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•  Background and Scope  The epiphytic life form characterizes almost 10 % of all vascular plants. Defined 
by structural dependence throughout their life and their non-parasitic relationship with the host, the term epi-
phyte describes a heterogeneous and taxonomically diverse group of plants. This article reviews the importance of 
crassulacean acid metabolism (CAM) among epiphytes in current climatic conditions and explores the prospects 
under global change.
•  Results and Conclusions  We question the view of a disproportionate importance of CAM among epiphytes 
and its role as a ‘key innovation’ for epiphytism but do identify ecological conditions in which epiphytic existence 
seems to be contingent on the presence of this photosynthetic pathway. Possibly divergent responses of CAM 
and C3 epiphytes to future changes in climate and land use are discussed with the help of experimental evidence, 
current distributional patterns and the results of several long-term descriptive community studies. The results and 
their interpretation aim to stimulate a fruitful discussion on the role of CAM in epiphytes in current climatic con-
ditions and in altered climatic conditions in the future.
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A BRIEF HISTORY OF OUR VIEW OF CAM IN 
EPIPHYTES

Vascular epiphytes differ from ground-rooted terrestrial auto-
trophs by their structural dependence on a host, typically a tree. 
They germinate, grow and reproduce on a host tree without 
establishing contact to the soil at any stage of their life cycle, 
which sets them apart from other structurally dependent forms, 
such as climbers or hemiepiphytes (Zotz, 2016). Importantly, 
in contrast to co-occurring mistletoes, they do not tap the host 
directly for resources. The epiphytic lifestyle is common; the 
most recent tally of the number of vascular plant species that 
primarily occur epiphytically reported >30 000 species, i.e. ~10 
% of the global flora (Zotz et al., 2021b). A rather precarious 
supply of water is typically seen as a major consequence of epi-
phytic growth in trees.

Considering that a key benefit of crassulacean acid metab-
olism (CAM) is the economical use of water (Winter, 2019), 
it is unsurprising that researchers investigated the possibility 
that CAM might be used by vascular epiphytes. [‘CAM plants’ 
obtain the majority of their carbon through the CAM pathway 
throughout their lives, typically deduced from a δ13C value 
of leaf tissue > −20 ‰ (Winter, 2019).] This was shown, for 
the first time, ~60 years ago (Nuernbergk, 1961, 1963). From 
the 1960s until the early 1980s, it was possible to publish re-
ports with the basic discovery that an epiphyte was capable 

of nocturnal CO2 uptake, e.g. ‘Algumas informações sôbre 
a capacidade rítmica diária da fixação e acumulação de CO2 
no escuro em epífitas e erbáceas terrestres da mata pluvial’ 
by Coutinho (1964), ‘Two types of carbon fixation in trop-
ical orchids’ by Neales and Hew (1975), or ‘Water relations of 
tropical epiphytes. III. Evidence for CAM’ by Sinclair (1984). 
Starting out as a curiosity, more and more studies documented 
the occurrence of CAM among epiphytes not only in dry for-
ests, but also in moist habitats (Winter et al., 1983; Earnshaw 
et al., 1987; Holthe et al., 1992; Kluge et al., 1995; Zotz and 
Ziegler, 1997). A pattern that was noted early on (Nuernbergk, 
1961, 1963) was a correlation between leaf thickness and the 
presence of CAM. Once C4 is excluded by way of inspection 
of leaf anatomy, species with thin leaves are typically C3 and 
those with thicker leaves are associated with CAM. Although 
later studies largely confirmed this general pattern (e.g. Teeri et 
al., 1981; Winter et al., 1983; Earnshaw et al., 1987; Zotz and 
Ziegler, 1997), there are also obvious deviations from this rule, 
e.g. in the case of species with thin leaves and with a carbon iso-
tope ratio indicative of CAM (Zotz and Ziegler, 1997; Herrera, 
2020). Hence, leaf thickness is a rough, but not totally reliable 
proxy for the photosynthetic pathway of epiphytes.

Summarizing the knowledge on CAM among epiphytes after 
more than three decades of research, Winter and Smith (1996) 
came up with the following calculation: with a then known 
number of 20 000 orchid species, more than two-thirds of 
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which are epiphytes and an estimated 50 % of which were con-
sidered likely to use the CAM metabolic pathway (Winter and 
Smith, 1996), there could be as many as 7000 epiphytic orchid 
species with CAM. The number of CAM taxa in the global flora 
apart from orchids was estimated as 9000 species by the same 
authors (Smith and Winter, 1996; Winter and Smith, 1996). 
Given that many of these CAM species are also epiphytic, most 
importantly in Bromeliaceae (e.g. in genera such as Aechmea 
and Tillandsia), Cactaceae (e.g. in Rhipsalis and Epiphyllum) 
or Apocynaceae (e.g. in Hoya and Dischidia), epiphytic spe-
cies would thus account for the majority of an estimated 16 000 
CAM species globally, exceeding by far the number of terres-
trial CAM taxa.

During the last two decades it has become increasingly clear 
that the bimodal distribution of δ13C values commonly found 
in screening studies (e.g. Winter, 1979; Winter et al., 1983; 
Earnshaw et al., 1987; Zotz and Ziegler, 1997) with a ‘gap’ at 
~−20 ‰ does not delineate two distinct groups with and without 
the capacity for nocturnal acidification. Rather, there is a linear 
relationship between the proportion of nocturnally fixed carbon 
and δ13C values (Winter and Holtum, 2002), with a value of −20 
‰ being indicative of ~50% nocturnal uptake. Not surprisingly 
then, there is an ongoing debate over whether CAM should be 
seen as a discrete or a continuous trait (e.g. Zotz, 2002; Winter 
et al., 2015; Messerschmid et al., 2021; Winter and Smith, 
2022). However, such a conceptual debate is by no means 
idiosyncratic for this photosynthetic pathway. ‘Halophyte’ vs. 
‘glycophyte’ is another example of seemingly binary categories 
that will probably remain an issue of rather arbitrary delimi-
tations (Grigore et al., 2014), as is the case for ‘succulent’ 
(‘Succulence is not a binary trait’; Ogburn and Edwards 2010) 
or ‘pseudobulb’ vs. ‘normal’ stem in Orchidaceae (Göbel et al., 
2020). In the following treatise, we do not ignore cases with ra-
ther modest nocturnal activity, frequently called ‘weak CAM’ 
(Winter, 2019), but reserve the term ‘CAM species’ or ‘CAM 
plant’ for those cases in which the majority of carbon uptake 
occurs nocturnally (Winter, 2019).

RECENT INSIGHTS: HOW IMPORTANT IS CAM IN 
EPIPHYTES?

Regular water shortage is usually seen as one of the few chal-
lenges that most epiphytes share. Considering that the water-
use efficiency of CAM plants is much higher than that of C3 
plants (Winter, 2019), suggesting a high proportion of epiphyte 
species with CAM seems very reasonable, but has the estimate 
of Winter and Smith (1996) stood the test of time? The answer 
is clearly no.

