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ABSTRACT

In this work, we analyse the potential for using
structural knowledge to improve the detection of
the DNA-binding helix-turn—helix (HTH) motif from
sequence. Starting from a set of DNA-binding protein
structures that include a functional HTH motif and
have no apparent sequence similarity to each other,
two different libraries of hidden Markov models
(HMMs) were built. One library included sequence
models of whole DNA-binding domains, which incorp-
orate the HTH motif, the second library included
shorter models of ‘partial’ domains, representing
only the fraction of the domain that corresponds to
the functionally relevant HTH motif itself. The libraries
were scanned against a dataset of protein sequences,
some containing the HTH motifs, others not. HMM
predictions were compared with the results obtained
from a previously published structure-based method
and subsequently combined with it. The combined
method proved more effective than either of the
single-featured approaches, showing that informa-
tion carried by motif sequences and motif structures
are to some extent complementary and can success-
fully be used together for the detection of DNA-
binding HTHs in proteins of unknown function.

INTRODUCTION

DNA-binding proteins play a pivotal role in the biology of
the cell, being responsible for the transfer of biological
information from genes to proteins, and have been estimated
to constitute ~6—7% of all proteins expressed by eukaryotic
genomes (1,2). A large number of DNA-binding proteins and
protein—-DNA complexes are deposited in the Protein Data
Bank (PDB) (3) and in the Nucleic Acid Database (4).
With the advent of structural genomics projects (5), an
increasing number of protein structures with little or no
sequence similarity to current PDB entries and little function

information are being solved. Consequently, the derivation of
methods and tools for protein function prediction constitutes
an important scientific challenge and will assume a key role in
the function annotation of these structures and in the under-
standing of wider biological mechanisms. For instance, the
numerous efforts to understand the complex control of gene
expression will require as a first step the identification of all
putative transcription factors, that constitute one of the major
classes of DNA-binding proteins, for their subsequent experi-
mental validation.

Many known DNA-binding proteins have been observed to
bind DNA by a number of distinct structural motifs, such as the
helix—turn—helix (HTH) motif, the helix—loop—helix motif, the
helix—hairpin—helix motif and the zinc finger motif (6). After
the determination of crystal structures of C1 and Cro repressor
proteins from bacteriophage lambda (7,8), the DNA-binding
HTH structural motif has become one of the most important
and studied examples of the interaction between proteins and
DNA. The HTH is a short motif made up of a first alpha-helix,
a connecting turn and a second helix, which specifically inter-
acts with the DNA and is known as the recognition helix.
The two alpha-helices extend from the domain surface and
constitute a convex unit able to fit into the major groove of
DNA (9-11).

Several approaches for the detection of proteins containing
the HTH motif can be found in the recent literature. Structure-
based methods include scanning of 3D structural templates
(12), use of the electrostatic potential to select generic
DNA-binding residue patches (13,14) and a statistical model
based on geometrical measures (15), such as the recognition
helix/second helix hydrophobic interaction area, helix
average relative solvent accessibility, etc. Apart from several
consensus-based and profile-based approaches dating back to
the 1990s or earlier (16) and a number of evolutionary studies
(17-19), only two sequence-based methods were published
recently, the first based on a pattern dictionary (16,20) and
the second involving a fully connected two-layered neural
network on a series of structural and sequence features for
the prediction of DNA-binding proteins and residues (21).
A further approach for the prediction of the nucleic-acid-
binding function was based on the quantitative analysis of
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several structural features calculated only on positively
charged electrostatic protein surfaces. In this case, the authors
implemented a neural network and a generalized linear model
and were able to discriminate proteins that bind double-
stranded DNA among all other proteins containing positively
charged electrostatic patches (22).

The main goal of this study was to analyse the potential
for using structural knowledge to improve the detection of
the DNA-binding HTH motif from sequence. In particular, we
aimed to verify whether sequence information taken only from
the structural motif itself is more powerful for the detection of
the motif than the information derived from the corresponding
whole DNA-binding domain sequence. The main difference
between DNA-binding domains and their corresponding
DNA-binding HTH motifs is the size. Figure 1 shows 14
DNA-binding HTH proteins from the PDB, representing as
many non-homologous HTH protein families as possible. The
picture clearly illustrates that HTH structural motifs have an
almost constant sequence length: the average length calculated

