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ABSTRACT
Background  Previous prediction algorithms for 
cardiovascular diseases (CVD) were established using 
risk factors retrieved largely based on empirical clinical 
knowledge. This study sought to identify predictors among 
a comprehensive variable space, and then employ machine 
learning (ML) algorithms to develop a novel CVD risk 
prediction model.
Methods  From a longitudinal population-based cohort 
of UK Biobank, this study included 473 611 CVD-free 
participants aged between 37 and 73 years old. We 
implemented an ML-based data-driven pipeline to 
identify predictors from 645 candidate variables covering 
a comprehensive range of health-related factors and 
assessed multiple ML classifiers to establish a risk 
prediction model on 10-year incident CVD. The model was 
validated through a leave-one-center-out cross-validation.
Results  During a median follow-up of 12.2 years, 31 466 
participants developed CVD within 10 years after baseline 
visits. A novel UK Biobank CVD risk prediction (UKCRP) 
model was established that comprised 10 predictors 
including age, sex, medication of cholesterol and blood 
pressure, cholesterol ratio (total/high-density lipoprotein), 
systolic blood pressure, previous angina or heart disease, 
number of medications taken, cystatin C, chest pain and 
pack-years of smoking. Our model obtained satisfied 
discriminative performance with an area under the receiver 
operating characteristic curve (AUC) of 0.762±0.010 that 
outperformed multiple existing clinical models, and it 
was well-calibrated with a Brier Score of 0.057±0.006. 
Further, the UKCRP can obtain comparable performance for 
myocardial infarction (AUC 0.774±0.011) and ischaemic 
stroke (AUC 0.730±0.020), but inferior performance for 
haemorrhagic stroke (AUC 0.644±0.026).
Conclusion  ML-based classification models can learn 
expressive representations from potential high-risked CVD 
participants who may benefit from earlier clinical decisions.

INTRODUCTION
As the leading cause of death globally, cardi-
ovascular diseases (CVD) are responsible for 
>17.3 million deaths per year and the inci-
dence is estimated to increase to 23.6 million 
by 2030.1 Due to the long preclinical stage 
before disease diagnosis, there is an urgent 

WHAT IS ALREADY KNOWN ON THIS TOPIC

	⇒ Several cardiovascular diseases (CVD) prediction 
models have been developed to deliver individual-
level risk prediction and stratification. These scales 
were established using predictors largely retrieved 
based on empirical clinical knowledge, such as age, 
sex, cholesterol level, systolic blood pressure and 
smoking status, while many other potential factors 
can be ignored; in addition, they were conducted 
through traditional statistical methods of Cox regres-
sion restricting their prediction power and solidness. 
Recently, applications of machine learning (ML) 
were commonly restricted to limited follow-up time, 
the inclusion of too many covariates, or utilisation 
of prespecified domain of variables or participants, 
narrowing their applications to research or expertise 
settings.

WHAT THIS STUDY ADDS

	⇒ In this study, predictor selections were optimised 
through a deliberately designed ML-based data-
driven pipeline among a rich phenotypic feature 
space. Predictors of cystatin C, number of current 
medications, self-reported chest pain and pack-
years of smoking (derived variable) have been re-
ported to be associated with CVD risk. Still, they are 
not commonly used in prediction models. Our pre-
dictor selection strategy indicates their significance 
in the CVD prediction task. Comparable performance 
can be observed when deploying to subdiagnostic 
diseases of myocardial infarction and ischaemic 
stroke, but much inferior to haemorrhagic stroke. 
The UK Biobank CVD risk prediction model demon-
strated a superiority over existing risk prediction 
models.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Predictors leveraged by the proposed model can be 
easily accessible, indicating the potential utility in 
practice and identifying suspected individuals to aid 
clinical decisions. Further, several identified predic-
tors are intervenable at an early stage, which might 
be beneficial to reduce or delay the development of 
CVD.
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need for effective approaches to identify high-risk indi-
viduals early. Personalised risk assessment is consistently a 
long-term goal in cardiovascular medicine, and the Euro-
pean Society of Cardiology specifically emphasises the 
role of risk prediction models in promoting healthcare 
and population-wide prevention.2 3