Further exploration in the following decades until today has 
led to a strong decrease in our current estimate of the num-
bers of epiphytes using CAM. In one of the most ambitious 
studies to date, covering >1000 orchid species from Panama 
and Costa Rica, Silvera et al. (2010) detected δ13C values indi-
cative of CAM (δ13C > −20 ‰) in only ~10 % of all epiphytic 
species. Although the proportion of CAM species is much 
lower among terrestrial orchids (4 of 121 species, i.e. 3 %), 
this proportion among epiphytes falls short by far of the 50 % 
estimate of Winter and Smith (1996). Another, similarly exten-
sive survey among Colombian orchids by Torres-Morales et al. 

(2020) reported a comparable figure for epiphytic CAM species 
(9.5 %, or 76 of 805 species), but relatively more CAM species 
among terrestrials (7.3 %, or 19 of 260 species).

A recent, comprehensive analysis of numerous functional 
traits of vascular epiphytes by Hietz et al. (2022) revealed that 
CAM is found in ~10 % of the studied epiphyte species. This 
proportion is similar to the global estimate of 6–7 % for all vas-
cular plants (Winter and Smith, 1996), particularly when con-
sidering that the latter group includes >70 000 species of trees 
(Gatti et al., 2022), all of which are C3 (with the rare exception 
of a few CAM trees in the genus Clusia; Luján et al., 2021) and 
a strong taxonomic and geographical bias in the epiphyte data 
(details in the study by Hietz et al., 2022). Note that bromeliads 
are excluded from this calculation because this family stands 
out with a much higher proportion of CAM species (Crayn et 
al., 2015). In the subfamily Bromelioideae, CAM is highly 
dominant (~90 %), but this high proportion is not related to life 
form; epiphytic and terrestrial taxa do not differ in that regard. 
In the subfamily Tillandsioideae, which is dominated by epi-
phytes, CAM is also common; 28 % of all species show CAM, 
but again without a life form bias. Hietz et al. (2022) pointed out 
that many, if not most, aspects of the functional ecology of vas-
cular epiphytes are understudied, hampering generalizations. 
However, this is not true for CAM; there is a solid database 
available. Thus, we can dismiss with considerable certainty pre-
vious assertions that CAM is ‘common’ among epiphytes (e.g. 
Zotz and Hietz, 2001) or speculations that the majority of all 
CAM taxa globally are epiphytic (e.g. Winter and Smith, 1996; 
Lüttge, 2004), and as discussed below, we conclude that the 
large majority of epiphytes are not CAM plants. This statement 
does not ignore that in some taxonomic groups CAM species 
can be very common (e.g. in Bromeliaceae) or even ubiquitous 
(e.g. in Cactaceae). However, these are family characteristics 
irrespective of terrestrial or epiphytic growth. Neither is this a 
statement about the occurrence of limited nocturnal acidifica-
tion in epiphytes. There are simply not enough data to conclude 
whether such ‘weak’ CAM is particularly common among epi-
phytic compared with terrestrial plants.

In the following, we quantify the relative importance of CAM 
in epiphyte communities with data from three published studies 
(Einzmann et al., 2015; Einzmann and Zotz, 2017; Wagner et 
al., 2021). When possible, we perform a separate analysis for 
epiphytes in tree crowns, excluding trunk epiphytes. In the first 
of these studies, in emergent trees on Barro Colorado Island 
(BCI), the number of epiphyte individuals with CAM is clearly 
highest on drought-deciduous tree species, such as Cavanillesia 
platanifolia (Table 1), whereas such a trend is not observed with 
regard to species numbers. As expected, the proportion of CAM 
species is higher in tree crowns compared with that on the trunk 
or that of the epiphyte community of the entire tree (Wilcoxon 
signed rank tests, P < 0.01).

The relative importance of CAM in the epiphyte communi-
ties of four evergreen emergents in the moister forest of the 
San Lorenzo crane site in Panama is similar in terms of both 
individual numbers and species (Table 2). However, in this case 
the differences between the proportion of CAM species in tree 
crowns vs. tree trunks or that of the epiphyte community of 
the entire tree are not significant (Wilcoxon signed rank test, 
P > 0.2).
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The third data set represents epiphytes on pasture trees along 
a rainfall gradient in western Panama (Table 3). Here, CAM spe-
cies account for a remarkable 57 % of all individuals (and 33 % 
of the species) even at the wet end, where rainfall is similar to 
that received by the forest in San Lorenzo. This reinforces the 
notion that the spatial context of host trees is highly important, 
and not only large-scale climatic conditions; the microclimate 
in the crowns of widely spaced trees differs substantially from 
those in tree crowns in a closed forest. At the dry end of the 
gradient, with <1500 mm yr−1 of rain, almost all epiphytes use 
CAM (Einzmann and Zotz, 2017).

The last observation is fully in line with reports from dry 
tropical forest habitats. There, CAM seems to be (almost) in-
dispensable for epiphytic existence. Relevant studies from dry 
tropical forests in Mexico consistently show that the proportion 
of epiphytes with CAM reaches 100 % (Mooney et al., 1989; 

Reyes-García et al., 2008; Cach-Pérez et al., 2018), whereas the 
results of a study from Brazil (Fontoura and Reinert, 2009) are 
more in line with observations by Einzmann and Zotz (2017) in 
pasture trees in lowland Panama (Table 3). In both cases, CAM 
is clearly dominant, but there is a considerable proportion of 
species that use C3.

The previous comparisons of species numbers assessed the 
relative importance of CAM primarily in a biodiversity context. 
To evaluate the importance of CAM in an ecosystem context, 
carbon flux or biomass is the more appropriate currency. Using 
this rationale, Zotz (2004) compared the relative contribution 
of CAM epiphytes to the total species count, total number of 
individuals and total biomass in a moist lowland forest. Given 
that CAM species tended to be rarer and smaller than C3 spe-
cies, the relative importance of CAM at the community level 
was much smaller when expressed on an individual and on a 

Table 1.  Occurrence (abundance and species) of epiphytes with crassulacean acid metabolism (CAM) on five emergent tree species of 
varying phenology on Barro Colorado Island, Panama. Of each tree species, five individuals were studied, except Brosimum alicastrum 
with only four individuals. The ‘Total’ column gives the number of all individuals and species, respectively, across all 24 studied trees (or 
crowns, respectively) and the proportion of individuals/species with CAM. Percentage data for the individual tree species are given as 
the mean ± s.d. Data are from Einzmann et al. (2015). Barro Colorado Island is located in the Panamanian lowlands and experiences a 

pronounced 4-month dry season and ~2700 mm yr−1 rainfall

  Host tree species

Epiphyte Total Anacardium 
excelsum 

Brosimum 
alicastrum 

Ceiba 
pentandra 

Pseudobombax 
septenatum 

Cavanillesia 
platanifolia 

Individuals 25 592 10 963 3432 8826 2296 75

Species 87 65 49 50 20 7

CAM individuals (%) 4.9 1.2 ± 1.1 9.3 ± 6.4 8.1 ± 4.6 15.3 ± 19.7 24.6 ± 33.9

CAM species (%) 16 7.1 ± 5.5 17.0 ± 10.0 21.3 ± 9.7 21.4 ± 8.0 16.7 ± 23.6

Crown individuals 24 420 10 458 2755 8290 1763 14

Crown species 79 60 43 47 7 7

Crown CAM individuals (%) 4.6 1.2 ± 1.1 8.3 ± 8.1 8.0 ± 5.3 15.7 ± 20.5 16.7 ± 33.3