for the 14 HTHs is 25 amino acids, with a minimum of 20,
a maximum of 32 and a standard deviation of 3.5 residues. In
contrast, the size of whole DNA-binding domains varies quite
broadly among the HTH protein families. In fact, the smallest
of the shown domains, from the purine nucleotide synthesis
repressor (PDB entry 1QPZ, chain A), is 25 residues long; the
largest, from the transcription factor Mbp1 (PDB entry 1BMS,
unique chain), is 153 residues long (average length and stand-
ard deviation within the 14 domains are 67 and 33 amino acids,
respectively). Moreover, protein families with DNA-binding
HTHs are known to have diverged greatly, exhibiting a near-
maximal variation in both amino acid sequence and structural
elements outside of the DNA-binding motif (18), and share
very low similarity even in the sequence portions correspond-
ing to the DNA-binding domains. Their evolutionary relation-
ships are generally hidden in the ‘midnight zone’ or no longer
apparent, i.e. in the area of sequence identity where an evolu-
tionary link is only visible through their structures. Therefore,
it seems likely that at least some of these domains are unrelated

1SMTA

2DTR

2TCTA

Figure 1. Structures of DNA-binding domains of the 14 representative structures in set/. HTH structural motifs are highlighted in red. Structures are labelled by the
standard four letter PDB code. The fifth letter, where found, indicates the protein chain shown. A gap in the domain structure of IBM9A is visible and is due to the lack

of coordinates for residues 69-73 in the PDB structure itself.
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Figure 2. Definition of FD and PD multiple alignments: DNA-binding domains of proteins 1JHG and 1LMB from set/ are shown. Structures: the HTH motifs are
highlighted in red. Multiple sequence alignments: all the shown alignments correspond to families Pfam seed alignments. The solid-lined boxes set the edges of
multiple sequence alignments corresponding to the HTH sequences as found in the family templates 1JHG and 1LMB (red sequence).

and may have arisen independently. In such cases, the
information carried by the whole domain sequence could be
unnecessary or even misleading in the development of a
sequence-based approach for the detection of this motif. To
explore this idea, several issues needed to be analysed: the
ability of the complete domain sequence and of the structural
motif sequence separately to detect the HTH motif, its com-
parison with the detection ability of structure-based methods,
and the combination of the two approaches.

We therefore sought to derive models that are able to
recognize either HTH motifs in distantly related sequences
or HTH motifs that had evolved independently and are
found in unrelated proteins. Hidden Markov models (HMMs),
previously proved to be among the best profile-based methods
(23), were chosen for the pattern detection. Two different
types of HMMs were derived: one based on multiple align-
ments of the whole DNA-binding domain sequences (FD, full
domain) and the other based on multiple alignments of the
HTH structural motif sequences only (PD, partial domain), as
shown in Figure 2. The figure shows the multiple alignments
and the DNA-binding domains of two HTH protein families
from the Pfam database (24), the family of the trp operon
repressor (UniProt code TRPR_ECOLI; PDB code 1JHG,
chain A) and the family of the lambda repressor/operator
(UniProt code RPC1_LAMBD; PDB code 1LMB, chain 3).
For both, the FD multiple alignment corresponds to the Pfam
multiple alignments (shown in part below the structures owing
to space constraints), while the PD multiple alignment consists
only of the portion of multiple alignment delimited by the
solid-lined box, that corresponds to the HTH sequence of
the representative structure of the family. Therefore, two
HMM libraries, corresponding, respectively, to the PD and
the FD alignments, were set up. Their HTH detection ability
was compared with the method of 3D structural templates
described by Jones et al. (12) and evaluated using two
approaches: the cross-hit detection, by jackknife tests on a set
of non-homologous protein families and their representative

sequences (setl), and the detection of known HTHs, by tests
on a large set of structurally classified protein sequences
(set2). The two methods were then combined into a
sequence-plus-structure searching tool. Its ability to detect
new-HTH motifs was validated by tests on a set of sequences
from structures completely unrelated to any structural classi-
fication scheme (set3-unclassified) and on a set of hypothetical
proteins of unknown function (set4). Results obtained from
all the analyses performed showed that the HTH sequence
information is complementary to the corresponding structural
information and that the sequence-plus-structure method per-
forms better than either single-feature approach.

MATERIALS AND METHODS
Description and definition of datasets used

Four datasets of sequences, named set/, set2, set3 and set4,
were used in the derivation of the method and in its validation.
A schematic flowchart of datasets and methods is shown in
Figure 3.

