dynamic changes of cellular morphology is important for understanding the various 

functions and characteristics of live cells, including stem cells and metastatic cancer cells. To 

this end, we need to track all points on the highly deformable cellular contour in every frame 

of live cell video. Local shapes and textures on the contour are not evident, and their motions 

are complex, often with expansion and contraction of local contour features. The prior arts for 

optical flow or deep point set tracking are unsuited due to the fluidity of cells, and previous deep 

contour tracking does not consider point correspondence. We propose the first deep learning-based 

tracking of cellular (or more generally viscoelastic materials) contours with point correspondence 

by fusing dense representation between two contours with cross attention. Since it is impractical 

to manually label dense tracking points on the contour, unsupervised learning comprised of 

the mechanical and cyclical consistency losses is proposed to train our contour tracker. The 

mechanical loss forcing the points to move perpendicular to the contour effectively helps out. 

For quantitative evaluation, we labeled sparse tracking points along the contour of live cells 

from two live cell datasets taken with phase contrast and confocal fluorescence microscopes. Our 

contour tracker quantitatively outperforms compared methods and produces qualitatively more 

favorable results. Our code and data are publicly available at https://github.com/JunbongJang/

contour-tracking/

1. Introduction

During cell migration, cells change their morphology by expanding or contracting their 

plasma membranes continuously like viscoelastic materials [21]. The dynamic change 

in the morphology of a live cell is called cellular morphodynamics and ranges from 

cellular to the subcellular movement of contour at varying spatiotemporal scales. While 

cellular morphodynamics plays a vital role in angiogenesis, immune response, stem cell 

differentiation, and cancer invasiveness [6, 17], it is challenging to understand the various 
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functions of cellular morphodynamics because its uncharacterized heterogeneity could mask 

crucial mechanistic details. As an initial step to understanding cellular morphodynamics, 

cellular morphodynamics is quantified by tracking every point along the cellular contour 

(contour tracking) and estimating their velocity [12, 13, 21]. Then, quantification of 

cellular morphodynamics is further processed by other downstream machine learning 

tasks to characterize the drug-sensitive morphodynamic phenotypes with distinct molecular 

mechanisms [6,20,36]. Because contour tracking (e.g., Fig. 1) is the important first step, the 

tracking accuracy is crucial in this live cell analysis.

There are two main difficulties involved with contour tracking of a live cell. First, the live 

cell’s contour exhibits visual features that can be difficult to distinguish by human eyes, 

meaning that a pixel and its neighboring pixels have similar color values or features. Optical 

flow [14, 31] can track every pixel in the current frame by assuming that the corresponding 

pixel in the next frame will have the same distinct feature, but this assumption is not 

sufficient to find corresponding pixels given cellular visual features. Second, the expansion 

and contraction of the cellular contour change the total number of tracking points due to one 

point splitting into many points or many points converging into one. PoST [24] tracks a fixed 

number of a sparse set of points that cannot accurately represent the fluctuating shape of the 

cellular contour. Other deep contour tracking or video segmentation methods [10, 27, 39] do 

not provide dense point-to-point correspondence information between a contour and its next 

contour.

Previous cellular contour tracking method (mechanical model) [21] evades the first problem 

by taking the segmentation of the cell body as inputs instead of raw images. Then, it finds 

the dense correspondences of all points between two contours by minimizing the normal 

torsion force and linear spring force with the Marquard-Levenberg algorithm [23]. However, 

the mechanical model has limited accuracy because it does not consider visual features in 

raw images. Also, its linear spring force which keeps every distance between points the 

same is less effective during the expansion and contraction of the cell, as shown in our 

experiments (see Tab. 1).

Therefore, we present a deep learning-based contour tracker that can overcome these 

difficulties. Our contour tracker is comprised of a feature encoder, two cross attentions 

[35], and a fully connected neural network (FCNN) for offset regression, as shown in Fig. 