Crown CAM species (%) 15.2 6.6 ± 5.5 18.5 ± 15.7 22.6 ± 12.0 31.3 ± 6.4 8.3 ± 16.7

Table 2.  Occurrence (abundance and species) of epiphytes with crassulacean acid metabolism (CAM) on four tree species in the forest 
of San Lorenzo, Panama. Eight emergent trees of Aspidosperma spruceanum, three trees of Brosimum utile, eight trees of Calophyllum 
longifolium and four trees of Manilkara bidentata were studied. Only species for which δ13C information was available were included. 
Hemiepiphytes were excluded. The ‘Total’ column gives the number of all individuals and species, respectively, across all 24 studied trees 
(or crowns, respectively) and the proportion of individuals/species with CAM. Percentage data for the individual tree species are given 
as the mean ± s.d. Data are from Wagner et al. (2021). The forest is tropical moist lowland forest that experiences a 3- to 4-month-long 

dry season each year and ~3300 mm yr−1 of rainfall

  Host tree species

Epiphyte Total Aspidosperma spruceanum Brosimum utile Calophyllum longifolium Manilkara bidentata 

Individuals 4655 824 807 1516 1508

Species 66 39 39 53 33

CAM individuals (%) 3.0 10.1 ± 12.6 1.6 ± 1.9 5.1 ± 7.0 1.6 ± 1.3

CAM species (%) 11.9 10.3 ± 10.7 5.1 ± 4.5 8.7 ± 5.6 7.7 ± 6.2

Crown individuals 4080 672 713 1307 1388

Crown species 57 32 33 46 29

Crown CAM individuals (%) 2.8 10.3 ± 15.1 1.9 ± 2.0 4.8 ± 9.6 6.1 ± 9.4

Crown CAM species (%) 15.1 11.1 ± 13.9 7.1 ± 6.3 6.5 ± 5.3 13.7 ± 14.1
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biomass basis (Fig. 1). Whether this is a general pattern remains 
to be assessed in future studies.

Along elevational gradients, such as the one that Hietz et al. 
(1999) studied, from dry premontane forest to montane cloud 
forest, the proportion of CAM in epiphyte communities de-
clines. In humid upper montane forests with particularly lush 
epiphyte vegetation, the proportion of CAM species is low 
(Earnshaw et al., 1987; Hietz et al., 1999; Torres-Morales et 
al., 2020; Guzmán-Jacob et al., 2022) and CAM biomass may 
account for only 2–3 % of the total epiphyte biomass (Hietz 
et al., 1999). Thus, although the global database is still ra-
ther limited and future studies might lead to some adjustments 
of these figures, current evidence from studies of elevational 
patterns does not support the notion that CAM is particularly 
common in these epiphyte-rich habitats.

Finally, Zotz (2016) compiled biomass data for epiphytic and 
terrestrial CAM plants at a global scale. Available data suggest 
that the biomass of CAM epiphytes in tropical lowland forests 

is typically <10 kg ha−1, with much higher values for so-called 
‘atmospheric’ epiphytic bromeliads in semi-desert environ-
ments (>100 kg ha−1; Flores-Palacios et al., 2015). Terrestrial 
CAM biomass in arid systems in southern Peru, North America 
or Southern Africa can exceed 1000 kg ha−1 (Zotz, 2016). Thus, 
CAM in epiphytes does not rival the importance of CAM in ter-
restrial plants from an ecosystem perspective either.

To summarize, CAM is not (as frequently claimed) generally 
predominant in the epiphytic habitat, whether analysed as a pro-
portion of species or individuals or as the contribution of CAM 
species to total biomass. However, at least in two Neotropical 
families (Cactaceae and Bromeliaceae), the presence of CAM 
has been called a key factor for the evolutionary radiation of 
plant lineages into tree crowns (e.g. Benzing, 1989; Givnish et 
al., 2014). Is this a valid argument?

CAM AND THE EVOLUTION OF EPIPHYTISM

A key evolutionary innovation is a morphological or physio-
logical change in an individual trait that leads to an increase in 
diversification rate (Hunter, 1998). CAM is an excellent can-
didate for the study of such a potential key innovation because 
both the adaptive advantages and the metabolic costs of CAM 
are well characterized and because this trait has arisen multiple 
times, which allows the comparative study of the ecological and 
evolutionary implications of a transition from C3 to CAM and 
vice versa in many independent plant groups. Another aspect 
of considerable interest in the context of this review is the pos-
sible correlation of the evolution of CAM with other aspects of 
the biology of a plant group, such as particular morphological 
features (e.g. a tank in bromeliads or a pseudobulb in orchids) 
or habitat preferences, i.e. a possible link between epiphytism 
and CAM.

There are a number of studies that suggest increased diver-
sification rates in CAM clades compared with C3 lineages, e.g. 
in Euphorbiaceae (Horn et al., 2014), Bromeliaceae (Givnish 
et al. 2014; Silvestro et al., 2014) or Orchidaceae (Silvera et 
al., 2009; Givnish et al., 2015), irrespective of a preference 
for terrestrial or epiphytic growing sites. In contrast, other 
studies have found no such differences. For example, diver-
sification rates of CAM and C3 species of Afro-Malagasy 
Eulophiinae orchids did not differ (Bone et al., 2015), and 
a recent study with >100 Bulbophyllum species (Hu et al., 
2022) suggested that a stimulation of speciation processes 
by CAM did happen initially, but was only temporary (i.e. 
during a low-CO2 period in the Miocene). In the long run, 
CAM lineages in that genus had ten times higher extinction 
rates than C3 lineages.

The empirical support for a link between CAM and 
epiphytism is also mixed. There is, for example, a study with 
the genus Cymbidium, in which CAM is restricted to epiphytic 
and lithophytic taxa, whereas all terrestrial Cymbidium species 
use C3 photosynthesis (Motomura et al., 2008b). Givnish et 
al. (2014) reported a very strong link between the evolution 
of epiphytism and both the possession of a water-impounding 
tank and entangling seeds in Bromeliaceae, but they were un-
able to detect a correlated evolution between the epiphytic habit 
and CAM. They observed, however, that CAM photosynthesis 
evolved more frequently overall in epiphytic than in terrestrial 

Table 3.  Occurrence of crassulacean acid metabolism (CAM) in 
epiphytes on 425 pasture trees with epiphytes in Panama, 2013. 
Only species for which δ13C information was available were in-
cluded, excluding five species. CAM was much more prominent 
at the dry end of the rainfall gradient of this study (Einzmann 
and Zotz, 2017). The study was conducted in the south-western 
Panamanian lowlands, spanning a rainfall gradient from ~1100 to 
4200 mm yr−1. The region experiences a 3- to 4-month dry season 

each year

Epiphyte Census 2013 Gradient dry end,
1100–1500 mm yr−1 

Gradient wet end,
>3500 mm yr−1 

Individuals 60 878 2576 21 282

Species 81 9 57

CAM individuals (%) 53.2 99.6 57.2

CAM species (%) 34.6 66.7 33.3
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Fig. 1.  Relative importance of crassulacean acid metabolism (CAM) in a vas-
cular epiphyte community in the lowland forest of San Lorenzo (Panama) ex-
pressed as the proportion of species with CAM, the proportion of individuals 
with CAM and the contribution of these individuals to total biomass. For de-

tails, see Zotz (2004).



