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WNT7A promotes tumorigenesis of head and neck squamous
cell carcinoma via activating FZD7/JAK1/STAT3 signaling
Qingling Huang1, Yi Xiao2, Ting Lan2, Youguang Lu2,3, Li Huang4✉ and Dali Zheng 2✉

Wnt signaling are critical pathway involved in organ development, tumorigenesis, and cancer progression. WNT7A, a member of
the Wnt family, remains poorly understood in terms of its role and the underlying molecular mechanisms it entails in head and neck
squamous cell carcinoma (HNSCC). According to the Cancer Genome Atlas (TCGA), transcriptome sequencing data of HNSCC, the
expression level of WNT7A in tumors was found to be higher than in adjacent normal tissues, which was validated using Real-time
RT-PCR and immunohistochemistry. Unexpectedly, overexpression of WNT7A did not activate the canonical Wnt-β-catenin pathway
in HNSCC. Instead, our findings suggested that WNT7A potentially activated the FZD7/JAK1/STAT3 signaling pathway, leading to
enhanced cell proliferation, self-renewal, and resistance to apoptosis. Furthermore, in a patient-derived xenograft (PDX) tumor
model, high expression of WNT7A and phosphorylated STAT3 was observed, which positively correlated with tumor progression.
These findings underscore the significance of WNT7A in HNSCC progression and propose the targeting of key molecules within the
FZD7/JAK1/STAT3 pathway as a promising strategy for precise treatment of HNSCC.
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INTRODUCTION
Head and neck squamous cell carcinoma (HNSCC) are a type of
cancer that originates from the squamous cells lining the mucosal
surfaces of the head and neck region, with an increasing incidence
rate in recent years. It is estimated that as many as 380 000 new
cases of HNSCC worldwide in 2020, with a trend towards earlier
age of onset, particularly in high-incidence areas such as Asia and
Africa.1 HNSCC usually exhibits an invasive growth pattern,
frequently leading to regional lymph node or hematogenous
metastases. Despite recent advances in treatment technologies,
the unclear etiology and pathogenesis of HNSCC often result in
limited therapeutic options and suboptimal outcomes, particularly
in cases with local or distant metastases.2

The Wnt signaling pathway is a conserved signal transduction
pathway in multicellular eukaryotes that exerts a wide range of
biological effects. It plays a crucial role in various biological
processes, such as cell growth, differentiation, proliferation,
polarization, embryonic development, and stem cell self-renewal,
and is involved in regulating most biological phenomena of life.3,4

Current research has established the crucial involvement of the
Wnt signaling pathway in the onset and progression of numerous
cancers.5,6 Aberrant activation of the Wnt signaling pathway
affects the progress of several types of cells, enabling tumor cells
to sustain and promote their stem cell phenotype, proliferation,
and invasiveness. Among the identified cancers, over ten high-
incidence malignancies result from abnormal activation of the
Wnt signaling pathway, including colorectal cancer,7 lung cancer,8

breast cancer,9 and childhood acute lymphoblastic leukemia.10

Several studies have confirmed that Wnt signaling pathway

imbalance can facilitate oral cancer development,11 and its
abnormal activation can directly influence the prognosis of
patients with oral cancer.2

The Wnt signaling pathway is a complex network involving 19
WNT ligand proteins, 10 receptor proteins, and multiple common
or accessory proteins. The activation of this pathway, whether
through canonical or non-canonical signaling, is always initiated
by WNT ligand proteins. We analyzed the Cancer Genome Atlas
(TCGA) (https://portal.gdc.cancer.gov/) transcriptome sequencing
data of HNSCC and found that multiple WNT ligands were highly
expressed in HNSCC, and the expression of WNT7A was
significantly increased. WNT7A, a member of the WNT ligand
family, plays diverse roles in different tumor types. In ovarian and
endometrial cancers, it can promote cancer cell proliferation and
induce cancer progression through the canonical Wnt-β-catenin
pathway.12 However, in gastric carcinoma, WNT7A acts as a tumor
suppressor and is independent of the canonical Wnt-β-catenin
signaling.13 Recent studies have shown that WNT7A is upregu-
lated in tongue squamous cell carcinoma (TSCC) and may be
involved in the regulation of cell proliferation, migration, invasion,
and epithelial-mesenchymal transition (EMT) in TSCC.14