2. Given two consecutive images and their contours represented as a sequence of points, 

our contour tracker encodes the visual features of two images and samples their feature at 

the location of contours. The sampling makes our contour tracker focus on contour features 

and reduces the noise from irrelevant features unlike optical flow [14]. The cross attention 

[35] fuses the sampled features from two contours globally and locally and regresses 

the offset for each contour point of the first frame. To obtain the dense point-to-point 

correspondences between the current and the next contours, offset points from the current 

contour are matched with the closest contour points in the next frame. In every frame, some 

contour points merge due to contraction, so new contour points emerge in the next frame 

as shown in Fig. 1. With dense point-to-point correspondences, new contour points in the 

next contour are also tracked. The proposed architectural design achieves the best accuracy 
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among variants, including circular convolutions [26], and correspondence matrix [4]. To the 

best of our knowledge, this is the first deep learning-based contour tracking with dense 

point-to-point correspondences for live cells.

In this contour tracking, supervised learning is not feasible because it is difficult to label 

every point of the contour manually. Instead, we propose to train our contour tracker solely 

by unsupervised learning comprised of mechanical and cycle consistency losses. Inspired 

by the mechanical model [21] that minimizes the normal torsion and linear spring force, 

we introduce the mechanical losses to end-to-end learning. The mechanical-normal loss that 

keeps the angle difference small between the offset point and the direction normal to the 

cellular contour played a significant role in boosting accuracy. Also, we implement cycle 

consistency loss to encourage all contour points tracked forward-then-backward to return 

to their original location. However, previous approaches such as PoST [24] and Animation 

Transformer (AnT) [4] rely on supervised learning in addition to cycle consistency loss or 

find mid-level correspondences [38] instead of pixel-level correspondences.

We evaluate our contour tracker on the live cell dataset taken with a phase contrast 

microscope [13] and another live cell dataset taken with a confocal fluorescence microscope 

[36]. For a quantitative comparison of contour tracking methods, we labeled sparse tracking 

points on the contour of live cells for all sampled frames. In total, we labeled 13 live cell 

videos for evaluation. Evaluation with a sparse set of points is motivated by the fact that if 

tracking of dense contour points is accurate, tracking any one of contour points should be 

accurate also. We also qualitatively show our contour tracker works on another viscoelastic 

organism, jellyfish [30]. Our contributions are summarized as follows.

• We propose the first deep learning-based model that tracks cellular contours 

densely while surpassing the accuracy of other methods.

• We present an unsupervised learning strategy by mechanical loss and cycle 

consistency loss for contour tracking.

• We demonstrate that the use of forward and backward cross attention with cycle 

consistency has a synergistic effect on finding accurate dense correspondences.

• We label tracking points in the live cell videos and quantitatively evaluate 

cellular contour tracking for the first time.

2. Related Work

2.1. Tracking

Cell tracking is a method that tracks the movement of a cell as one object [32]. It first 

segments cells and then finds their trajectories and velocities by solving the graph of 

potential cell tracks with integer linear programming [28]. Another work uses coupled 

minimum-cost flow [25] to account for splitting and merging events of the cell. The entire 

population of cells can be densely tracked by the optical flow [40]. In contrast, our contour 

tracker deals with points along the cellular contour, which is a portion of the entire cell.
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The optical flow can be used for contour tracking since it can track the movement of 

every pixel in the video [1]. When there is no ground truth optical flow, an unsupervised 

optical flow model such as UFlow [14] is used. UFlow is based on the PWC-Net [31] and 

trains by minimizing the photometric loss between the warped second image and the first 

image in pixel intensity. However, optical flow can be confused by tracking features that are 

not related to contour. Occasionally, visible membrane features go inside cellular interiors, 

hindering accurate contour tracking.

Another way to perform contour tracking is by iteratively running the contour prediction 

method in every frame of the video. The contour prediction method represents the object 

boundary by a sequence of sparse points connected with straight lines and regresses offsets 

for the initial set of points to fit the object boundary. There are conventional contour 

prediction methods such as Snake [15] or deep learning-based models such as DeepSnake 

[26] and DANCE [19], which performs real-time objection detection. PoST [24] extends the 

contour prediction method to regress offsets for 128 points along the contour of an object in 

the current frame to get a new contour in the next frame. It is trained by supervised learning 

on the synthetic dataset having distinct visual features that are easily trackable by human 

eyes. Unlike PoST [24], our contour tracker tracks a varying number of points along the 

entire contour with challenging visual features.