Setl : A set of non-homologous protein families and structure
representatives with a known DNA-binding HTH. Setl is
composed of 14 sequences of structure representatives of
14 non-homologous HTH protein families plus their multiple
alignments (protein families are listed in Table 1 and their
DNA-binding domains are shown in Figure 1). The structures/
families were identified by CATH (25) and Pfam (24) data-
bases and their degree of mutual similarity was checked by a
PSI-BLAST search of the representative structure sequences
on the PDB (number of iterations set to 20 and E-value thresh-
old for the inclusion in the profile set to 10~'%). In the CATH
classification scheme, the structures included were SREPs
(S-level clustering REPresentative structures), with each one
representing a set of domains that clustered in the same
sequence family, in which all members have sequence
identities >35% to each other. Seed multiple alignments
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Set3: 2,687 non-redundant seqs
of structurally unclassified PDB
structures (nr-PDB, p-val < 107)

New HTH detection (set3&setd)

Figure 3. Flowchart of methods. Dashed-lined boxes indicate descriptions of datasets; solid-lined boxes denote the steps of the methodology; fw represents the
entropy value; FD and PD stands for full domain and partial domain, respectively.

Table 1. List of protein families and corresponding templates composing set/

Protein name PDB ID Pfam ID UniProt ID
Homeobox protein Hox-B1 1B72 Homeobox PBX1_HUMAN
Molybdate-dependent transcription regulator (Mode) 1BOM HTH_1 MODE_ECOLI
Multiple antibiotic resistance protein (Mara) 1BLO HTH_AraC MARA_ECOLI
Transcription factor Mbp1 1BM8 APSES MBPI1_YEAST
Gere regulatory protein 1FSE GerE GERE_BACSU
Hin recombinase 1HCR HTH_7 HIN_SALTY
Major centromere autoantigen B IHLV CENP-B-N CENB_HUMAN
Camp receptor protein IHWS5 Crp CRP_ECOLI
Trp operon repressor 1JHG Trp_repressor TRPR_ECOLI
Lambda repressor/operator complex 1LMB HTH_3 RPC1_LAMBD
Purine nucleotide synthesis repressor 1QPZ lacl PURR_ECOLI
Transcriptional repressor Smtb 1SMT HTH_S5 SMTB_SYNP7
Diphtheria toxin repressor 2DTR Fe_dep_repress DTXR_CORDI
Tetracycline repressor 2TCT tetR TER4_ECOLI




were taken from Pfam for all the representative sequences but
the Hin recombinase (PDB entry 1HCR, UniProt code HIN_
SALTY), for which the Pfam full alignment was taken because
its sequence was not included in the seed. It is also worth
highlighting that set/ does not include families with a func-
tional ‘winged-helix> HTH motif and families in which the
HTH sequence was not fully included in the corresponding
Pfam multiple alignments, so that only the strictest HTH
sequences were considered.

For every entry in setl, two different types of multiple
alignments were considered and two subsets were defined.
The first (FD-setl) was based on the FD annotated in Pfam
and carries the sequence information related to the whole
DNA-binding domain, the second (PD-set/) was based only
on the sequence segment corresponding to the HTH structural
motif. FD-set/ and PD-set/ were used to derive the two
libraries of HMMs.

Set2 and set3: Two large sets of non-redundant sequences.
Set2 is a large and structurally defined set of sequences derived
from CATH, and consists of all the PDB entries with their
CATH numbers differing at the SREP level (i.e. at the fifth
digit). To reduce the danger of over-prediction, the set was
made as unrelated as possible to set/ by excluding the original
seed sequences used to derive the HMMs (Table 1). The final
set2 includes 3566 sequences, 44 of which include a known
DNA-binding HTH motif (referred to as HTHXTRUE), and
3522 non-HTH proteins (HTHXFALSE).

Set3 consists of a large number of non-redundant sequences
without structural classification from the nr-PDB dataset,
available at the NCBI website (http://www.ncbi.nlm.nih.gov/
Structure/VAST/nrpdb.html). A P-value threshold of 10~ was
chosen and the corresponding 2687 sequences were taken.