Currently, the mechanism of WNT7A in tumorigenesis is a matter
of debate. Some studies have reported that in non-small cell lung
cancer cells, overexpression of WNT7A is accompanied by parallel
changes in the JNK pathway, while phosphorylation of β-catenin
(Thr41/Ser45, Ser552, Ser675, and Ser45) is not affected by WNT7A.15

Additionally, hyperactivation of the WNT signaling pathway and its
associated factors is frequently observed in basal-like triple-negative
breast cancer (TNBC).16 Furthermore, STAT3 is a crucial regulator of
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cancer stem cell function in various cancers, including TNBC.17

Therefore, some researchers suggest that the WNT and STAT3
pathways play critical roles in the initiation and metastasis of breast
cancer.18 Our study aimed to explore the role of WNT ligands and
the underlying relationship with STAT3 pathways in HNSCC.

RESULTS
Elevated expression of WNT7A is associated with
clinicopathological features of HNSCC
To investigate the significance of the WNT family in the
progression of HNSCC, we analyzed TCGA transcriptome
sequencing data of HNSCC first. The data showed that mRNA
expression levels of several WNT ligands were higher in tumors
than para-cancerous (Fig. 1a). We verified these findings by
performing real-time RT-PCR on 15 pairs of HNSCC tumors and
their para-cancerous tissues. Several Wnt ligands were found to
be up-regulated in tumors in these paired samples (Fig. 1b).
Despite the heterogeneity of the tumors, the high expression of
WNT7A remained consistent and significant in most cases.
Mantel-Cox inspection and analysis showed that WNT7A was
expressed at higher levels in HNSCC compared to para-
cancerous tissues (P < 0.001) (Fig. 1c), and WNT7A expression
level was negatively associated with patient overall survival rate
(P < 0.001) (Fig. 1d).
We conducted immunohistochemical staining of WNT7A in a

total of 137 HNSCC tissues, and representative images of each
staining grade are presented in (Fig. 1e). Our analysis revealed that
WNT7A was expressed in both HNSCC and para-cancerous tissues;
however, its expression intensity was significantly higher in HNSCC
tissues compared to para-cancerous tissues (Table 1). Specifically,
WNT7A high expression was detected in 75 cases of HNSCC tissues,
whereas only 11 cases of para-cancerous tissues were detected
with WNT7A high expression (Table 1). Additionally, the total
survival rate exhibited a statistically significant difference between
the survival distributions of the WNT7A high and low expression
groups (P < 0.05) (Fig. 1f). Notably, we observed a positive
correlation between the WNT7A expression level and tumor
differentiation (P < 0.05), and perineural invasion (P < 0.01). These
findings suggest a potential oncogenic role of WNT7A in HNSCC.

WNT7A promotes HNSCC proliferation, self-renewal, and anti-
apoptosis in vitro
To investigate the potential oncogenic role of WNT7A in HNSCC,
knockdown and overexpression experiments in HNSCC cell lines were
conducted. Firstly, we analyzed the expression levels of WNT7A in
several HNSCC cell lines. The expression of WNT7A in HN30 and
CAL27 cell lines was higher than other cell lines, while the expression
of WNT7A in HN6 cells was lower (Fig. S1A). Subsequently, we
confirmed the efficiency of WNT7A siRNA knockdown in CAL27 cells
(Fig. 2a) and ectopic expression following plasmid transfect in HN30
cells (Fig. 2b). Knockdown of WNT7A resulted in significant inhibition
of cell growth (Fig. 2c and Fig. S1B), colony formation (Fig. 2d, and Fig.
S1D, E) and tumor-sphere formation (Fig. S2A) in HNSCC cells.
Consistently, overexpression of WNT7A significantly promoted cell
growth and self-renewal in HNSCC cells (Fig. 2e–g and Fig. S1C, F).
Stemness-related markers SNAIL19,20 and SLUG21 were also signifi-
cantly regulated by WNT7A (Fig. 2h, and Fig. S2B, C).
In addition, flow cytometry analysis revealed that knockdown of