2.2. Mechanical Model

The mechanical model [21] optimizes the nonlinear equation comprised of the normal 

torsion force which encourages the points to move perpendicular to the contour and the 

linear spring force which keeps the distance between neighboring points the same. Features 

in the direction normal to the contour are widely used by the active shape model [7], 

HMM contour tracker [5] or particle filter-based contour tracker [3] to find the matching 

point in the next contour. The linear spring force is similar to the first-order term in 

the Snake algorithm [15] which minimizes the distance between points. Also, ant colony 

optimization [33] improved the contour correspondence accuracy by incorporating the 

proximity information of neighboring points.

2.3. Dense Correspondences

Dense point correspondences between the current contour and the next contour are necessary 

to track each contour point throughout the video. Deformable surface tracking [11,37] 

finds the correspondences between a fixed number of key points on a fixed 3D surface 

area throughout the video by a mesh-based deformation model. Animation Transformer [4] 

uses cross attention [35] to find dense correspondences between two line segments. The 

dense correspondences are predicted as a 2D correspondence matrix, similar to the feature 

matching step in the 3D point cloud registration [22, 34]. ContourFlow [9] finds the point 

correspondences among the fragmented contours. Instead of predicting correspondences 

between two contours by feature matching, our contour tracker predicts the offset from 

current contour points to utilize mechanical loss [21]. If our contour tracker predicts 

the correspondence instead of offset, the computation of mechanical loss becomes non-

differentiable for end-to-end learning.
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3. Method

In this section, we explain our architecture and unsupervised learning strategy with 

mechanical and cycle consistency losses as shown in Fig. 2.

3.1. Architecture

As input, our contour tracker takes the current frame It and contour Ct and the next frame 

It + 1 and contour Ct + 1. The contour is comprised of a sequence of contour points pt
i ∈ Ct in 2D 

coordinates. Every pixel along the contour extracted from the segmentation mask becomes a 

contour point pt
i. The current frame It and the next frame It + 1 are encoded by ImageNet [8] 

pre-trained VGG16 [29] and upsampled by Feature Pyramid Network (FPN) [18] to match 

the size of input images, It and It + 1. Then, image features at the location of contour points 

are sampled from FPN feature map. The first image’s features are sampled at the location 

of first contour points Ct and the second image’s features are sampled at the location of 

second contour points Ct + 1. The sinusoidal positional embedding [35] and contour points’ 

coordinates are concatenated to image features.

The multi-head cross attention (MHA) [35] is used to fuse the feature representation of two 

contours with arbitrary contour lengths and to capture global and local contour features. Our 

contour tracker has forward and backward cross attentions. The forward cross attention takes 

the first contour’s feature as a query and the second contour’s feature as key and value. The 

backward cross attention takes the second contour’s feature as a query and the first contour’s 

feature as a key and value. Lastly, FCNN comprised of 3 linear layers with ReLU activation 

in between receives the fused features from the forward cross attention and regresses the 

offset Ot t + 1 of all contour points Ct in the first frame. The same FCNN receives the fused 

features from the backward cross attention and regresses the backward offset Ot + 1 t of all 

contour points Ct + 1 in the second frame. The backward offset is necessary to compute cycle 

consistency loss.

3.2. Unsupervised Learning

Cycle Consistency Loss.—Computing cycle consistency loss is a three-step process 

given two consecutive images with contour points. First, contour points in the first frame Ct

move by regressing offset Ot t + 1 from their current positions. Second, each offset point is 

matched with the closest point on the second frame’s contour Ct + 1. This operation is denoted 

by ϕ. Lastly, offset points matched to the second frame’s contour are tracked back to the 

first frame by regressing backward offsets Ot + 1 t. Without the second step, learning by cycle 

consistency loss fails because the model can regress zero forward and backward offsets to 

obtain zero cycle consistency loss. ϕ is non-differentiable, but gradient flows to both forward 

and backward cross attentions because cycle consistency loss is comprised of forward and 

backward consistency defined as follows:

Lforward = ∑
i = 0

Nt − 1
‖pt

i − Ot + 1 t(ϕ(Ot t + 1(pt
i)))‖2

Jang et al. Page 5

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. Author manuscript; available in PMC 2024 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(1)

Lbackward = ∑
i = 0

Nt − 1
‖pt + 1

i − Ot t + 1(ϕ(Ot + 1 t(pt + 1
i )))‖2

(2)

Lcycle = Lforward + Lbackward

(3)

where Nt denotes the total number of contour points at time t because the contour can 

expand or contract.

Mechanical-Normal Loss.—We reformulate the normal force in the mechanical model 

[21] as follows. For each contour point, normal vectors nt
i orthogonal to the contour Ct are 

numerically computed by approximating tangent vectors at each contour point by central 

difference and rotating tangent vectors by 90 degrees. Then, normal vectors and offsets of all 

contour points are normalized to unit vectors. Lastly, we compute the L1 difference between 

them as follows:

Lmech‐normal = ∑
i = 1

Nt − 2 nt
i

‖nt
i‖2

− Ot t + 1(pt
i)

‖Ot t + 1(pt
i)‖2 1

(4)

From Nt contour points, the first and last point is excluded from computation since their 

tangent vectors cannot be approximated.

Please refer to the supplementary section for other unsupervised learning losses. For optimal 

performance (see the ablation study in Tab. 1), the total training loss is a sum of the cycle 

consistency and mechanical-normal loss:

Ltotal = Lcycle + Lmech‐normal

(5)

3.3. Differentiable Sampling

To update our network during backpropagation through the sampling, we use the bilinear 

sampling from UFlow [14] to retrieve the pixel intensity or image feature Ixy at a coordinate 

(x, y) as shown in Fig. 3. Ixy has nonzero gradients with respect to coordinates or features at 

four adjacent points. This method samples features located at the contour points Ct/Ct + 1 or 

offset points in the training and inference.
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3.4. Pre-processing and Labeling

From the binary segmentation mask, the contour with one-pixel width is extracted and the 

contour is converted to an ordered sequence of contour points by an off-the-shelf algorithm 

of contour finder [2], as shown in Fig. 4(a). For instance, if the live cell is anchored to the 

left image border, the points are ordered starting from the leftmost top point in every frame. 

Points touching the image border are not considered for contour tracking. These ordered 

sequences of contour points do not have point-to-point correspondences.

For quantitative evaluation, we labeled five tracking points roughly equal distances apart 

from each other in low temporal resolution (every fifth frame of the video). However, 

we examined the video in 5x higher temporal resolution (every consecutive frame). For 

instance, to label the tracking point in the 10th frame from the 5th frame, we examined 

consecutive frames between the 5th and the 10th frames, as shown in Fig. 4(b). Labeling 

the tracking point can be ambiguous without examing those consecutive frames, given the 

large cellular motion. The tracking points that move outside the image boundary or become 

occluded due to cellular movement were not labeled. Labeled tracking points were used for 

evaluation only.

4. Experiments

4.1. Dataset

The confocal fluorescence dataset [36] contains 40 live cell videos taken with confocal 

fluorescence microscopy. They are classified into 9 different categories based on their 

cellular morphodynamics. Therefore, we randomly picked one video from each category to 

validate our contour tracker on all types of cellular morphodynamics. We trained on 31 live 

cell videos and validated our contour tracker on the other 9 live cell videos. Phase Contrast 

dataset [13] contains 4 multi-cellular live cell videos and 5 single-cellular live cell videos 

taken with a phase contrast microscope. We train on 5 single-cellular live cell videos and 

validate our contour tracker on 4 multi-cellular live cell videos.

Each live cell video is 200 frames long, and every frame is segmented in both datasets. 

We sampled every fifth frame from the video for contour tracking. By sampling, we use 

fewer frames for contour tracking and evaluate the robustness of our contour tracker in a 

low temporal resolution setting. For labeling tracking points, we examined all 200 frames 

to see each tracked point’s cellular topology, visual features, and trajectory from previous 

consecutive frames.