Numerous multivariable prediction models have 
been derived and published, such as the Framingham 
Cardiovascular Risk Score (FGCRS),4 5 Systematic Coro-
nary Risk Evaluation (SCORE),6 7 QRISK8–10 and Amer-
ican Heart Association/Atherosclerotic Cardiovascular 
Disease (AHA/ASCVD) algorithms.11 These risk models 
were mostly developed by integrating information on a 
variety of traditional CVD risk factors such as age, sex, 
smoking status, blood pressure, diabetes and cholesterol 
measurements. However, they may not fully capture other 
potential factors associated with elevated cardiovascular 
risk, limiting their model accuracy in discriminating 
high-risk populations. In addition, these models were 
primarily implemented by classical statistical modelling 
techniques (Cox or logistic regressions), which were 
restricted by assumptions of normality of distributions, 
non-informative or random censoring, and linearity of 
risk prediction.

Compared with conventional prediction methods, the 
machine learning (ML)-based approach has outstanding 
advantages, as it can effectively handle massive amounts of 
time-to-event data featuring multidimensional space.12–21 
However, they were commonly restricted to limited 
follow-up time,12 13 inclusion of too many covariates,14 
or utilisation of prespecified domain of variables15–18 or 
participants,19 20 narrowing their applications to research 
or expertise settings. All these limitations underscore 
the need to construct novel cardiovascular prediction 
to boost better risk prediction and stratification in real-
world clinical practice.

As illustrated in figure 1, in the present study, we used 
the ML approach to train and validate a novel CVD risk 
prediction algorithm called UK Biobank CVD risk predic-
tion (UKCRP) in the large prospective UK Biobank cohort 
with thorough phenotypic and follow-up information. We 
sought to develop a generalisable model to predict the 
10-year risk of incident myocardial infarction (MI), isch-
aemic stroke (IS) and haemorrhagic stroke (HS) at the 
individual level. Then we compared the performance of 
UKCRP with established CVD risk scores to explore the 
superiority of our proposed model. We hypothesise that 
the UKCRP Score will be of reference value for clinical 
CVD risk prediction.

METHODS
Study population and target outcomes
Our study adopted data from the UK Biobank, a longitu-
dinal cohort study of 273 383 women and 229 122 men 
aged between 37 and 73 years at the time of their baseline 
assessment starting from March 2006 to October 2010.22 
The cohort enrolled the general population from 22 

recruitment centres across the UK to undergo multiple 
assessments. As shown in figure  2, participants without 
follow-up records (n=1298), with pre-existing MI (n=20 
037) or stroke (n=8984) were excluded from the analysis. 
We finally included 473 611 CVD-free participants who 
had at least 10 years of follow-up until March 2021.

The primary outcomes for this study were incident 
(hospitalisation or death) CVD events due to MI (inter-
national classification of diseases (ICD)-9 codes 410–412 
and 429.79; ICD-10 codes I21–I23, I24.1 and I25.2) and 
stroke (ICD-9 codes 430, 431, 434 and 436; ICD-10 codes 
I60, I61, I63 and I64). Dates and causes of hospital admis-
sion were obtained through record linkage to Hospital 
Episode Statistics Admitted Patient Care (England), 
Patient Episode Database for Wales and Scottish Morbidity 
Records—General/Acute Inpatient and Day Case Admis-
sions (Scotland). Follow-up visits began from the date 
attending the assessment centre to the earliest date of 
CVD diagnosis, death or the last available date from the 
hospital or general practitioner, whichever occurred first.

Candidate variables and predictor selection
This study included all clinically relevant variables 
collected at the participants’ baseline visits. Data screening 
was processed to exclude non-informative variables whose 
missing values were over 70% of all participants. Overall, 
we adopted 645 measurements (online supplemental 
eTable 1 and 2) categorised into 10 groups in the anal-
ysis: biofluid assays (n=70), cognitive function (n=71), 
early life factors (n=10), family history (n=28), health 
and medical history (n=46), lifestyle and environment 
(n=143), medications (n=9), physical measures (n=197), 
psychosocial factors (n=34) and sociodemographics 
(n=37). In addition, we calculated genetic polygenic risk 
scores (PRSs) (n=45) (online supplemental eMethods).