WNT7A resulted in a significant increase in the apoptosis
percentage of both CAL27 and HN30 cells (Fig. 2i, and Fig. S3A).
Consistently, overexpression of WNT7A in HN30 and HN6 cells led
to a significant decrease in the apoptosis percentage compared to
the vector group, when induced by H2O2, a known apoptosis
inducer for cell experiments.22 (Fig. 2j, and Fig. S3B). However,
WNT7A was not associated with HNSCC cell mobility (Fig. S4A, and
Fig. S4B). These findings further underscore the critical potential
oncogenic role of WNT7A in HNSCC.

WNT7A does not activate Wnt-β-catenin signaling in vitro
Next, we investigated the involved intracellular signaling path-
ways induced by WNT7A, initially focused on β-catenin which was
a key component in the canonical WNT signaling pathway.
Unexpectedly, the knockdown of endogenous WNT7A in CAL27
and HN30 cells did not result in the change of Thr41/Ser45
phosphorylation or a decrease in total protein level of β-catenin
(Fig. 3a). Similarly, overexpression of WNT7A did not lead a change
in Thr41/Ser45 phosphorylation of β-catenin and total β-catenin
(Fig. 3b). Immunofluorescence staining revealed predominant
presence of β-catenin at the cell membrane and dispersed
distribution in the cytoplasm (Fig. 3c, d). Overexpression of
WNT7A did not induce significant nucleus translocation of
β-catenin in HNSCC cells (Fig. 3c, d). However, obvious nucleus
β-catenin translocation was observed in the positive control group
(Fig. 3e). Furthermore, in the nucleus-cytoplasmic separation
experiment, we observed no significant nucleus translocation of
β-catenin protein after WNT7A overexpression in cells (Fig. 3f).
To further assess the transcriptional activity of β-catenin following

WNT7A stimulation, we conducted luciferase reporter assays in 293 T
cells transfected with TOP-Flash plasmids. Consistently, the addition
of exogenous WNT7A did not significantly increase luciferase activity
compared to the control group. The luciferase activity was elevated
obviously in the group treated with 5mmol/L lithium chloride (LiCl),
a known activator of canonical WNT signaling that inhibits glycogen
synthetase kinase-3β23 (Fig. 3g). These findings collectively indicate
that the WNT-β-catenin signaling pathway is unlikely to be involved
in the effects of WNT7A in HNSCC.

WNT7A upregulates the expression of STAT3 target genes
We employed RNA-seq analysis combined with informatics tools
and websites to examine the gene expression profiles associated
with WNT7A expression (Fig. S5A). Initially, we identified genes
that were potentially involved in proliferation, self-renewal and
anti-apoptosis through Gene Ontology (GO) and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) analysis.24,25 and the
heatmap of top 30 deregulated genes was shown in Fig. 4a. To
validate these findings, we performed real-time RT-qPCR experi-
ments, confirming the differential expression of SERPINB3,
SERPINB4, STAT4, HCAR2, and BIRC3 (Fig. 4b, c).
Furthermore, the ChEA3-ChIP-X Enrichment Analysis Version 3.1

tool.26 was employed to investigate the potential binding of
transcription factors to the promoters of these identified genes.
Remarkably, the analysis revealed that STAT3 exhibited potential
binding to the promoters of several of these deregulated genes,
suggesting a potential regulatory relationship between WNT7A
and the STAT3 signaling pathway (Fig. S5B).
To investigate the potential direct target genes of STAT3 in

HNSCC cells induced by WNT7A, we used CiiiDER227 to predict
transcription factor binding sites (Fig. S6A) and selected SERPINB3,28

SERPINB4,29 STAT4,30 HCAR2, and BIRC331,32 for further verification,
as these genes are related to tumor proliferation, self-renewal, and
apoptosis based on GO analysis. We designed primers for ChIP-qPCR
analysis by Cistrome Data Browser (Fig. 4d and Fig. S6B). Following
the overexpression of WNT7A in HNSCC cells, we performed ChIP-
qPCR analysis and used IRF133 as a positive control, which is a
known target gene of STAT3. After overexpression of WNT7A, the
binding of STAT3 to the promoter region of STAT4, HCAR2, and
BIRC3 was significantly enhanced (Fig. 4e). However, the binding to
SERPINB3 and SERPINB4 (Fig. S6C, D) was not. These results indicate
that WNT7A may induce STAT3-mediated noncanonical WNT
signaling pathway activation in HNSCC.