Setd: A set of sequences of hypothetical proteins of unknown
function. Set4 includes all hypothetical protein chains (477) of
unknown function as found in the PDB, and includes seven
chains described as putative DNA-binding proteins in the
corresponding PDB file headers.
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Set up of HMM libraries and jackknife tests

HMM libraries were generated from full and partial multiple
alignments using the SAM package (26). For the FD-set!, the
HMMs available in Pfam were not used but new models were
generated, using identical parameters for all models, which
then could be reliably compared with the HMMs based on
PD-set! alignments. The ability of the HMM libraries to detect
cross-hits was evaluated by a series of jackknife tests, in which
the sequence of the representative structure of each protein
family was scored by the remaining 13 HMMs. The total
number of possible predictions (V,), also corresponding to the
maximum number of detectable true hits, is Ny + N (N — 1),
where N is the number of protein families. This gives 182
possible true predictions for 14 families. The number of detec-
ted hits, i.e. hits showing an E-value lower than a chosen
threshold, was then used to compare the prediction effective-
ness of different models and libraries.

Optimizing the entropy value for the HMM generation

The pattern detection ability of HMMs is known to be sensitive
to the length of the strings used to derive the models, meaning
that longer strings generate more powerful HMMs. Therefore,
owing to the very short size of PD-set/ multiple alignments,
the entropy value fw for the generation of the HMM libraries
was systematically optimized (fw parameter: 0.3, 0.5, 0.7, 0.8
or 1.0). The entropy value adjusts the weights assigned for
insertions, deletions and replacements consistently with
the data in the alignment and with the rules provided by the
used regularizer (i.e. the lower the entropy value, the more
specific the HMM derived). It was optimized to generate the
most specific and at the same time most powerful models. Five
different HMM libraries based on the 14 FD multiple align-
ments were built by varying the fw value and the respective
predictive abilities were tested by five jackknife tests. For each
HMM in the library, the number of hits with an E-value < 0.01
was counted and the total number of hits detected by all the
models in the library was calculated (see Figure 4 and Table 2).
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Figure 4. Number of hits detected by the 14 HMMs derived from FD multiple alignments at different fw entropy values.
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Table 2. Jackknifed prediction results at different SAM entropy values
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fw indicates the entropy value used to derive HMMs from FD multiple align-
ments. The lower the entropy value, the more specific the HMM derived.

As shown in Table 2, the most predictive library resulted from
the FD-fw0.7, with 43 hits out of 182, followed by the
FD-fw0.8, FD-fw0.5, FD-fwl.0 and FD-fw0.3, with 42, 38,
37 and 19 hits, respectively. This suggested that the method
is only moderately sensitive to entropy values in the vicinity
of the optimal value. Therefore, an fiw value of 0.7, also cor-
responding to SAM default value, was chosen and two HMM
libraries, FD-lib and PD-lib, corresponding to the FD and the
PD multiple alignments, respectively, were built and evaluated
by jackknife tests using an E-value threshold of 0.01.

3D-Template method

The ability of the HMM libraries was compared and sub-
sequently combined with a previously published structure-
based method for the detection of DNA-binding HTHs (12)
from the 3D structure, herein referred to as the 3D-template
method. The method is based on the 3D structural templates,
generated from HTH-containing protein structures, that com-
prise the alpha carbon backbone coordinates of the residues
forming the HTH motifs. Such templates are scanned against
other protein structures to calculate the root mean square devi-
ation (RMSD) of the optimal superposition of a template on a
structure.

For the comparison of the 3D-template method with HMM
predictions and to benchmark the combined approaches, jack-
knife tests were performed by scanning each structure in set/
against the HTH structural motifs of the remaining proteins
in the set. All corresponding RMSDs were calculated and the
lowest value was kept as the reference RMSD; the published
threshold of 1.6 A was used to discriminate hits from non-hits.

For the application of the approach to all other sequence sets
and for the calculation of linear discriminators (see below),
RMSD values were obtained by scanning the whole protein
structures onto the seven consensus templates as published by
Jones et al. (12).

Combined approaches: calculation of linear
discriminators and procedures of cross-validation

A method was developed to combine 3D-templates and
HMMs, i.e. a sequence-plus-structure searching. Therefore,

it was necessary to define a linear discriminator from the
two parameters, RMSD and log (E-value). All possible lines
between true hits and false hits were generated to segregate the
data, and the line optimally discriminating between true and
false hits was calculated. The discrimination ability of each
line was defined by calculating its corresponding error rate
(Kg,r) and Matthew’s correlation coefficient (27) (®), and the
best line was chosen as the line showing the minimum error
rate and the maximum @ value. Error rates and ® values were
calculated as follows:

FP + FN
Kip = —o——\
B NTot

where FP is the number of false positives, FN is the number of
false negatives and Nt is the total number of hits.