Predictors for model development were identified in 
two steps: variable importance ranking and sequential 
forward selection. The importance of each variable was 
determined using a preliminary trained light gradient 
boosting machine (LGBM) classifier,23 based on which, 
the top 50 variables were chosen. Next, they were fed into 
a hierarchical clustering algorithm to further remove 
redundant ones with multicollinearity. Afterward, we 
reranked the preselected variables and then employed 
multiple ML classifiers to consecutively add predictors 
one at each time. Finally, the classifier was determined on 
achieving the best performance of area under the receiver 
operating characteristic curve (AUC), and we arbitrarily 
chose the top 10 predictors for further model develop-
ment, as no incremental performance was observed after 
the 10th iteration (figure 3A).

ML classifiers
We implemented a range of ML techniques, including 
LGBM, eXtreme Gradient Boosting Machine, random 
forest, logistic regression, K-nearest neighbours, support 
vector machine and artificial neural networks. All clas-
sifiers performed the classification task of determining 
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whether a participant falls into class 0 (predicted to 
remain CVD free) or class 1 (predicted to incident CVD 
within 10 years). Incorporating 10 preidentified predic-
tors, ML models were established based on dichotomised 
participants of healthy control (n=442 153) and 10-year 
incident CVD (n=31 466). Postprocessing isotonic regres-
sions24 25 were adopted to calibrate the raw predicted 
probabilities into actual incident CVD risks. We used the 
best-performed method, LGBM, as the final algorithm to 
develop a cardiovascular risk prediction model, named 
UKCRP.

Statistical analysis
Our model development and validation were conducted 
using a leave-one-center-out cross-validation. Specifically, 

we split the dataset based on 22 assessment centres at 
recruitment. Notably, 3 centres recruited participants less 
than 1% of the whole study population were merged into 
1; thus, we partitioned the data into 20-fold subsets. Within 
each of the 20 cross-validation loops, 19-fold of data were 
used for model development and the remaining fold of 
data was used as a test set. Hyperparameter optimisation 
and calibrations were performed within an inner-looped 
cross-validation of the 19-fold of training dataset.

The model’s performance was assessed using discrim-
ination and calibration. Discrimination was evaluated 
by the AUC. Calibration was visually depicted using cali-
bration plots of decile subgroups and Brier scores26 were 
calculated. Metrics of accuracy, sensitivity, specificity, 

Figure 1  Graphical abstract. The left panels exhibit the development pipeline of the UK Biobank cardiovascular disease 
risk prediction (UKCRP) model. The right panels demonstrate the key features, performance and an illustrative example of a 
webpage application. AHA/ASCVD, American Heart Association/Atherosclerotic Cardiovascular Disease; AUC, area under the 
receiver operating characteristic curve; CVD, cardiovascular diseases; FGCRS, Framingham Cardiovascular Risk Score; HDL, 
high-density lipoprotein; HS, haemorrhagic stroke; IS, ischaemic stroke; LGBM, light gradient boosting machine; MI, myocardial 
infarction; ML, machine learning; QRISK V.3, a cardiovascular disease risk score derived through QResearch database V.3; 
SCORE V.2, Systematic Coronary Risk Evaluation V.2.
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precision and F1-score were reported as well. In addition, 
we leveraged SHapley Additive exPlanations (SHAP) 
plots27 to graphically interpret the relationship between 
predictor values and model output.

Hyperparameter optimisation for each classifier was 
conducted with a grid search on different parameter 
spaces (online supplemental eTable 3). Missing values 
were not imputed for the LGBM algorithm as it can auto-
matedly handle missingness in both training and predic-
tion. As for the other ML algorithms, standard scaling 
and imputation of missing values were performed for the 
classifiers that typically benefit from these procedures.

We compared the UKCRP with existing CVD risk predic-
tion models, namely, AHA/ASCVD, FGCRS, QRISK V.3 
and SCORE V.2 (online supplemental eTable 4). Besides, 
we investigated the contribution of genetic variables by 
adding additional PRSs on the top 10 selected predictors. 