WNT7A activates FZD7/JAK1/STAT3 signaling in vitro
Y705 phosphorylation of STAT3 (pSTAT3 Y705) is a crucial step in the
activation of STAT3 signaling pathway.34 So, we first verified this by
overexpression WNT7A in HN30 and HN6 cells and found pSTAT3
Y705 expression increased without altering total protein levels of

WNT7A promotes tumorigenesis of head and neck squamous cell carcinoma
via. . .

Huang et al.

2

International Journal of Oral Science            (2024) 16:7 



STAT3 (Fig. 5a). And nucleus pSTAT3 Y705 protein levels were
significantly increased in the WNT7A overexpression group com-
pared to the vector group by nucleus-cytoplasmic separation
experiment (Fig. 5b). Immunofluorescence staining of pSTAT3 also
confirmed these results, showing that pSTAT3 staining in two group
presents in the nucleus, but pSTAT3 staining was stronger in the
WNT7A overexpression group than in the vector group (Fig. 5c, d).

To further explore the underlying mechanism by which WNT7A
regulates STAT3 phosphorylation, we examined the expression levels
of upstream factors known to induce STAT3 activation, including
JAK1, JAK2, and JAK3. Interestingly, we observed a significant
increase in phosphorylated JAK1 levels after overexpressing WNT7A,
while the expression of JAK2 was undetectable in HNSCC cell lines.
Additionally, the expression of total JAK3 was altered too (Fig. 6a).
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Fig. 1 Comprehensive analysis of WNT7A expression and its potential oncogenic role in HNSCC. a Analysis of TCGA transcriptome
sequencing data of HNSCC showed that several WNT ligands including WNT7A were up-regulated in HNSCC samples (shown in brown,
n= 518) compared with para-cancerous (shown in green, n= 44). b Real-time RT-PCR analysis demonstrated that WNT7A exhibited significant
upregulation in 11 out of 15 pairs of samples. The color change of the heatmap is based on the log2 (fold change). c Analysis of the TCGA
database revealed that WNT7A was expressed at higher levels in HNSCC samples (shown in red, n= 496) compared to para-cancerous samples
(shown in blue, n= 44). d Survival analysis showed the patients with high expression of WNT7A is associated with worse survival compared to
their lower expression (P < 0.001). e Immunohistochemical evaluation of WNT7A staining in 137 pairs of HNSCC tissues and para-cancerous
tissues was performed, and staining intensity was categorized into four grades: negative (score 0), weak positive (score 1), medium positive
(score 2), and strong positive (score 3). Representative images of each staining grade are provided. f Overall survival analysis of 137 HNSCC
patients indicated the high expression of WNT7A in cancer tissues (n= 75) was associated with poor survival compared with the patients with
low expression (n= 62, P < 0.05)
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Considering that WNT7A acts as a secreted protein, we sought
to determine its receptor target. According to the results of
protein network prediction using the STRING (https://string-
db.org/) database, FZD5 and FZD7 were considered as potential
receptor candidates for WNT7A (Fig. 6b). Further analysis of single-
cell sequencing data (GSE103322) revealed higher enrichment of
FZD7 in cancer cells compared to FZD5 (Fig. 6c, and Fig. S7A, B).
We further analyzed if WNT7A activated the JAK1/STAT3 signaling
pathway through FZD7, and CoIP results showed FZD7, could bind
with WNT7A and JAK1, but not JAK3 (Fig. 6d, e, and Fig. S7C).
Immunofluorescence staining assay showed that FZD7 and JAK1
did colocalize together in cells (Fig. 6f). These results suggest that
WNT7A can activate the JAK1/STAT3 signaling pathway through
FZD7 in HNSCC, which has not been reported previously.