Zotz et al. — CAM in epiphytes 689

clades. An earlier analysis of the same family had found the 
opposite trend; transitions to CAM photosynthesis were much 
more common in terrestrial clades (Quezada and Gianoli, 
2011). Even if there are methodological reasons for such dis-
parate results for the same family, neither study provides strong 
support for a link between CAM and epiphytism.

In summary, evidence that CAM is a key innovation that leads 
to higher diversification in plants in general is mixed. Likewise, 
evidence for correlated evolution of CAM and epiphytism is 
also varied, which is not very surprising, given that previous 
estimates of a disproportionate number of CAM species among 
epiphytes seem to be exaggerated.

PARTICULAR ASPECTS OF CAM IN EPIPHYTES

Epiphytes might still be special in the use of CAM because this 
photosynthetic pathway can be found in any vegetative and re-
productive organ, particularly noteworthy in roots. Roots of ter-
restrial plants typically grow underground, which precludes any 
photosynthetic activity, but at least the roots of bark epiphytes 
are exposed to sunlight. In some cases, such as many species 
in the genera Campylocentrum, Dendrophylax or Chiloschista, 
roots even serve as the only photosynthetically active organ 
(Benzing and Ott, 1981). All the tested leafless orchids have 
roots that use CAM (Benzing and Ott, 1981; Cockburn et al., 
1985; Winter et al., 1985). In most other studied epiphytic 
orchids, however, roots fix carbon via the C3 pathway, even 
in species in which leaves engage in CAM (Motomura et al., 
2008a; Moreira et al., 2009; Martin et al., 2010). In most cases, 
the contribution of roots to the carbon budget of the entire plant 
is probably moderate; Benzing and Ott (1981) found constant 
release of CO2 during both day and night in eight of nine tested 
species. No data are available about possible photosynthetic ac-
tivity of roots of non-orchid epiphytes.

CAM is found in the stems of all epiphytic (as in terres-
trial) cacti, and there is also evidence for CAM in pseudo-
bulbs of many Orchidaceae (Rodrigues et al., 2013; Tay et al., 
2019). There are a few leafless orchids, such as Bulbophyllum 
minutissimum, in which the pseudobulb is even the primary 
photosynthetic organ. Unlike most other pseudobulbs (Göbel 
et al., 2020), these organs possess not only a well-developed 
succulent chlorenchyma, but also stomata, and a δ13C value of 
−17 ‰, which is clear evidence for CAM (Winter et al., 1983). 
CAM activity has also been documented in reproductive or-
gans. Nocturnal CO2 fixation in petals was already reported 
>50 years ago by Dueker and Arditti (1968) for two Cymbidium 
hybrids, and CAM in the fruits of two orchid species has been 
reported decades later (Zotz et al., 2003).

In most of the cases described, CAM activity in non-foliar 
organs does not seem to lead to a net uptake of CO2 but rather 
allows the recovery of some otherwise lost respiratory CO2 and 
an increase in water retention across the entire plant body. This 
might be highly relevant in epiphytes that can invest up to 30 
% of plant biomass into reproductive structures. As in foliar 
organs, CAM can be constitutive or inducible (sensu Winter, 
2019). For example, no CAM activity was detected in leaves, 
pseudobulbs and roots of well-watered Oncidium sp., but under 
drought stress the pseudobulbs and roots switched to CAM 
(Rodrigues et al., 2013).

All these observations lead to the conclusion that the photo-
synthetic pathways of different plant organs can be independent. 
Thus, a ‘CAM plant’, typically identified by the analysis of the 
photosynthetic pathway of its primary photosynthetically ac-
tive organ, can have roots with C3 photosynthesis, such as in 
a Paphiopedilum cultivar (Martin et al., 2010), whereas a ‘C3 
plant’, such as Dimerandra emarginata (Zotz and Tyree, 1996), 
can have fruits that engage in CAM (Zotz et al., 2003).

CAM AND EPIPHYTES IN THE FUTURE

Human activities have led to unprecedented changes in the bio-
sphere and continue to do so (IPCC, 2021). At a global level, 
CO2 concentrations and air temperatures are on the rise, cli-
matic extremes are increasing in frequency and severity, and 
all these changes are accompanied by changes in land use and 
increased nutrient depositions (Sala et al., 2000). In the fol-
lowing, we review experiments and other evidence that shed 
light on the effects of several aspects of global change: elevated 
CO2, increased temperature, altered water supply and extreme 
weather events, always with particular emphasis on epiphytes 
with CAM. We note from the start that the data basis is generally 
thin, and conclusions must therefore be considered preliminary.

Effects of elevated CO2

Numerous gas exchange studies have investigated the effect of 
varying CO2 concentrations on plants. Generally, an increase in 
atmospheric CO2 concentration stimulates leaf photosynthesis, 
water-use efficiency and growth in C3 and C4 plants (Drake et 
al., 1997; Ward et al., 1999; Winter et al., 2001; Cernusak et 
al., 2013). Although CAM plants use phosphoenolpyruvate 
carboxylase (PEPCase) for the initial CO2 fixation at night, in 
well-watered conditions they can assimilate CO2 directly by 
ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) 
during the daytime (phases II and IV of CAM; Nobel and 
Bobich, 2002; Winter and Smith, 2022). Then, the response 
of net CO2 uptake to increasing atmospheric CO2 concentra-
tions of CAM species resembles that of C3 species and exceeds 
that of C4 species (Drennan and Nobel, 2000). Terrestrial CAM 
plants generally have higher maximal instantaneous rates of net 
CO2 uptake (3–18 μmol m−2 s−1) than epiphytic CAM plants 
(2–3 μmol m−2 s−1) (Nobel and Bobich, 2002). Does this trans-
late into relative differences in the responses to increasing at-
mospheric CO2 concentrations?

Few studies have investigated the effect of elevated CO2 on 
vascular epiphytes, and most of them have used in vitro plant-
lets (Gouk et al., 1997, 1999) or ornamental plants (Li et al., 
2002a; Croonenborghs et al., 2009; Monteiro et al., 2009). 
Furthermore, some results from studies with epiphytic brome-
liads are inconsistent (Monteiro et al., 2009; Zotz et al., 2010). 
Among the expected physiological responses of C3 and CAM 
epiphytes to elevated CO2 are increases in photosynthesis, 
growth and dark respiration, as observed in gametophytes of 
the C3 fern Pyrrosia piloselloides (Ong et al., 1998), reduced 
stomatal conductance in phase I of CAM, that led to a reduc-
tion of ~20% in water loss in Tillandsia brachycaulos, but an 
increase in stomatal conductance and water loss by ~130% in 
the C3 fern Phlebodium aureum in low-light conditions (Batke 
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et al., 2018). However, there are also unexpected growth re-
sponses (Croonenborghs et al., 2009; Monteiro et al., 2009). 
For example, Croonenborghs et al. (2009) found that elevated 
CO2 treatments had adverse effects on the ornamental value 
of three bromeliads, producing shorter plants with paler green 
leaves than control plants.