4.2. Implementation Details

For training, live cell videos from the phase contrast dataset [13] are resized to 2562, and the 

live cell videos from the confocal fluorescence dataset [36] are resized to 5122. We trained 

our contour tracker using Adam [16] optimizer with an initial learning rate of 0.0001 and 

linear learning rate decay after 10k iterations. Also, we trained our contour tracker for 50k 

iterations with a batch size of 8 on one TITAN RTX GPU for 1 day. For inference, only the 

forward cross attention is used to regress offsets. The offset points are moved to the closest 
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contour point by operation ϕ at each frame to obtain the dense correspondences between the 

current contour Ct and the next contour Ct + 1.

4.3. Evaluation Metrics

To evaluate the point tracking, we use the spatial accuracy (SA) introduced in [24] and 

introduce contour accuracy (CA). SA measures the distance between the ground truth points 

gt and the predicted points pt = ϕ(Ot − 1 t(pt − 1)). If the distance is less than a threshold τ, 1 is 

added. Otherwise, 0 is added. Each tracking point’s x and y coordinates are normalized by 

image height and width such that the x and y coordinates range from 0 to 1. The contour 

points in the first frame p0 = C0 are tracked and evaluated against the ground truth points gt at 

each time step t:

SAτ(pt, gt) = λ ∑
t = 1

T − 1
∑

i = 0

N − 1
(‖pt

i − gt
i‖2 < τ)

(6)

where T  is the total number of frames in the video, N = 5 is the total number of labeled 

tracking points and λ = 1
(T − 1)N . CA measures the arc length between two points on the 

contour. It is equivalent to measuring the difference between the ground truth point’s indices 

and the predicted point’s indices for contour points. Due to the fluctuating shape of the 

cellular contour, two points close to each other in the image space can be far apart in terms 

of the arc length. The arc length and spatial distance between two points are equal when the 

contour is a straight line. Let Ct() be a function that returns the index of the contour point 

given the coordinate of the contour point.

CAτ(pt, gt) = λ ∑
t = 1

T − 1
∑

i = 0

N − 1
(‖Ct(pt

i) − Ct(gt
i)‖1 < τ)

(7)

Then, CA is normalized by the total number of contour points in the current frame.

4.4. Ablation Study

The spatial accuracy (SA) and contour accuracy (CA) are measured with multiple thresholds 

since some models can perform better in lower thresholds while others perform better in 

higher thresholds.

Loss Functions.—We compare one supervised learning loss and combinations of four 

unsupervised learning losses in Tab. 1. For supervised learning on dense tracking points, 

contour point-to-point correspondences predicted by the mechanical model [21] are used 

as ground truth correspondences. Then, our contour tracker is trained to minimize the L2 

distance between predicted points’ and ground truth points’ locations, similar to PoST [24]. 
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The same architecture shown in Fig. 2 is used for ablation. Supervised learning yields lower 

accuracy than training with mechanical-normal loss or cycle consistency loss alone. The low 

accuracy can be due to inaccurate pseudo-labels or overfitting on training labels which does 

not generalize to new contour points in validation videos.

Unsupervised learning by the mechanical-normal loss or cycle consistency loss alone have 

significantly higher performance than other losses, such as photometric loss. However, 

adding the mechanical-linear loss to the mechanical-normal loss degrades the performance. 

Training with the mechanical-linear loss alone or other combinations of losses not shown in 

the table also yields low accuracy. Adding the mechanical-normal loss and cycle consistency 

loss yields the highest spatial and contour accuracy.

Architecture.—We replaced or removed a component of our architecture to see how 

each component contributes to the overall performance, as shown in Tab. 2. No cross 

attention (No Cross) fuses point features sampled from the first and the second images by 

adding them. Single cross attention (Single Cross) only uses one cross attention to fuse 

point features. The contour tracker with one cross attention outperforms the contour tracker 

without any cross attention in a low threshold setting but not in higher threshold settings. 