TPCA inhibits HNSCC proliferation, self-renewal, and anti-apoptosis
induced by STAT3 signaling pathway activation
To confirm whether WNT7A-induced activation of JAK1/
STAT3 signaling directly affects HNSCC cell proliferation, self-
renewal, and apoptosis, we used TPCA.35 to inhibit pSTAT3 Y705 in
HN30 and HN6 cells. TPCA treatment abolished the accumulation
of pSTAT3 Y705 stimulated by WNT7A overexpression in dose-
dependent manner (Fig. 7a). And FZD7 overexpression also
increased pSTAT3 Y705 levels, the phosphorylation level of STAT3
decreased after TPCA treatment (Fig. S7D). The expression of
stemness-related markers in SNAIL and SLUG were also signifi-
cantly decreased following treatment by TPCA (Fig. 7b). These

results further confirmed that WNT7A can activate the JAK1/
STAT3 signaling pathway.
The impact of WNT7A overexpression on cell growth was

profound in both HN30 and HN6 cell lines. However, this
stimulatory effect on cell growth was notably attenuated upon
treatment with either 1 μmol/L or 1.5 μmol/L TPCA (Fig. 7c, and
Fig. S8A). Remarkably, similar trends were observed in terms of
colony formation, self-renewal, and anti-apoptosis ability of
HNSCC cells (Fig. 7d–h, and Fig. S8B). These findings collectively
underscore the potential therapeutic significance of targeting
WNT7A and inhibiting pSTAT3 Y705 for innovative strategies in
HNSCC treatment.

WNT7A and pSTAT3 are positively associated with proliferation
and anti-apoptosis in HNSCC PDX models
According to our studies above in vitro, patient-derived xenograft
(PDX) models were established using four clinical HNSCC samples
to validate our findings. Expression profiling of the first generation
of PDX tumors revealed variations in WNT7A expression among
tumors from different patients, consistent with clinical observa-
tions (Fig. 8a). Based on these results, we selected two cases, A6
and A10, for further investigation. We observed a positive
correlation between tumor size (Fig. 8b and Fig. S9A) and weight
(Fig. 8c) with the levels of WNT7A expression and Y705
phosphorylation of STAT3 (Fig. 8d, e). Meanwhile, A10, which
exhibited lower expression of WNT7A, displayed higher expression
of cleaved Caspase3 compared to A6 (Fig. 8d, e). Cleaved
Caspase3 is a marker of apoptotic cell death,36 and its levels
were consistent with our in vitro findings. These findings suggest
that WNT7A plays a crucial role in promoting HNSCC tumorigen-
esis and may serve as a potential therapeutic target for this
aggressive malignancy.

DISCUSSION
The upregulation of WNT7A has been previously reported in
different types of cancer, including colorectal cancer,37 lung
cancer,38 and ovarian cancer,12 suggesting that WNT7A may be a
common oncogenic factor in cancer. Our study further confirms
that WNT7A is overexpressed in HNSCC, indicating its potential
oncogenic role in this cancer as well. The correlation between
WNT7A expression and HNSCC cell proliferation suggests that
WNT7A may be involved in stemness and anti-apoptosis of HNSCC
cells in our study. The positive correlation between WNT7A
expression and survival rate also suggests that WNT7A may be a
prognostic marker for HNSCC.
Previous studies have shown that WNT7A can promote tumor cell

proliferation, migration, and invasion, as well as resistance to
chemotherapy and radiotherapy through the Wnt-β-catenin path-
way.39,40 However, for the first time, we found that after over-
expression of WNT7A, the phosphorylation level of β-catenin Thr41/
Ser45 was not decreased, and the total protein level and subcellular
location of β-catenin were not affected. Based on previous studies, it
has been suggested that WNT7A may have multiple domains that
can bind to receptor proteins. However, some domains may not
induce secondary effects or functional changes,41 which could be a
reason why WNT7A did not activate the Wnt-β-catenin pathway in
HNSCC. WNT7A has been found to bind to various receptor proteins
in different tumor types, but the expression levels of these receptors
may differ between HNSCC and other tumors.42–44 Additionally,
there is a potential for secondary cascades. A study has shown that
WNT can elevate galectin-3 expression, leading to its interaction
with STAT3 and subsequent activation.45