Laboratory studies on the effect of doubled CO2 concentra-
tions on C3 and CAM epiphytes report an average increase in 
relative growth rate of ~20 %, with little difference in growth 
stimulation between C3 species and CAM species (Table 4). 
The median increase of ~16 % in CAM epiphytes is less than 
half of the reported increase in terrestrial CAM plants. There, 
increases in shoot dry mass average 35 % under similar CO2 
enrichment (Drennan and Nobel, 2000).

In several CAM epiphytes, an increase of photosynthetic and 
sugar production enzymes, titratable acidity (Li et al., 2002b) 
and exceptional root growth (Gouk et al., 1999; Li et al., 2002b) 
have been found. Such increased root growth in elevated CO2 
conditions has also been described in terrestrial CAM species 
(Cui et al., 1993; Zhu et al., 1997).

What is the physiological basis of increased growth? 
Higher carbon gain during the light period under elevated 
CO2, compared with current CO2 conditions (mostly in phase 
IV of CAM), has been reported for terrestrial CAM plants 
(Graham and Nobel, 1996; Winter et al., 2014). Indeed, 
many CAM plants will take up substantial amounts of CO2 
during the daytime given favourable environmental condi-
tions (Nobel, 2003). This is also true for CAM epiphytes. For 
instance, two epiphytic bromeliad species took up ~20 % of 
the daily total CO2 during the light period, mostly in phase 
IV, in well-watered conditions (Graham and Andrade, 2004). 
Further evidence that an increase in nocturnal CO2 uptake 
might play hardly any role in a growth stimulation of epi-
phytic CAM plants comes from an experimental study with 
three Aechmea species (Wagner and Zotz, 2018): doubling 
CO2 from 400 to 800 µL L−1 increased their relative growth 
rate by 61 % in well-watered conditions, but nocturnal acid-
ification remained unchanged. Thus, this increase in growth 
resulted entirely from higher assimilation during the light 
period.

Table 4.  The effect of elevated CO2 on growth of vascular epiphyte species in five published studies. Given are the average relative 
growth rates (RGR, in mg g−1 d−1) at low and high CO2, the absolute (in mg g−1 d−1) and relative effect size (as a %). CO2 concentrations 
were 280/560 µL L−1 (Monteiro et al., 2009), 350/700 µL L−1 (Zotz et al., 2010), 380/760 µL L−1 (Li et al., 2002a; Croonenborghs et al., 
2009) and 400/800 µL L−1 (Wagner and Zotz, 2018). The median absolute and relative effect sizes are 0.4 mg g−1 d−1 and 19 %, respect-

ively, with no differences between CAM and C3 plants (Wilcoxon test, P > 0.5)

Species Family C3/CAM RGR low RGR high Effect size (absolute) Effect size (relative) Source 

Aechmea bracteata Bromeliaceae CAM 1.1 3.9 2.8 250 Wagner and Zotz (2018)

Aechmea fasciata Bromeliaceae CAM 11.8 10.6 −1.2 −10.2 Croonenborghs et al. (2009)

Aechmea fasciata Bromeliaceae CAM 2.1 2.9 0.7 33.6 Monteiro et al. (2009)

Aechmea ‘Maya’ Bromeliaceae CAM 3.6 3.2 −0.3 −8.7 Croonenborghs et al. (2009)

Aechmea mexicana Bromeliaceae CAM 7.1 10 2.9 43 Wagner and Zotz (2018)

Aechmea veitchii Bromeliaceae CAM 5.9 7.0 1.1 19 Wagner and Zotz (2018)

Catopsis juncifolia Bromeliaceae C3 3.8 4.3 0.5 11.8 Monteiro et al. (2009)

Catopsis nitida Bromeliaceae C3 6.5 6.1 −0.5 −7.1 Zotz et al. (2010)

Guzmania ‘Hilda’ Bromeliaceae C3 10.5 12.9 2.4 23.1 Croonenborghs et al. (2009)

Guzmania monostachya Bromeliaceae C3 1.4 2.0 0.6 39.0 Zotz et al. (2010)

Racinea contorta Bromeliaceae C3 0.4 2.0 1.6 440 Zotz et al. (2010)

Tillandsia elongata Bromeliaceae CAM 3.6 4.0 0.4 11.1 Zotz et al. (2010)

Tillandsia fasciculata Bromeliaceae CAM 2.8 2.4 −0.4 −14.2 Monteiro et al. (2009)

Tillandsia fasciculata Bromeliaceae CAM 2.0 2.3 0.3 14.0 Zotz et al. (2010)

Tillandsia heterophylla Bromeliaceae C3 0.1 2.2 2.2 4300 Zotz et al. (2010)

Tillandsia juncea Bromeliaceae C3 2.3 2.7 0.5 20.7 Zotz et al. (2010)

Tillandsia subulifera Bromeliaceae CAM 1.8 1.0 −0.8 −44.6 Zotz et al. (2010)

Tillandsia viridiflora Bromeliaceae C3 0.4 0.8 0.4 88.6 Zotz et al. (2010)

Vriesea ‘Splenriet’ Bromeliaceae C3 4.4 4.6 0.2 3.8 Monteiro et al. (2009)

Werauhia laxa Bromeliaceae C3 8.6 8.7 0.1 1.3 Zotz et al. (2010)

Werauhia sanguinolenta Bromeliaceae C3 4.2 5.5 1.4 32.8 Zotz et al. (2010)

Bulbophyllum longissimum Orchidaceae CAM 0.9 1.0 0.2 20.0 Monteiro et al. (2009)

Mokara ‘Yellow’ Orchidaceae CAM 6.8 8.5 1.7 25.3 Li et al. (2002a)

Oncidium enderianum Orchidaceae C3 1.2 1.1 −0.1 −8.2 Monteiro et al. (2009)
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The expected mitigating effect of elevated CO2 under low 
water supply was not found in a study with several epiphytic 
bromeliad species (Zotz et al., 2010); however, it was noted 
that species from the lowlands were more drought tolerant than 
those from montane areas. Likewise, Wagner and Zotz (2018), 
studying three Aechmea species, found that elevated CO2 did 
not compensate for the negative effect of low water supply. In 
contrast, Batke et al. (2018) reported a strong reduction in 24 h 
water loss for Tillandsia brachycaulos in high-light and ele-
vated CO2 conditions, but no changes in water relationships 
between CO2 treatments. Yet, in this last study, the high-light 
treatment (650 mmol m−2 s−1) was unrealistic, because in situ 
such light conditions occur only during the dry season in the 
driest forest habitat of this species (González-Salvatierra et 
al., 2021), whereas the experiment was conducted with well-
watered plants. Moreover, although T.  brachycaulos inhabits 
forests where high light and low water availability are usu-
ally accompanied by high vapour pressure deficits and high 
temperature, this species shows modest seasonal changes in 
leaf water relationships within the forest canopy (Hernández-
Robinson et al., 2020).