Single cross attention is not effective, possibly because the movement of the live cell played 

backward is physically different than the natural live cell movement. So contour features 

need to be handled differently depending on forward or backward directions. Our contour 

tracker using forward and backward cross attentions yields much higher accuracy than using 

one or zero cross attention.

From DeepSnake [26] and PoST [24], circular convolution is known to be effective for 

point regression given a sequence of contour points. When FCNN is replaced with circular 

convolution (Circ Conv), the model achieves much lower accuracy at low thresholds. Since 

our contour tracker handles a cellular contour with disconnected endpoints, we also test 

1D convolution (1D Conv). Using circular convolution or 1D convolution decreases the 

accuracy at low thresholds. We chose the model with the highest accuracy at low thresholds 

because the model’s accuracy at low thresholds reveals its pixel-level accuracy, and high 

pixel-level accuracy is known to yield less noisy and stronger morphodynamic patterns [13].

4.5. Comparison with Other Methods

We compare our contour tracker against mechanical model [21] and other deep learning-

based methods: UFlow [14] and PoST [24]. Since pre-trained PoST without any 

modifications yields very low spatial and contour accuracy, we modified it to utilize features 

along the current Ct and the next contours Ct + 1. Also, we trained PoST on the live cell dataset 

with our cycle consistency loss. For inference, both UFlow and PoST offset points Ot t + 1(pt)
move to the closest contour points in Ct + 1. This is the same inference heuristic used for our 

contour tracker.

Phase Contrast Dataset.—Our contour tracker outperforms all the other methods in all 

threshold settings in Tab. 3. UFlow [14] has trouble tracking contour points with the lowest 

accuracy. Unlike other methods, UFlow does not use contour features and does not focus 
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on tracking the contour only. PoST [24] performs better than UFlow but still worse than the 

mechanical model or our contour tracker. Lastly, the mechanical model performs better than 

other deep learning models except ours.

Confocal Fluorescence Dataset.—The overall performance in Tab. 4 is lower than Tab. 

3 because the confocal fluorescence dataset [36] is taken in higher resolution with fine 

details and contains some segmentation error from thresholding. Despite the difficulty, our 

contour tracker still outperforms all the other methods in all threshold settings as shown 

in Tab. 4. Consistent with the quantitative results, we qualitatively show in Fig. 5 that 

our contour tracker can track contour points with closer proximity to the ground truth 

labels compared to the mechanical model in both phase contrast and confocal fluorescence 

datasets. Please refer to the supplementary section for the visualization of a long sequence of 

videos.

4.6. Quantification of Morphodynamics

We quantify cellular morphodynamics of one of the phase contrast live cell videos [13] 

tracked by our contour tracker as a heatmap in Fig. 6. We chose two far-apart contour points 

such that the velocities of all contour points between those two points are measured. Only 

the velocity along the normal vector of contour points is considered. The red regions indicate 

outward motion (protrusion) from the cell body and the blue regions indicate inward motion 

to the cell nucleus of the cellular contour.

4.7. Contour Tracking of a Jellyfish

Our live cell videos contain live cells anchored to one of the sides of the image. In this 

section, we show that our contour tracker can also work on a different viscoelastic organism 

floating in space. We observed that jellyfish has a similar viscoelastic property to live cell, 

so we tested our contour tracker on Rainbow Jellyfish Benchmark from StyleGan-V [30]. 

We cropped the center of a video to get 5122 patches containing a jellyfish and segmented 

it by thresholding. Our contour tracker can track the contour of a jellyfish with dense 

point-to-point correspondences as shown in Fig. 7. Please refer to the supplementary section 

for more details.