Understanding the mechanism of malignancies will facilitate the
identification of therapeutic and prognostic factors, thereby
improving the efficiency of treatment for HNSCC patients.46 Our
findings suggest that WNT7A may activate a previously undescribed
STAT3-mediated noncanonical WNT pathway in HNSCC. The

Table 1. Immunohistochemical of WNT7A stain in 137 cases of HNSCC
tissues

Characteristics Cases WNT7A(Low) WNT7A(High) P value

Cancer VS Normal

Cancer 137 62 75 <0.001

Normal 137 126 11 ***

Gender

Male 93 38 55 0.132 9

Female 44 24 20

Age

Less than 60 87 42 45 0.348 8

60 and up 50 20 30

Tumor Stages

T1 and T2 58 28 30 0.604 6

T3 and T4 79 34 45

Differentiation

Well 83 44 39 0.023 7

Poorly or Moderately 54 18 36 *

WPOI-5

Present 27 9 18 0.164 8

Not Identified 110 53 57

Perineural Invasion

Present 52 16 36 0.007 7

Not Identified 85 46 39 **

Extra nodal extension

Present 21 9 12 0.810 4

Not Identified 116 53 63

Lymph Node Metastasis

N0 92 44 48 0.387 4

N1 and N2 45 18 27
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STAT3 signaling pathway has been extensively studied in tumor
research due to its critical role in promoting tumorigenesis47.
Numerous studies have reported that aberrant activation of
STAT3 signaling promotes tumor growth,46 invasion, metastasis,48

and resistance to therapy.49 The JAK/STAT and Wnt-β-catenin
pathways have been identified as pivotal players in tumorigenesis.
Notably, research has demonstrated a direct interaction between
STAT3 and β-catenin in the nucleus,50 with STAT3 positively
regulating β-catenin’s transcriptional activity. Despite the lack of
activation of the WNT-β-catenin pathway by WNT7A in HNSCC, our

results indicate that WNT7A serves as the initiating factor for the
STAT3 pathway. Additionally, being a secreted protein, WNT7A
triggers a complex intracellular cascade through interaction with a
receptor protein. Despite limited exploration of receptor expression
in HNSCC, our investigation unveils a pivotal insight. Leveraging
informatics tools and single-cell sequencing data, we demonstrate
that WNT7A engages FZD7 to activate the JAK1/STAT3 signaling
pathway in HNSCC. Notably, while STAT3 was previously proposed
as a therapeutic target for HNSCC,51 our findings suggest a novel
avenue for intervention upstream through WNT7A.
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Taken together, our results suggest that WNT7A may play a
critical role in the development and progression of HNSCC. The
upregulation of WNT7A has been reported in various cancers,
including HNSCC,14 indicating its potential role as an onco-
genic factor in different types of cancer. Our study found that
WNT7A expression is correlated with tumor growth and
survival rate in HNSCC, suggesting its potential use as a
prognostic marker. While previous studies have shown that
WNT7A promotes tumor progression through the Wnt-
β-catenin pathway,39,40 our study found that it activates a
previously undescribed STAT3-mediated noncanonical Wnt
pathway in HNSCC. Overall, our findings suggest that targeting
WNT7A could be a potential therapeutic approach to inhibit
STAT3-mediated signaling and HNSCC progression. Overall, the
findings from this study provide valuable insights into the
complex signaling pathways involved in HNSCC and lay a
foundation for developing a new target combination therapy.

MATERIALS AND METHODS
Patients and samples
One hundred thirty-seven tumors and matching normal adjacent
tissues were obtained from HNSCC patients at the First Affiliated
Hospital of Fujian Medical University. The collection and use of
HNSCC tissue samples were approved by the Institutional Ethics
Committee of the First Affiliated Hospital of Fujian Medical
University (China), and informed consent for publishing data
relating to individual participants was obtained from the
participants or their legal guardians.