Delong’s tests28 were adopted to assess the significance of 
AUCs between the UKCRP and previous models. In addi-
tion, we deployed the UKCRP to each subdiagnostic group 
of MI, IS and HS, respectively. For comparison purposes, 
we repeated the predictors selection and model devel-
opment procedures under each target population and 
compared those specific-developed ML models with the 
UKCRP. Further, we evaluated the UKCRP in subgroups 
of participants across different age groups and different 
CVD incident timelines. Lastly, to demonstrate the supe-
riority of our predictor selection strategy, we employed 
the LGBM classifier, the algorithm to develop UKCRP, to 
retrain existing prediction scales based on the adopted 
predictors themselves.

The ML algorithms were implemented with libraries of 
LightGBM (V.3.3.2)23 and scikit-learn (V.1.0.2) in Python 
(V.3.9). Model visualisations were performed using Shap 

Figure 2  Flowchart of the participants’ selection. (A) Individuals in the UK Biobank cohort were excluded if they had reported 
myocardial infarction at baseline, stroke at baseline or without follow-up records. The remaining participants were classified 
based on their first reported years of cardiovascular disease after baseline. (B) Distribution of observation times up to 31 March 
2021. (C) Distribution of first reported years of cardiovascular disease after baseline.

https://dx.doi.org/10.1136/svn-2023-002332
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Figure 3  Predictor selection and interpretation of UK Biobank Cardiovascular disease Risk Prediction. (A) Sequential forward 
selection from preselected candidate variables. The bar chart represents the sorted variables based on their importance to 
the classification task. The line chart delineated cumulative area under the receiver operating characteristic curves (AUCs) 
(right axis) on the inclusion of variables one by each iteration. Ten predictors (coloured in red) were finally chosen for model 
development. (B) SHapley Additive exPlanations (SHAP) visualisation of selected predictors. Each participant was exhibited 
as a data point and was coded with gradient colours representing the magnitude of the predictor. The predictive power of 
each predictor can be visually measured by its horizontal range. The effect of each predictor can be depicted by its value 
magnitude and tendency direction on the x-axis, which represents the extent of the likelihood of developing cardiovascular 
diseases (CVD). (C–H) Six examples of scatterplots showing the relationship between continuous predictors and model outputs 
(represented using SHAP values). Horizontal dash lines indicate no effect on model output, whereas above or below the line 
represents positive or negative effects, respectively. Density plots on the upper and right panels of each graph demonstrate the 
distributions of each predictor and the corresponding SHAP values. HDL, high-density lipoprotein.
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library (V.0.40.0).27 In addition, we established a webpage 
application tool based on the Shiny package (V.1.7.1) 
under R (V.4.1.2).

RESULTS
Population characteristics
After quality control, our study included 473 611 partic-
ipants who were predominantly white (94.0%). The 
median age of the participants was 57 years (IQR 50–63) 
and 55.8% were women. During a median follow-up time 
of 12.2 years (IQR 11.5–12.9), 31 466 (6.6%) participants 
developed CVD within 10 years after their baseline visits, 
among whom 25 634 (5.4%), 5611 (1.2%) and 1687 
(0.4%) developed MI, IS and HS, respectively. The crit-
ical baseline predictors are presented by incident CVD 
status in table 1 and by incident subdiagnostic disease in 
online supplemental eTable 5.

Data-driven predictors selection
Among the 645 candidate variables, we initially chose the 
top 50 ones based on a naïve-trained LGBM classifier and 
further adopted hierarchical clustering to select variables 
that were not correlated with each other (online supple-
mental eFigure 1). As shown in the bar chart of figure 3A, 
a set of 28 variables was determined and reranked based 
on their importance to the prediction task. We employed 
a sequential forward selection strategy, which can be 

delineated using the line chart to balance the trade-off 
between the model performance (AUC on the right axis) 
and the number of variables involved. The line chart 
witnessed a steep increase when taking in the first several 
variables and reached a plateau when additional ones 
joined in. The LGBM was witnessed as the best-performed 
classifier (online supplemental eTable 6) and we chose 
the first 10 variables as the final predictors for ML model 
development. The top-selected variables selected under 
subdiagnostic diseases were reported in online supple-
mental eTable 7. Detailed notations of finally included 
variables are given in online supplemental eTable 8, and 
their OR and p values calculated based on a multivariate 
logistic regression are shown in online supplemental 
eTable 9.