5. Conclusion

We present a novel deep learning-based contour tracking with correspondence for live cells 

and train it without any ground truth tracking points. We systematically tested various 

unsupervised learning strategies on top of the proposed architecture with cross attention and 

found that a combination of mechanical and cycle consistency losses is the best. Our contour 

tracker outperforms the classical mechanical model and other deep learning-based methods 

on phase contrast and confocal fluorescence live cell datasets. In the field of computer 

vision, we hope this work sheds light on a new type of object tracking (e.g. viscoelastic 

materials), which prior arts cannot adequately capture.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Visualization of contour tracking results.
Dense point correspondences between adjacent contours are shown with white arrows 

overlaid on the first frame. The first frame’s contour points are in dark green, and the 

last frame’s contour points are in red. Only half of the contour points and correspondences 

are shown for visualization purposes. The trajectories of a few tracked points are shown on 

the right.
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Figure 2. Our architecture on the left and unsupervised learning losses on the right.
Shared encoder comprised of VGG16 and FPN encodes first and second images. Point 

features are sampled at the location of ordered contour points indicated by rainbow colors 

from red to purple. Point features are inputted as query or key and value to the cross 

attentions. Lastly, shared FCNN takes the fused features and regresses forward Ot t + 1 or 

backward Ot + 1 t offsets. The cycle consistency, mechanical-normal, and mechanical-linear 

losses are shown in red color.
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Figure 3. 
Bilinear Sampling of a pixel or feature at a coordinate (x,y) involves the bilinear 

interpolation of pixels or features at four adjacent points (Ia, Ib, Ic, Id) in a grid by the 

weights (wa, wb, wc, wd).
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Figure 4. 
(a) Extraction of contour points from the segmentation mask of one of the phase contrast 

live cell images [13]. Contour points are in sequential order as shown in color, from pink to 

red. (b) Labeling tracking points in 5x higher temporal resolution. The red point is tracked 

with correspondences shown in white lines. The color of the contour points changes from 

yellow-green to dark green as the frame number increases from 5 to 10.
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Figure 5. Trajectories of tracked points by our contour tracker (green), the mechanical model 
(blue), and ground truth labels (red).
To indicate the time from the initial frame to the last frame, the color of the trajectory 

gradually changes from light to dark, and the color of the contour changes from gray 

to white. PC prefix refers to phase contrast live cell dataset [13] and CF prefix refers 

to confocal fluorescence live cell dataset [36]. The number refers to the video number. 

Trajectories in PC1, PC2, and CF1 start from the mid-frame, and the rest of the trajectories 

start from the first frame at the same initial point.
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Figure 6. Quantification of morphodynamics from our contour tracking results.
Trajectories of tracked contour points for 3 frames on a phase contrast live cell [13] are 

shown on the left, and the quantification of those tracked points as velocities for 40 frames 

are shown on the right.
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Figure 7. Visualization of contour tracking results on a jellyfish [30].
Dense correspondences between adjacent contours with white arrows are shown on the left. 

The color of the contour changes from green to red as the frame number increases. The 

trajectories of a few tracked points are shown on the right.
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Table 2.

Ablation studies of Architecture on phase contrast live cell videos [13].

Method SA.02 SA.04 SA.06 CA.01 CA.02 CA.03

No Cross 0.659 0.858 0.969 0.696 0.851 0.939

Single Cross 0.677 0.864 0.930 0.734 0.854 0.913

Circ Conv 0.643 0.931 0.983 0.718 0.910 0.965

1D Conv 0.692 0.909 0.976 0.736 0.881 0.948

Ours 0.729 0.937 0.974 0.762 0.925 0.971
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Table 3.

Comparison with other methods on phase contrast live cell videos [13].

Method SA.02 SA.04 SA.06 CA.01 CA.02 CA.03

UFlow [14] 0.585 0.809 0.881 0.632 0.802 0.857

PoST [24] 0.629 0.850 0.947 0.693 0.872 0.939

Mechanical [21] 0.683 0.853 0.938 0.722 0.863 0.927

Ours 0.729 0.937 0.974 0.762 0.925 0.971
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Table 4.

Comparison with other methods on confocal fluorescence live cell videos [36].

Method SA.02 SA.04 SA.06 CA.01 CA.02 CA.03

UFlow [14] 0.605 0.785 0.863 0.520 0.685 0.791

PoST [24] 0.614 0.805 0.888 0.531 0.706 0.807

Mechanical [21] 0.603 0.798 0.876 0.517 0.711 0.804

Ours 0.632 0.824 0.882 0.555 0.728 0.826
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