Increased temperature

Temperature affects all aspects of the biology of plants, from 
germination to growth and reproduction. In a study with a focus 
on epiphytic bromeliads, Müller et al. (2017) observed that the 
expected temperature increase in tropical latitudes of 3 °C by the 
end of this century would stimulate germination in most cases. 
This positive effect warns against sweeping predictions of gen-
erally negative effects of climate change. However, conditions 
in nature are complex, and any positive temperature effect in 
laboratory conditions might be irrelevant ecologically if in situ 
low and more erratic water availability precludes germination. 
Using the data of Müller et al. (2017), we tested whether a tem-
perature rise of 3 °C would affect germination in C3 and CAM 
species differently. Specifically, we analysed whether the ex-
perimentally determined optimal temperature for germination 
would fall within the predicted mean annual temperature ranges 
of each species at the end of this century. This is the case for a 
majority of C3 species (14 of 20 species), but for only eight of 
the 21 CAM species in that particular study. However, this dif-
ference was not significant (χ2 = 2.6, P = 0.11). If anything, the 
trend indicates an advantage of C3 species.

At a leaf physiological level, the main problem for CAM 
plants should be an increase in nocturnal temperatures, because 
daytime temperatures hardly affect net CO2 uptake in terrestrial 
CAM plants (Nobel, 2003). In contrast, there is evidence for 
many terrestrial CAM plants that high night-time temperatures 
(>30 °C) affect stomatal aperture and reduce net CO2 uptake 
(Nobel, 2003). Certainly, the optimal mean nocturnal tem-
perature for most of these terrestrial CAM plants is relatively 
low, ~15 °C (Nobel and Bobich, 2002; Nobel, 2003), because 
PEPCase and NAD(P)-malate dehydrogenase have optimal 
mean temperatures reflecting the conditions of cooler nights 
(Yamori et al., 2014). Indeed, substantial net CO2 uptake occurs 
at a nocturnal temperature of as low as 0 °C for Opuntia ficus-
indica (Cui et al., 1993). In tropical lowland areas, CAM epi-
phytes grow at higher mean nocturnal temperatures for most of 

the year, and their PEPCase activity can acclimatize to higher 
stem temperatures. Thus, CAM epiphytes can be expected to 
have an optimal night temperature for CO2 uptake like that of 
the hemiepiphytic cactus Hylocereus undatus, which is ~20–25 
°C (Raveh et al., 1995; Nobel and de la Barrera, 2004).

Owing to the lack of experimental data for temperature op-
tima in CAM epiphytes in fully controlled laboratory condi-
tions, we focus on data from field studies. Epiphytic CAM 
orchids growing in the open in Singapore experience a noc-
turnal minimum night temperature of ~22 °C (Neales and Hew, 
1975). The epiphytic CAM bromeliad Tillandsia usneoides 
shows an optimum CO2 assimilation between temperatures 
of 15 and 20 °C (Medina, 1987). Epiphytic orchids from dry 
forests have higher increases in titratable tissue acidity (ΔH+) 
during the early dry season, when leaf nocturnal temperatures 
are ~22 ° C or less, compared with those of the rainy and late 
dry seasons (de la Rosa-Manzano et al., 2014). Also, some 
Tillandsia spp. increase ΔH+ in cooler months in a tropical dry 
forest of the Pacific coast of Mexico (e.g. T. eistetteri and T. 
ionantha; Reyes-García et al., 2008). However, in another trop-
ical dry forest in Yucatan, Mexico, plants of T. brachycaulos 
have greater ΔH+ during the warmer nights of the rainy season 
than during the cooler early dry season nights (González-
Salvatierra et al., 2021).

High temperatures have relatively little influence on growth 
and survival of terrestrial CAM plants; apparently, daytime 
air and leaf or stem temperatures are not critical for photo-
synthesis, with the tolerated temperature extreme reaching 68 
°C (Nobel and Bobich, 2002). In general, however, tolerance 
limits are certainly lower for tropical CAM plants. For ex-
ample, hemiepiphytic H. undatus and terrestrial Mammillaria 
gaumeri cannot tolerate temperatures >50 °C (Nobel et al., 
2002; Cervera et al., 2006). Tillandsia species from tropical 
dry forests tolerate air temperatures of ≤42 °C (Cervantes et 
al., 2005; Hernández-Robinson et al., 2020; Rosado-Calderón 
et al., 2020). Furthermore, a study applying different day/night 
temperature regimes found that most of the 17 tested spe-
cies of epiphytic bromeliads (C3 and CAM) performed well 
at temperatures predicted for the end of this century (Müller 
et al., 2018). More field and laboratory studies are clearly re-
quired, with information on the abiotic conditions of epiphytic 
microhabitats, to understand the effect of high temperatures 
on growth and survival of CAM epiphytes and of epiphytes in 
general.

Climatic extremes

Apart from changing long-term averages in temperature and 
precipitation, an increased likelihood of extreme events in the 
future is a major concern (Castillo et al., 2021). For example, 
climate change might lead to more and stronger cyclonic 
storms (Landsea et al., 2006; Elsner et al., 2008; Sobel et al., 
2016). In combination with the ongoing fragmentation of trop-
ical forests, strong wind (of increased intensity or otherwise) 
will affect epiphyte communities in addition to the habitat loss 
they experience. Fragmented forests are more vulnerable to 
wind disturbance (Laurance et al., 1997; Laurance and Curran, 
2008), with the epiphytic component in the upper strata of the 
forest being particularly vulnerable (Tay et al., 2021; Einzmann 
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et al., 2022a). However, CAM epiphytes might be less affected 
if such disturbance leads mainly to increased exposure, but 
overall, the photosynthetic pathway used by epiphytes is likely 
to be largely irrelevant in the context of such disturbance.

As another consequence of global change, there seems to 
be an increase in the frequency of Central Pacific El Niño 
events in recent decades (Freund et al., 2019). For one such 
event in 2015–16, the effect on an epiphyte community in 
small-statured Annona glabra trees growing along the shore-
line of BCI has been documented (Einzmann et al., 2022b). 
During this very strong El Niño event, annual rainfall in cen-
tral Panama was reduced from the average 2600 mm yr−1 to 
only 1800 mm yr−1 (Paton, 2022), following 2 years with al-
ready markedly below-average rainfall. Annona glabra has a 
relatively open crown, and growth along the shore means that 
epiphytes experience conditions resembling the upper crown 
in the forest despite the small stature of the host tree. If CAM 
were of major advantage, C3 species should be much more 
affected than CAM species. However, no difference in their 
change in abundance was found (Einzmann et al., 2022b). 
In the reference period, 2002–15, both CAM and C3 spe-
cies growing on the very same trees consistently increased 
in abundance, while individual numbers decreased in similar 
proportion irrespective of photosynthetic pathway from 2015 
to 2016 (Table 5).