RNA sequencing and data analysis
RNA-seq results were performed using build GRCh38/hg38 as the
Homo sapiens reference genome. Differentially expressed genes
(DEGs) were identified using a filtered dataset quantified
according to gene-level expression. To determine whether a set
of genes showed statistically significant and/or concordant
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differences between two biological states, such as overexpression
WNT7A versus vector group, DEGs were selected with a p-
value < 0.01, false discovery rate (FDR) < 0.05, and fold change
(FC) ≥ 1.5.

Real-time RT-PCR
Total RNA was extracted from primary HNSCC tissues and cells
using TRIzol reagent (Invitrogen), and cDNA was synthesized with
the Prime Script RT Reagent Kit (TaKaRa). Real-time RT-PCR
analyses were conducted using Real SYBR Mixture (CoWin
Bioscience, China) on a Lightcycler 480 II instrument (Roche
Applied Science), with GAPDH as an internal control. Table S2
shows the primers used for Real-time RT-PCR.

Online cancer database analysis
The TCGA-HNSCC dataset containing gene expression and clinical
data from 540 patients with HNSCC was obtained. Raw gene
expression data was processed and normalized using the R
Bioconductor package ‘limma’ and the ‘voom’ function. WNT7A
expression levels were compared between tumor and normal
samples using a moderated t-test. Survival analysis was conducted
using Cox proportional hazards regression, with patients stratified

into high and low-expression groups based on the median
expression level of WNT7A.

Immunohistochemical staining
WNT7A protein expression in HNSCC tissue was analyzed using
immunohistochemical (IHC) staining on a tissue array. The tissue
microarray chips contained a total of 137 samples (137 HNSCC and
137 para-cancerous) with follow-up data obtained from the
affiliated hospital. All patient information was obtained and used
following approved protocols from the institutional review boards
of the participating institutions. Specific experimental methods
referenced article published before.52 WNT7A expression was
calculated as the product of the proportion score (%) multiplied by
the staining intensity score (0–3). The proportion score repre-
sented the percentage of positive cells, while the intensity score
represented the average intensity of staining (0: no staining, 1:
yellow, 2: clay bank, and 3: tawny).

Cell lines, primary cell preparation, and culture conditions
The human HNSCC cell lines, CAL27, HN30, HN6, FADU, and
human embryonic kidney cell line, 293 T were cultured in DMEM
high glucose media (SH30022.01, cytiva, China) with 10% fetal
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bovine serum (P30-3302, PAN-Biotech, German). All cells were
cultured in a humidified incubator (Forma™ 351, Thermo Fisher) at
37 °C with 5% CO2.

Plasmid design and transfection
We designed and synthesized siRNAs targeting WNT7A (Gene
Pharma, Shanghai, China), whose specific sequences are shown in
Table S1. CAL27 and HN30 cells were transfected with the siRNAs
according to the instruction manual for Lipofectamine RNAiMAX
(Invitrogen, Catalog # 13778150). The overexpression of WNT7A in
HN6 and HN30 cells was performed using the pENTER plasmids, and a
pair of primers was designed and synthesized. The primers were used
to amplify the complete coding sequence (CDS) of the WNT7A gene
(NM_004625) via PCR. The overexpression of FZD7(NM_003507) in
HN6 and HN30 cells was performed using the pcDNA 3.1 plasmids.
Transfection was performed following the instructions for Lipofecta-
mine 3000 (Invitrogen, Catalog # L3000015).

Cell growth, colony formation, sphere formation and cell
apoptosis assay
Quantified cell growth using the Cell Counting Kit-8 Assay Kit
(CK04, Dojindo, Japan). For the colony formation assay, cells were
seeded into each well of a six-well plate and maintained in a
medium containing 10% FBS for 14 days. The colonies were fixed
with methanol and stained with 0.1% crystal violet. The clones
containing at least 50 cells were counted using an inverted
microscope. For the sphere formation assay, cells were seeded
into each well of an Ultra-Low Attachment Surface 96 well plate
(7007, Corning, USA) and maintained in DMEM/F12 (Gibco)+ 1%
B27 (Invitrogen, USA)+ 20 ng/mL hFGF+ 20 ng/mL hEGF for
14 days. We detected cell apoptosis by flow cytometry according
to the manufacturer’s instructions of the Annexin V-FITC Apoptosis
Detection Kit (F6012L, Bioscience, China).