(TP x TN)—(EN x FP)
/(TP + FN)(FP + TN)(TP + FP)(FN + TN)

where TP is the number of true positives, FP is the number of
false positives, FN is the number of false negatives and TN is
the number of true negatives.

The best line was validated by a 10-fold cross-validation
procedure (100 runs). Owing to the very strong imbalance
between the number of true and false hits, the two sets
were resampled independently and then randomly combined
at each cross-validation run, so that at each resampling the
presence of true examples was guaranteed.

RESULTS AND DISCUSSION

Evaluation of cross-hit detection ability
(jackknife tests on setl)

Using HMM libraries. According to the basic premise of our
work, unrelated proteins that bind DNA by an HTH motif do
not share sequence similarity over the whole DNA-binding
domains and, therefore, the only possible pattern relationship
detectable by HMMs should be strictly at the level of the
HTH motif sequence. Therefore, given a set of unrelated
DNA-binding protein families, and given the corresponding
HMMs for both their FD and PD domains, the FD-HMMs
should not give any cross-hit within the set, i.e. should not
detect any of the other protein families, while the PD-HMMs,
in which the information is based on the structural motif
sequence only, should ideally detect all the HTHs in the set.

The ability of the FD and PD libraries to detect cross-hits in
set] was evaluated by a series of jackknife tests, in which the
sequence of the representative structure of each protein family
was scored by the remaining 13 HMMs. The theoretical
maximum number of true predictions (i.e. the number of
detectable true HTHs, see Materials and Methods) was 182
for the 14 protein families. The number of hits showing an
E-value lower than the selected threshold (0.01) was taken
to compare the prediction effectiveness of different libraries.
The obtained results are shown in Figure 5a. The maximum
number of cross-hits by any model in the PD-/ib (yellow and
green squares) was only 36 out of the possible 182 hits. The
maximum number of hits detected by the FD library (blue and
green squares) was 44, of which 32 were also detected by the
PD library (green squares). Quite surprisingly, at this level the
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Figure 5. (a) Jackknife results for the PD-/ib and FD-/ib libraries: yellow squares indicate hits detected from the PD-/ib library, blue squares indicate hits detected
from the FD-/ib library and green squares indicate hits detected from both the libraries. Incorrectly aligned hits are highlighted with slashes and crosses: forward
slashes (/) indicate incorrectly aligned hits detected from the FD-/ib library, backward slashes (\) indicate incorrectly aligned hits detected from the PD-/ib library and
crosses (X) indicate incorrectly aligned hits detected from both the libraries. (b) Jackknife results for the combination of PD-/ib and FD-/ib libraries and the method of
3D-templates. Green squares indicate hits detected from either the FD-/ib library or the PD-/ib library or both; red squares indicate hits detected from the method of
3D-templates; and brown squares indicate hits detected from all the three methods.

PD-lib was not more predictive than the FD-/ib, but was
slightly more restrictive. Within the FD library, the most
predictive models were derived from the lambda repressor/
operator complex protein family (1LMB, 10 out of 13 possible
hits), from the tetracycline repressor family (2TCT, 8 hits) and
from the major centromere autoantigen B family (1HLV,
6 hits). In the PD library, the highest number of hits was
again detected from the lambda repressor/operator complex
protein family (1ILMB, 7 hits), followed by the purine nucle-
otide synthesis repressor family (1QPZ) and by the tetracyc-
line receptor family (2TCT) with 6 and 5 hits, respectively.
The detection of cross-hits in the FD-/ib jackknife run sug-
gested that some of the whole DNA-binding domains might
indeed be related and is contrary to our original expectations.
To explore this further, for each detected hit, the structural
overlap between the real HTH and the predicted HTH was
manually verified and the number of incorrectly aligned
examples calculated (Table 3). This number was comparable
for the two libraries (7 for the FD-/ib and 5 for the PD-/ib), but
the incorrectly aligned hits were different for the FD and the
PD libraries, apart from the lambda repressor/operator family
in which both the FD and the PD-HMMs detected at least one
incorrectly aligned example. Given the limited size of the
dataset (only 14 families/structure), a robust statistical analysis
could not be performed at this stage of the study. However,
collected data indicated that, although the sequence informa-
tion included in the two HMM libraries is different and the
whole domains are not known to share evolutionary relation-
ships, the corresponding predictive power is similar (44 and 36
detected hits over 182 possible jackknife predictions for FD
and PD, respectively). Moreover, jackknife results proved that
the motif information alone was not specific enough to detect
HTHs, supporting the few previously published results of
sequence-based methods (14,20,21) described in Introduction.