Long-term variation in the proportion of CAM species

Gradual changes in climate could affect C3 and CAM species 
differentially. Increasing temperatures and changes in precipi-
tation could lead to a drier climate, in which the CAM species 
among epiphytes might be favoured. We searched for possible 
evidence in long-term studies of epiphyte assemblages. We 
found only three data sets that cover a longer time period, from 
8 years (Einzmann and Zotz, 2017) and ~11 years (Mendieta-
Leiva et al., 2022) to a maximum of 21 years (Einzmann et al., 
2021). Given that all these studies were performed in Panama, 
where neither annual precipitation nor dry season length has 
changed over the last decades (Paton, 2022), and where changes 
in precipitation are not predicted for the future (Kusunoki et 
al., 2019), one would not expect any directional change in 

community composition. However, we consider it important to 
document these unique time series of ‘normal’ fluctuations as 
essential background information for future studies designed to 
detect any directional changes in the proportion of CAM spe-
cies elsewhere.

Over 21 years and three censuses, epiphytes growing on 
Annona glabra around BCI did not show a consistent pattern 
regarding CAM species (Table 6; Einzmann et al., 2021). In a 
first census interval (1994–2002), there was a relative decrease 
in abundance of CAM species, whereas in the second census 
interval (2002–15) there was a relative increase in CAM spe-
cies. Overall, in the long-term data set the proportion of CAM 
species varied little (~20–26 %), with a similarly constant con-
tribution of ~47 % of CAM individuals to total epiphyte abun-
dance (Table 6). Compared with the proportion of CAM species 
and individuals from forest trees (Tables 1 and 2), CAM species 
were of much greater importance in Annona glabra.

There were no larger changes in the proportion of CAM epi-
phytes in the other two studies either (Fig. 2). The maximum 
difference was observed in epiphytes in pasture trees, with a 
decrease in abundance of CAM species of ~10 % over 8 years.

Land use change

The process euphemistically termed ‘land use change’ is still 
the largest threat for tropical epiphytes compared with other 
drivers of global change identified by Sala et al. (2000), such 
as direct effects of CO2, altered rainfall patterns or climatic ex-
tremes. Although the photosynthetic pathway is clearly irrele-
vant in the case of complete deforestation, it seems to play a 
role given more moderate conversions, e.g. to secondary for-
ests or agricultural landscapes with pasture trees. In the case 
of more isolated trees and more fragmented forest patches, the 
microclimate is typically drier, which should favour CAM spe-
cies. Indeed, the proportion of CAM species is much higher in 
pasture trees (Table 3) than in forest trees (Table 2) under other-
wise comparable precipitation regimes. The same is true for the 
number of individuals.

However, historically, epiphytic CAM species might have 
suffered much more from previous human activities than C3 
species, because tropical dry forests, in which CAM epi-
phytes dominate, have been transformed to a larger degree 
than any other type of tropical forest for hundreds of years 
(Portillo-Quintero et al., 2015; Sunderland et al., 2015; Table 5.  Proportions of epiphytes with crassulacean acid metab-

olism (CAM) and C3 growing on the Annona glabra trees along the 
shoreline of Barro Colorado Island (BCI), Panama. About 50 % of 
the trees growing around BCI form the basis for a long-term study 
that encompasses three censuses: 1994, 2002 and 2015. Included 
here is a subset of 145 trees that were studied before and after a 

very strong El Niño event (Einzmann et al., 2022b)

Epiphyte 2002 2015 2016 

Individuals 4298 8074 7895

Species 42 52 52

CAM individuals 2032 3457 3340

CAM species 11 14 14

CAM individuals (%) 47.3 42.8 42.3

CAM species (%) 26.2 26.9 26.9

Table 6.  Epiphytes growing on Annona glabra trees along the 
shoreline of Barro Colorado Island, Panama, were followed over 

21 years (Einzmann et al., 2021)

Epiphyte 1994 2002 2015 

Individuals 14 920 23 674 30 734

Species 58 69 72

CAM individuals 6913 11 497 14 419

CAM species 15 14 17

CAM individuals (%) 46.3 48.6 46.9

CAM species (%) 25.9 20.3 23.6
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Siyum, 2020). Some attention has been paid to dry forest 
recovery. For instance, the long history of the transform-
ation of tropical dry deciduous forest of northern Yucatan 
has resulted in the impoverishment of tree species, because 
succession has favoured species that sprout after perturb-
ation (González-Iturbe et al., 2002). In other areas with 
less perturbation and with remnants of old forest, recovery 
of canopy height, plant density and crown cover occured in 
~20 years, but species richness and biomass continue to in-
crease after >80 years (Lebrija-Trejos et al., 2008; Dupuy 
et al., 2012; Guerra-Martínez et al., 2021). Nevertheless, 

the recovery of epiphyte assemblages has been almost 
entirely ignored in successional studies of tropical dry 
forests and tropical forests in general. In one of the few 
exceptional studies with a focus on epiphytes, Woods and 
DeWalt (2013) argued that it takes almost two centuries 
for epiphyte species composition in secondary lowland for-
ests of central Panama to recover. Comparing this number 
with the estimated 120 years for secondary tropical forest 
to recover other forest attributes (Poorter et al., 2021), epi-
phytes might take particularly long to recover from such 
disturbances.
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Fig. 2.  Temporal changes in the percentage of abundance and number of species of epiphytic C3 species and species with crassulacean acid metabolism (CAM) 
in three different systems. Annona, epiphyte assemblages censused three times on Annona glabra trees growing along the shoreline of Barro Colorado Island 
(Einzmann et al., 2021); Pastures, epiphyte assemblages censused twice on pasture trees growing along a rainfall gradient in western Panama (Einzmann and Zotz, 

2017); San Lorenzo, epiphyte assemblages censused twice on all trees within the San Lorenzo crane site (Mendieta-Leiva et al., 2022).
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WHY IS CAM NOT MORE COMMON AMONG 
VASCULAR EPIPHYTES?

Although CAM is key at the dry end of current epiphytic exist-
ence (Mooney et al., 1989; Reyes-García et al., 2008; Fontoura 
and Reinert, 2009; Cach-Pérez et al., 2018), current evidence 
does not suggest that, compared with vascular plants in general, 
this metabolic pathway is disproportionately common among 
epiphytes. If water scarcity is genuinely the defining feature of 
the epiphytic habitat, as often suggested (e.g. Benzing, 1990; 
Zotz and Hietz, 2001; Lüttge, 2008), this is somewhat sur-
prising. So, what did we miss?

We see a number of explanations for this seeming discrep-
ancy. We know that at the regional scale the epiphytic life form 
responds more strongly than others (e.g. trees or climbers) to 
differences in water supply, as demonstrated in the classic study 
by Gentry and Dodson (1987). However, by far the highest 
numbers of species and the highest abundances are found at 
the wet end, where epiphytes are not much affected by water 
scarcity. In such ecosystems, CAM would primarily incur a 
metabolic cost, while possible benefits would be restricted to 
rare drought events. The impact of such occasional periods of 
water scarcity on cloud forest epiphytes has been studied in 
detail by Gotsch and collaborators (e.g. Gotsch et al., 2015, 
2018; Williams et al., 2020). These authors highlighted the 
importance of water storage. The need to develop a more dif-
ferentiated view of the importance of the factor water for epi-
phytes was also emphasized by Zotz et al. (2021a) in a recent 
review of epiphyte ecophysiology. Here are a few observations 
that contradict the arguably simplistic view that epiphytes, as a 
group, are generally more affected by water stress than ground-
rooted plants. First, δ13C values of C3 epiphytes do not differ 
from those of terrestrial herbs in the TRY database (Kattge et 
al., 2020), which suggests similar broad-scale stomatal limita-
tions (Hietz et al., 2022). Second, water content per dry mass 
or leaf area is substantially lower in epiphytic bromeliads com-
pared with terrestrials, in both C3 and CAM species (Males and 
Griffiths, 2017). As the samples for that study came from well-
watered collections in botanical gardens, this finding should 
primarily reflect genetic differences, which makes it even more 
surprising. Finally, in forests at Mount Kilimanjaro, tree leaves 
stored three times as much water as foliage of co-occurring epi-
phytes (Schellenberger Costa et al., 2018). Taken together, epi-
phytes might be less special in terms of their water relationships 
than previously thought, which should also lead to an adjust-
ment of our expectation about the prevalence of CAM among 
epiphytes.