Performance of UKCRP
We employed multiple ML algorithms based on the 
selected predictors, and all models demonstrated compa-
rable performance of AUCs around 0.75–0.76 as shown in 
online supplemental eTable 6. LGBM exhibited the best 
performance (AUC 0.762±0.010) and was adopted as the 
final risk prediction model of UKCRP.

Figure 4E–H exhibits the calibrated risks of UKCRP on 
CVD and three subdiagnostic groups. All calibration plots 
demonstrated closely matched proportions of observed 
events versus predicted risks throughout all deciles. Brier 

Table 1  The baseline characteristics of UK Biobank participants included in the study

Participants characteristics

Overall Healthy control 10-year incident CVD

(n=473 611) (n=442 145) (n=31 466)

Age, year 57.0 (50–63) 57.0 (49.0–63.0) 62.0 (57.0–66)

Sex (female) 264 308 (55.8%) 252 586 (57.1%) 11 722 (37.3%)

Ethnicity (white) 445 075 (94.0%) 415 611 (94.0%) 29 464 (93.6%)

Systolic blood pressure (mm Hg) 134(123–147) 134.0 (122–147) 141 (129–155)

Total cholesterol (mmol/L) 5.7 (4.99–6.46) 5.71 (5.00–6.46) 5.63 (4.80–6.48)

HDL cholesterol (mmol/L) 1.41 (1.18–1.68) 1.42 (1.19–1.69) 1.28 (1.09–1.54)

Cholesterol ratio (total/HDL) 3.97 (3.37–4.73) 3.95 (3.35–4.70) 4.3 (3.59–5.09)

Cystatin C (mg/L) 0.88 (0.80–0.98) 0.88 (0.8–0.97) 0.95 (0.86–1.06)

Chest pain 24 126 (5.1%) 20 107 (4.5%) 4019 (10.4%)

Current smoker 49 135 (10.4%) 44 372 (10.0%) 4763 (15.1%)

Pack years of smoking 18.4 (9.50–31.0) 17.8 (9.0–30.0) 25.0 (13.8–39.5)

Cholesterol and blood pressure medication

 � Either 76 018 (16.1%) 67 842 (15.3%) 8176 (26.0%)

 � Both 37 376 (7.9%) 31 462 (7.1%) 5914 (18.8%)

Number of medications 2 (0–3) 2.0 (0.0–3.0) 3.0 (1.0–5.0)

Angina or heart attack 7482 (1.6%) 4890 (1.1%) 2592 (8.2%)

Diabetes 21 601 (4.6%) 18 078 (4.1%) 3523 (11.2%)

Hypertension 38 988 (8.2 %) 33 279 (7.5%) 5709 (18.1%)

Data is presented as median (IQR) for continuous variables and number (%) for discrete variables. Statistics of 10-year incident myocardial 
infarction, ischaemic stroke and haemorrhagic stroke are shown in online supplemental eTable 3. HDL, high-density lipoprotein.
CVD, cardiovascular diseases.

https://dx.doi.org/10.1136/svn-2023-002332
https://dx.doi.org/10.1136/svn-2023-002332
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https://dx.doi.org/10.1136/svn-2023-002332
https://dx.doi.org/10.1136/svn-2023-002332
https://dx.doi.org/10.1136/svn-2023-002332
https://dx.doi.org/10.1136/svn-2023-002332
https://dx.doi.org/10.1136/svn-2023-002332
https://dx.doi.org/10.1136/svn-2023-002332
https://dx.doi.org/10.1136/svn-2023-002332
https://dx.doi.org/10.1136/svn-2023-002332
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Score for CVD was 0.057±0.006, and that for MI, IS and 
HS were 0.047±0.006, 0.012±0.002 and 0.004±0.001, 
respectively. More evaluation metrics were reported in 
online supplemental eTable 10.