In fact, 4 out of the 14 HMM s are unable to detect any hit while
only 2 HMMs (corresponding to proteins ILMB and 2TCT)
detect >50% of the hits. No rationale connected to either the
number of sequences in the multiple alignments or the CATH
classification at the higher HREP level (percentage identity
<20%) or any other observations could be found to explain
these results. However, they could be interpreted in two ways:
either they may reflect a hidden evolutionary relationship
going back to an ancient protein family, which rapidly
diverged towards several sequence-dissimilar families, or
they may be due to a lack of variation in the secondary struc-
ture composition of the domains in the set, which could affect
their amino acid composition. In fact, apart from the transcrip-
tion factor Mbp1 family (PDB code 1BMS), all domains are
mainly alpha-helical and could therefore share a local sequence
similarity, which does not necessarily reflect a remote evolu-
tionary relationship.

Using 3D-templates. The sequence-based approach was
then compared with a previously published structure-based
approach (3D-template method) (12). The 3D-template
method was applied to the 14 representative structures in
set] and the jackknife test was performed: each structure in
the set was scanned against the HTH structural motifs of the
remaining 13 proteins, corresponding RMSD values were
calculated and the best RMSD was kept as the reference
value. Results reported in Figure 5b (red squares indicate
3D-template hits, green squares PD-/ib or FD-/ib hits and
brown square hits detected by both 3D-templates and HMM
libraries) showed that the 3D-templates were better than the
HMM approach, but their prediction was still in some way
restricted: only 56 hits over the possible 182 were detected and
again 4 structural templates detected no hit. Interestingly, only
2 of these 4 3D-templates were found to represent protein
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Table 3. HTH cross-hits

HMM rep Len ED-lib® FPro, PD-1ib® FPppi, Nseqs FD o PDjax’ Amax
IBMS 833 0 0 0 0 6 161 27 134
1SMT 122 3 0 2 0 42 108 28 80
1BOM 262 0 0 0 0 14 104 25 79
1BLO 129 0 0 1 1 45 90 26 64
1JHG 107 0 0 0 0 5 88 28 60
IFSE 74 1 0 2 1 30 73 32 41
ILMB 236 10 2 7 2 194 66 27 39
2DTR 226 3 2 2 0 10 62 29 33
1B72 430 0 0 0 0 182 60 33 27
IHLV 599 6 0 4 0 8 55 21 34
1HCR 190 4 2 4 0 14 54 22 32
2TCT 217 8 0 5 0 117 49 23 26
1HW5 210 3 0 3 1 12 34 29 5
1QPZ 340 5 1 6 0 27 34 24 10
Total 43 7 36 5

“Len, protein sequence length; FD-/ib, number of its detected from the corresponding FD-HMM; PD-/ib, number of hits detected from the corresponding PD-HMM;
FPep._jip, number of FP detected from the corresponding FD-HMM; FPpp, 5, number of FP detected from the corresponding PD-HMM; N4, number of sequences in
the Pfam multiple alignment; FD,,,,x, maximum sequence length in the FD multiple alignment; and PD,,,,,, maximum sequence length in the PD multiple alignment.

families in which the associated HMMs were also unable
to detect any hit. Such evidence suggested that the motif
sequence information could to some extent be complementary
to the motif structure information. In fact, a simple addition of
results from the two methods improved the cross-hit detection
of the single-feature approaches, with an increase in the num-
ber of detected hits to 76 for the FD-/ib/3D and to 67 for the
PD-lib/3D.

Detection of known HTHs: scan against a structurally
defined sequence set (set2)