Following Winter (2019), we reserved the term ‘CAM plant’ 
to those species that ‘throughout their lives, obtain the majority 
of their carbon through the CAM pathway’, which is typically 
deduced from a δ13C value of leaf tissue higher than −20 ‰, 
which is indicative of ≥50 % nocturnal CO2 uptake. This ap-
proach ignores the possibility that CAM might affect whole 
plant carbon budgets via reducing carbon losses by other organs 
(petals, fruit, stems and roots; see above) and also ignores the 
possible importance of limited nocturnal acidification without 
uptake of external CO2, i.e. ‘weak CAM’ sensu Winter (2019), 
as found in the leaves of many orchids, bromeliads and ferns 
(Zotz and Tyree, 1996; Holtum and Winter, 1999; Schmidt and 
Zotz, 2001; Silvera et al., 2005). Naturally, all species estimates 

would change if all taxa that show small but detectable noc-
turnal acidification at least occasionally were to be included as 
‘C3–CAM plants’ or ‘weak CAM plants’. Given that most of 
the relevant studies were performed with epiphytes, there is a 
largely unknown number of terrestrial equivalents, which does 
not allow us to provide a reasonable estimate for the relative 
occurrence of this phenomenon among epiphytic vs. terrestrial 
taxa. However, we would argue that rather than juggling with 
the number of species with ‘weak CAM’, it is more important 
to study the ecological relevance of such small nocturnal acid-
ification in either life form. The few detailed analyses of such 
‘weak CAM’ activity in vascular epiphytes suggest a rather 
moderate contribution to water and carbon budgets. In the tank 
bromeliad Werauhia sanguinolenta (Schmidt and Zotz, 2001) 
and the orchid Dimerandra emarginata (Zotz and Tyree, 1996) 
maximum nocturnal acidification under drought amounted to 
the equivalent of net CO2 fixation rates of, respectively, 0.1 and 
0.2 µmol m−2 s−1 during the night. This is less than what one 
would expect from the complete recycling of respiratory CO2. 
Currently, it is unclear whether such weak ‘CAM activity’ in 
C3 plants is ecologically important and/or more or less idio-
syncratic for epiphytes; we would need information on the 
frequency of ‘weak CAM’ in epiphytic vs. terrestrial taxa to 
address this question.

It is important to emphasize that CAM is not the only option 
for plants to deal with drought. Sinclair (1984), for example, 
stated that the most important drought-related strategy in the 
studied ferns is the tolerance to very large reductions in leaf 
relative water content rather than CAM. Other ways to bridge 
periods of water scarcity among epiphytic taxa include in-
ternal water storage in leaves, roots and shoots (Gessner, 1956; 
Yang et al., 2016; Hernández-Robinson et al., 2020), external 
water storage in phytotelmata (Zotz and Thomas, 1999; Zotz 
et al., 2020), strongly reduced cuticular water loss (Benzing 
and Burt, 1970; Helbsing et al., 2000), drought-deciduousness 
(Benzing et al., 1982; Mehltreter, 2008) and desiccation toler-
ance (Stuart, 1968; Proctor, 2012), while highly effective water 
uptake via roots (Biebl, 1964; Zotz and Winkler, 2013; Leroy et 
al., 2019) and leaves (Gotsch et al., 2015; Darby et al., 2016) 
allows epiphytes to replenish stores fast as part of a general re-
covery after stress events. Interestingly, the C4 pathway, which 
is common in many arid terrestrial biomes (Sage et al., 2018), 
is apparently not used by any epiphyte (Zotz, 2016).

Although our view of the importance of CAM among epi-
phytes has possibly been exaggerated in the past, there are 
recurring patterns in epiphyte community structure that 
demonstrate an important role of CAM, not only at the very 
dry end of forest habitats. Similar to the results shown for 
epiphytes on emergent trees in central Panama (Table 1), a 
number of studies have found a clear stratification, with CAM 
species typically being dominant or at least relatively abun-
dant in the upper parts of moist tropical forests (Griffiths and 
Smith, 1983; Zotz and Ziegler, 1997; Zotz, 2004). Again, 
such a pattern should not be confused with the notion that 
CAM is indispensable in the most exposed growing sites. 
Numerous C3 species can be found there, with well-studied 
examples in the upper crown of large, drought-deciduous 
emergents in the lowland forest of BCI being Dimerandra 
emarginata (Einzmann et al., 2015), Niphidium crassifolium 
and Catasetum viridiflavum (Zotz and Winter, 1994). 
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Likewise, Fontoura and Reinert (2009), studying epiphytic 
bromeliads in a dry forest in Southeastern Brazil, found that 
most species used CAM, but at the most exposed microsites 
a C3 bromeliad (Vriesea procera) dominated, and not a CAM 
species. A similar pattern was decribed by Zotz (1997); the 
large C3 tank bromeliad Werauhia sanguinolenta was more 
common in the exposed parts of Annona glabra crowns than 
a co-occurring CAM (Tillandsia fasciculata) and a C3–CAM 
species (Guzmania monostachia). This again highlights that 
CAM can be important among epiphytes, but is still but one 
of several functional options allowing growth in demanding 
epiphytic situations.

CONCLUSION

This paper reviews the importance of CAM among epiphytes 
in general in current climatic conditions and explores future 
prospects under global change. We aimed to stimulate a dis-
cussion by questioning the frequently expressed view of a dis-
proportionate importance of CAM among vascular epiphytes 
compared with ground-rooted plants. Although there is little 
doubt that at the dry end of the ecological spectrum, epiphytic 
growth is often difficult or impossible for C3 plants, in gen-
eral CAM species are not overly common among epiphytes. 
Thus, we should also reconsider claims that CAM is a key in-
novation for epiphytism as such and narrow any evolutionary 
importance down to specific ecological scenarios, such as 
growth in dry forests. An answer to the question regarding 
whether global change might lead to a shift in the relative 
importance of CAM among epiphytes is again facing com-
plexity. Historically, the almost complete destruction of trop-
ical dry forests has probably affected CAM epiphytes more 
than C3 species, but depending on the particular driver (tem-
perature, precipitation, CO2 or disturbance), future effects of 
human activities might be neutral with regard to photosyn-
thetic pathway, or CAM species might possibly be less af-
fected, e.g. by drought, and thus benefit relatively, as long as 
trees are available as hosts.
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