Model interpretation of selected predictors
We leveraged SHAP values to assess the effect of each 
selected predictor visually. Figure  3B aims to interpret 
the specific impact of each predictor by its value magni-
tude (coded by a gradient of colours) and tendency direc-
tion on the horizontal axis (the likelihood of developing 
CVD). Take the predictor age as an example; older partic-
ipants (coloured in red) are more likely to develop CVD 
(right side) compared with younger ones (coloured in 
blue) who tend to keep healthy (left side). Similarly, for 

the rest predictors, participants of males, and those who 
took cholesterol and blood pressure medications, had 
higher cholesterol ratios, had higher systolic blood pres-
sure (SBP), previous experienced angina or heart attack, 
took more medications, had higher cystatin C, suffered 
chest pains and had more pack-years of smoking, were 
prone to CVD.

We examine the relationships between continuous 
predictors versus their risk or protective effect on the 
CVD in figure 3C–H, where the horizontal dash lines indi-
cate no effect. It can be inferred that age of 55, choles-
terol ratio of 4, SBP of 130 and cystatin C of 0.9 can be 
regarded as cut-offs in positive contributions to devel-
oping CVD. The number of current medications and 

Figure 4  Performance of the UK Biobank Cardiovascular disease Risk Prediction (UKCRP) and subgroup analysis. (A) Area 
under the receiver operating characteristic curve (AUC) plots of different models of cardiovascular disease. (B) AUC of different 
models evaluated on different diagnostic subgroups. (C) AUC of the UKCRP that evaluated based on different age subgroups. 
(D) AUC of the UKCRP that evaluated based on different incident time subgroups. (E–H) Calibration plots of UKCRP on 
different diagnostic populations. Specific isotonic regressions were trained for each population. AHA/ASCVD, American Heart 
Association/Atherosclerotic Cardiovascular Disease; FGCRS, Framingham Cardiovascular Risk Score; HS, haemorrhagic stroke; 
IS, ischaemic stroke; MI, myocardial infarction; PRS, polygenic risk score; QRISK V.3, a cardiovascular disease risk score 
derived through QResearch database V.3; SCORE V.2, Systematic Coronary Risk Evaluation V.2.

https://dx.doi.org/10.1136/svn-2023-002332
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pack-years of smoking donates relatively no protective 
mechanism as minimal proportions of data distributed 
under the dash lines; in another saying, medication taken 
and smoking only cause increased risks of developing 
CVD. Specifically, although the participant’s sex individu-
ally has a significant impact on the CVD risk predictions, 
it does not witness any strong interactive effects regarding 
these predictors.

Performance comparison between existing clinical models
According to figure  4A, UKCRP observed an AUC of 
0.762±0.010 on 10-year incident CVD, which is signifi-
cantly greater than those of existing risk scales of QRISK 
V.3 (0.744±0.011), SCORE V.2 (0.716±0.015), ASCVD 
(0.701±0.013) and FGCRS (0.703±0.017), and Delong 
tests indicated statistical significance with p values all less 
than 0.001. Further, by using LGBM algorithm to retrain 
predictors adopted in each pre-existing prediction scale, 
UKCRP exhibited higher AUC in the prediction of CVD, 
MI; as for IS, AUC of UKCRP surpassed SCORE V.2, 
AHA/ASCVD and FGCRS and comparable to QRISK V.3. 
As for HS, no obvious superiority was discovered (online 
supplemental eTable 10).

Subgroup analysis for different diagnosis
figure 4B demonstrated the discrimination performance 
in participants with different diagnoses. In general, all 
models demonstrated a similar pattern that performed 
best in discriminating MI, followed by IS, and performed 
worst on HS. Specifically, the UKCRP performed consid-
erably better on MI and IS when compared with existing 
risk scales, but no obvious superiority in HS prediction. 
Individualised models for each diagnosis subgroup (‘per 
diagnosis’ in figure 4B) witnessed slightly better perfor-
mance than the UKCRP, and it is conceivable as they 
were developed on customised predictor selection and 
hyperparameter optimisation procedures for each target 
outcome. Their customised predictor sets are reported in 
online supplemental eTable 7 and eFigure 2–4.

Subgroup analysis of age and incident years
As shown in figure 4C, the predictive power of UKCRP 
dropped as participants’ age increased. This might be 
due to the drop in sensitivity over the other risk factors for 
older participants. As for different CVD incident times, 
the UKCRP seems to perform better when constraining 
to shorter incident timelines (figure  4D). This can be 
partially explained by the timing effectiveness of the data, 
the longer period after the baseline visits, the less effec-
tive of data’s predictive power.