The detection of known DNA-binding HTHs was analysed to
test if the libraries can identify this motif in sequences unre-
lated to the protein families used to derive the HMMs. Both
the FD and the PD libraries were scanned against sequences in
set2. A single E-value corresponding to the best hit was cal-
culated for each sequence in set2 by each library (i.e. the lowest
E-value among the 14 values generated by the 14 HMMs
constituting the library). Within each library, both the total
number of hits and the fractions of HTHXxTRUE and
HTHxFALSE hits were calculated with different cut-offs cor-
responding to log(E-value) intervals of 0.2. The fraction dis-
tributions showed a strong overlapping of HTHXxTRUEs and
HTHxFALSES at very high E-values, so that the definition of
any E-value threshold would cause either a low sensitivity (i.e.
high number of FNs) or a low specificity (i.e. a high number of
FPs). Moreover, the results were again comparable for both
the libraries, the only difference being the spread range of
E-values. E-values resultin% from the PD library were found
to be between 107 and 10 , while E-values from the FD-/ib
spread between 10~ ** and 10°. Such a difference was expected
and is ascribable to the difference in lengths between the
PD and the FD multiple alignments. In fact, the shortness
of PD-HMMs was expected to affect the E-value itself, mak-
ing it unlikely to assume very low values. However, neither
library was able to discriminate satisfactorily between HTHx-
TRUEs and HTHXFALSEs at high E-values.

The combination of the HMM libraries and the 3D-template
approach (Figure 6a and b) led to an improvement in
discrimination, as results of the cross-hit detection already

suggested. The linear discriminators were defined as follows
(see Materials and Methods):

(i) generate all possible lines joining each HTHxTRUE
with each HTHXFALSE within a ‘critical box’, defined
as the area where the maximum overlapping between
HTHxTRUEs and HTHXFALSEs was observed;

(i1) calculate the corresponding error rates and Matthew’s
correlation coefficient (P) values;

(iii) identify the threshold line that optimally separates
HTHXxTRUEs from HTHXFALSEs (i.e. showing the best
error rate and ®);

(iv) validate using a 10-fold cross-validation procedure.

The same procedure was performed on the single-feature
methods, i.e. FD library, PD library and 3D-templates, to allow
for a statistical measure and comparison of their effectiveness.
Results are reported in Table 4. It should be noted that the
statistical data corresponding to best lines were calculated
before the cross-validation and are liable to a certain amount
of over-prediction. Therefore, cross-validated parameters were
chosen as reference parameters for a better measure of the
performance of each method.

Cross-validated parameters obtained for the three single-
featured methods were comparable, although the FD library,
in contrast to results from jackknife tests, performed slightly
worse than both the PD-/ib and the 3D method. Moreover,
an interesting difference between the structure-based and the
sequence-based methods is noticeable: HMM libraries detect
a smaller number of FPs than the 3D method and therefore
the result is more specific, while the 3D method detects fewer
FNs with a subsequent increase in sensitivity.

It is worth highlighting that chains A of entries ILNW
and 1IXC, both known to include an HTH motif, were not
detected at first by the combined approaches (PD-/ib/3D and
FD-1ib/3D) because all methionines in their sequences are
replaced by selenomethionines (MSE). Conversion of all
MSE:s to classical methionines shifted the two E-values to
put the two hits back among the TPs.

The combined approaches improves over the single
performances, keeping both the highest specificity and the
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highest sensitivity found in the single-featured predictions, structural information to sequence information might
and, although the obtained -cross-validated parameters make the PD-HMMs to some extent more discriminating
were again comparable, the PD-/ib/3D method gave a  than the FD-HMMs for DNA-binding HTH motif
better statistics overall, showing that the addition of the 3D assignments.
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Table 4. Statistics of the 3D/log(E-value) predictions

Method NHBT? TP FP FN [} D (cv)* Err% Err%(cv)*
3D 42 29 14 16 0.610 0.538 0.81 0.81
PD-lib 20 18 3 27 0.570 0.524 0.84 0.87
FD-lib 16 16 1 29 0.562 0.483 0.84 0.89
3D/PD-lib 33 31 3 14 0.785 0.758 0.47 0.47
3D/FD-lib 29 29 1 16 0.782 0.747 0.48 0.48

“NHBT, number of hits below the thresholds; (cv), parameter calculated after 100 runs of 10-fold cross-validation.

Using the combined method to detect new HTHs in
a non-redundant PDB sequence set (set3) and in

a set of sequences from the PDB proteins of
unknown function (set4)