Predictive contribution of genetic information
We investigated the added values of PRS, which did not 
show any significance in all predictions of CVD and subdi-
agnosis (figure 4A,B).

Webpage deployment tool
We implemented the UKCRP model into a web appli-
cation (figure  5) that provides risk predictions for 

individuals based on input predictors. It can calculate 
the risk of CVD and exhibit it on the calibration plots to 
delineate explicit visualisations. The web application was 
made accessible online (https://jiayou0907.shinyapps.​
io/UKCRP/).

DISCUSSION
In this individual-level analysis of a large prospective 
cohort, we developed a novel ML-based tool to predict 
the 10-year risk of incident CVD. From a massive number 
of health-related variables, we employed a series of data-
driven selection schemes and identified the 10 most 
important predictors. The proposed model of UKCRP 
yielded an AUC of 0.762 for CVD, outperforming multiple 
existing clinical models. The UKCRP was well-calibrated 
with excellent agreement between predicted risks and 
observed proportions of events. Its deployment to the 
prediction of MI and IS achieved comparable perfor-
mance, but inferior performance for HS. Added values 
of genetic information of PRS did not observe significant 
improvement in model discriminations. Our proposed 
risk tool is easy to implement in practice and will optimise 
the identification of suspected individuals to aid clinical 
decision-making.

As to the deployment of subdiagnostic groups, the 
proposed UKCRP model demonstrated consistent results 
with existing models of AHA/ASCVD, FGCRS, QRISK 
V.3 and SCORE V.2 that exhibited the best predictive 
ability for MI, followed by IS, and the worst for HS. The 
actual incidence of MI, IS and HS ranging from high to 
low may be partly responsible for this result. Given the 
heterogeneity of disorders, distinct models leveraging 
disease-specific training were indeed demonstrated to 
be superior to the UKCRP model. In subgroup analysis, 
we observed gradually decreased AUCs along with each 
5-year increase in age. This indicates that the association 
between risk factors and incident CVD may be stronger in 
younger people, as supported by recent publications.29–31 
Although the prediction accuracy reduced with the incre-
ment of incident years, the AUC of 10-year CVD risk 
remained above 0.76. Accordingly, our model is robust 
enough to predict short-term and long-term CVD risk. 
In line with former studies,32 33 we subsequently demon-
strated that the effect of PRS addition on risk discrimina-
tion improvement was trivial. This further highlights the 
real-world transportability of our proposed model, which 
could achieve good predictive performance using only 
routinely available parameters.

Overcoming the weakness of previous algorithms incor-
porating only a few traditional predictors,5 7 10 11 34 our 
predictor selection pipeline allows identifying significant 
predictors from 645 variables. All the top 10 predictors 
for model development can be easily obtained through 
quick questionnaires or blood sampling, which provides 
the general population with the opportunity to perform 
automated and rapid health screening. Advanced age 
and male sex are the two most critical risk factors, with a 

https://dx.doi.org/10.1136/svn-2023-002332
https://dx.doi.org/10.1136/svn-2023-002332
https://dx.doi.org/10.1136/svn-2023-002332
https://jiayou0907.shinyapps.io/UKCRP/
https://jiayou0907.shinyapps.io/UKCRP/
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combined AUC of around 0.7. As previously reported,7 10 
treated hypertension, SBP and ratio of total cholesterol/
high-density lipoprotein cholesterol played imperative 
roles in the prediction of CVD risk. In addition, our 
model included cholesterol medication. Considering 
that a subset of the population in the study cohort may 
have already initiated preventive therapies (eg, statins or 
antihypertensive medication), the incorporation of drug 
usage could improve the modelling accuracy.7 Taking 
multiple medications, often driven by managing multiple 
comorbidities, is common in older CVD patients and 
has been linked to increased risk of CVD outcomes and 
adverse consequences such as disability, hospitalisation 
and death.35–37 Thereby, deprescribing has been an accu-
mulating focus in clinical settings to minimise tangible 
harm. Ascertaining the predictive value of prior anginal 
or heart attack and chest pain or discomfort is pivotal, 
as patients with these symptoms often seek emergency 
or outpatient assistance and have a greater willingness to 
engage in proactive risk factor management.38 Cystatin 
C is a predictor of cardiovascular risk39; however, it has 
rarely been adopted into previous predictive models. 
Current smoking status has been frequently reported 
as a risk factor; in this study, we leveraged pack-years of 
smoking, which is a derived variable calculated using the 
number of cigarettes smoked per day and years smoked, 

and it was found to be more sensitive than simply using a 
binary variable of smoking status. Overall, the predictors 
derived in our data-driven pipeline have been validated 
by numerous studies, proving the reliability of our model; 
however, it is the first time that the ten predictors were 
combined to establish a CVD risk prediction model.

The UKCRP model developed in this study can serve 
as a tool for CVD prediction to evaluate those suspected 
individuals who may benefit from effective preventive 
measures. Individuals with a higher CVD risk (eg, a 10-year 
risk>20%) require more aggressive risk factor interven-
tions. The strategies may include maintaining cholesterol 
at a reasonable level, intensive blood pressure control, 
rational and standardised drug use, lowering cystatin 
C and smoking cessation. Moreover, our study revealed 
the heightened CVD risk in young adults. Because most 
young people at high risk tend to ignore potential health 
hazards, there is a need to raise their self-awareness of the 
condition and encourage more rigorous interventions or 
treatments as early as possible to reduce the burden of 
CVD. Pending external validation, the UKCRP Score is 
promising not only to help physicians assess CVD risk and 
make appropriate clinical decisions but also to monitor 
preventative or therapeutic effectiveness.

One notable strength of our study is that the combi-
nation of included predictors was carefully selected from 

Figure 5  Webpage interface of UKCRP tool. Users can input the baseline characteristics on the left panel, and the calibration 
plot displayed on the right panel delineates the stratified risk groups of 10-year incident cardiovascular disease based on 
decile partitions. An example of 60-year-old female participants with no previous angina nor heart attack, experienced chest 
pain, takes three medications, including a cholesterol treatment, has a systolic blood pressure of 147 mm Hg, cystatin C of 
0.93 mg/L, total cholesterol of 5.30 mmol/L, HDL cholesterol of 1.67 mmol/L (cholesterol ratio of 5.30/1.67=3.17) and is a non-
smoker, her risk of developing cardiovascular disease in 10 years is predicted as 9.23% and corresponding risks of myocardial 
infarction, ischaemic stroke, and haemorrhagic stroke are 7.5%, 1.44% and 0.43%, respectively. AUC, area under the receiver 
operating characteristic curve; CVD, cardiovascular diseases; HDL, high-density lipoprotein.
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a comprehensive and massive multidimensional variable 
space, and the predictors used for modelling were easily 
accessible and proven to be reliable. The powerful LGBM 
algorithm we used could perfectly fit the enormous data-
sets and better deal with the missingness and potential 
nonlinear interactions compared with traditional Cox 
regressions. The development of the UKCRP model was 
underpinned by exceedingly thorough and extensive 
data of contemporary relevance to European popula-
tions, comprising over half a million participants with 
prolonged follow-up. The above characteristics improve 
the accuracy, versatility and validity of the model.

Several caveats should be concerned. First, the UK 
Biobank individuals suffer a lower CVD risk relative to 
the general primary care population. Prior to widespread 
implementation, the model needs to be recalibrated using 
related datasets such as the UK Clinical Practice Research 
Datalink. Second, despite that the UKCRP model was well 
calibrated over spatially different recruitment centres, 
its value in the pragmatic clinical application should be 
verified in entirely independent prospective cohorts to 
ensure that such implementation does improve patient 
outcomes. Third, because the population of the UK 
Biobank is predominantly white, the generalisability of 
the model across ancestrally distinct individuals will help 
to determine whether more appropriate and ethnically 
relevant decisions are required.

CONCLUSION
In this study, we introduced an ML-based algorithm for 
CVD risk prediction that outperformed previously estab-
lished scores. The new model incorporating simple and 
accessible predictors can be conveniently applied in clin-
ical practice to evaluate CVD risk and guide preventive 
primary care. Its validity and generalisability need to be 
tested in future studies.
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