The PD-/ib/3D method was applied on sez3 to verify its ability
to detect DNA-binding HTHs in proteins with no structural
classification, and the results are shown in Figure 7a. It is
worth noting that the set includes a large number of sequences
corresponding to structures found in CATH and classifiable as
HTHxTRUEs or HTHXFALSEs (2116 proteins: 12 with
CATH SREP numbers found in set/, 34 with CATH SREP
numbers found in set2-HTHXxTRUE, and 2070 with CATH
SREP numbers found in the set2-HTHxFALSE). Therefore,
only 571 entries are structurally unclassified and represent
really ‘new’ HTHs relevant for the test (set3-unclassified sub-
set). Among the unclassified entries, three hits were detected
as positive, namely PDBs 1PP8, 1Q1H and 10KR correspond-
ing to Ibp39 initiator binding protein, transcription factor
E/lie A and the methicillin resistance regulator protein MECI,
respectively. According to their reference literature (28-30),
the three hits are winged-helix proteins that bind DNA and,
therefore, include an HTH motif in their DNA-binding
domains. For the sake of knowledge, the subset of CATH-
related entries was also analysed: 11 FNs (over HTHXTRUESs)
and only 1 FP were detected, with a @ of 0.857 and a per-
centage error rate of 0.57%.

Finally, to verify its applicability to function prediction
for proteins of unknown function, the method was applied
to all hypothetical proteins found in the PDB (set4). The set
included 477 chains from putative not DNA-binding proteins
and 7 chains from putative DNA-binding proteins; results are
shown in Figure 7b. All the hypothetical falses were predicted
as not-HTH chains. Five putative DNA-binding proteins were
correctly assigned, while the remaining two predictions were
wrong. However, the two hypothetical chains predicted as
falses (INFJ and INFH, chains A) were found to belong to
a unique protein, the chromatin protein Alba, which is sup-
posed to bind DNA by a flexible beta-hairpin motif and not by
an HTH motif (31) and should therefore be included in the
hypothetical falses. The other five trues (i.e. 1S70, 1R7J,
1TBX, 1KU9 and 1SGM, chains A) were all found to have
a putative DNA-binding winged-helix or HTH motif in their
structures.

Likewise, the FD-/ib/3D method was applied to set3-unclas-
sified and se#4 to verify if any significant difference between
the two approaches was detectable at this level. As expec-
ted, the obtained results were comparable. Three hits from
the set3-unclassified were detected as positive, two of them,
1PP8 and 1Q1H, were already been detected by the PD-/ib/3D
while the remaining, 1XCB (32), corresponds to a Rex family

transcriptional repressor and include a winged-helix DNA-
binding motif in its N-terminal domain. Predictions on set4
were identical to predictions seen for the PD-/ib/3D.

CONCLUSIONS

Protein families that bind DNA by an HTH motif are known
to vary widely in sequence over the whole DNA-binding
domains and their relationships can often only be based on
structural similarity. One might therefore assume that pattern
recognition will work better if based on HTH-only motif
sequences than on those from whole DNA-binding domains.
The main aim of this study was to develop more powerful
models to identify such motifs and to verify this hypothesis. In
particular, we have explored whether using the limited HTH
sequence proved more powerful than using the whole domain
sequence.

Given a set of unrelated DNA-binding protein families, we
were expecting that the HMMs from the HTH-only PDs would
have a better detection ability than those from the full DNA-
binding domain. Two separate HMM libraries were built from
the two different types of multiple alignment, and used to
detect DNA-binding HTH motifs in ‘unknown’ sequences.
Their detection ability was analysed at three different levels,
cross-hit detection, known-HTH detection and new-HTH
detection, compared with the ability of a previously published
structure-based method based on 3D structural templates and
combined with it. Generally speaking, sequence information
alone was insufficient to detect HTHs, but the addition of 3D
structural information resulted in significant improvements
and satisfactory performances. The results also highlighted
some interesting and controversial issues. In the cross-hit
detection, contrary to expectations, HMMs based on FDs
were slightly more effective than models based on the
HTH-only sequence, either when used separately or when
combined with 3D information. This might reflect hidden
evolutionary relationships but more probably can be explained
by the very high percentage of alpha-helices in these domains
that could influence the recognition of the HTH pattern. In
contrast to that, in the known-HTH detection, in which a much
larger set of proteins was considered and therefore a statistical
analysis was performable, the FD-HMMs were slightly less
powerful than the partial HTH-only HMMs. The best perform-
ance was obtained for the HTH-only sequence-plus-structure
tool, with a significant statistical improvement over the single-
feature methods (error rate ~ halved and Matthew’s correla-
tion coefficient increased by 0.2).

The obtained results did not meet our initial expectations
regarding the detection ability of PD sequences towards
FD sequences. However, single-feature methods were less
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powerful than those combined in all tests, suggesting some
non-obvious complementarity between sequence and structure
information that can be successfully used for the assignments
of the DNA-binding function to proteins of unknown function.
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