Protein extraction and Western blot assay
We extracted total cellular proteins using RIPA (P0013B, Beyotime,
China), and lysate protein concentrations were quantified with a
Bicinchoninic Acid Protein Assay (BCA) Kit (P1102, Beyotime, China).

We used standard western blot assays to measure protein expression,
and antibodies used to determine the indicated protein are shown in
Table S4. The blots were visualized using a chemiluminescence
detection system (ChemiDoc XRS+, Bio-Rad, USA).

Nucleus-cytoplasmic separation assay
We washed cells with phosphate-buffered saline (PBS) and
scraped off the cells with a cell scraper, and centrifuge to collect
cells. The nucleus and cytoplasmic protein extract was performed
following the instructions for the Nucleus Protein Extraction Kit
(R0050, Solarbio, China). The nucleus and cytoplasmic proteins
were then quantified using a BCA protein assay kit. Then standard
western blot assays to measure protein expression.

Dual luciferase reporter assay
To evaluate the transcriptional activity of the target, we employed the
reporter construct pGL4.47[Luc2P/SIE/Hygro] (SIE-pGL4.47, Promega,
Madison, WI), which harbors five copies of SIE, driving the luciferase
reporter gene luc2P expression. The plasmids, as indicated, were
transiently transfected into 293 T cells. To ensure a consistent total
amount of transfected DNA in each well throughout all experiments,
pRL-TKRenilla luciferase plasmid (Promega) was used. We transfected
exogenous WNT7A into 293 T cells and collected the culture
supernatants of each cell. After validating the expression of WNT7A
in the culture supernatant by Western Blot with a labeled antibody
(Flag), we added the culture supernatant to 293 T cells transfected
with TOP-Flash plasmids. We also added the LiCl (310468, Sigma-
Aldrich, Germany) to 293 T cells transfected with TOP-Flash plasmids
as a positive control. Subsequently, the cells were harvested and their
luciferase activity was assessed using the SpectraMax iD3 (USA).

Immunofluorescence
The fixed cells were premobilized and blocked with 0.3% Triton X
100 (1139, BioFroxx, China) or 3% normal fetal bovine serum
(4240, BioFroxx, China) in 0.01 mol/L PBS for 30 min at room
temperature (RT). This was followed by overnight incubation with
the designated antibodies at 4 °C. On the following day, the cells
were incubated with fluorescein isothiocyanate conjugated
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antibody (Table S4 shows the antibodies used for Immunofluor-
escence). DAPI (C1005, Beyotime, China) was used to counterstain
the cell nucleus. Subsequently, the cells were washed, mounted,
and examined using a laser scanning confocal microscope (Leica
Microsystems GmbH, Mannheim, Germany).

GSE103322 single cell sequencing data analysis
According to the author’s notes, compare the expression level of
WNT7A, FZD5, and FZD7 in different cell subclasses, the dotted
line is the average expression of all cells, each subclass and the
average expression are compared by Wilcox test, and the
significance is marked in the figure.53

Co-immunoprecipitation (Co-IP) assay
293 T were cultured in 100-mm dishes and transiently trans-
fected with PC.DNA.3.1-vector or PC.DNA.3.1-FZD7-Myc-tag
plasmids. At 80%–90% confluence, the cells were washed three
times with ice-cold PBS and lysed on ice for 30 min using
immunoprecipitation (IP) lysis buffer. The lysates were clarified
by centrifugation at 14 000 × g for 10 min and incubated with
20 μL of Anti-c-Myc Magnetic Beads (HY-K0206, MedChemEx-
press, USA) overnight at 4 °C with rotation. Then washed six
times with lysis buffer. The pelleted beads were resuspended in
30 μl loading buffer for SDS-PAGE followed by western blotting
using the indicated antibodies.
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Chromatin immunoprecipitation (ChIP-qPCR)
ChIP assays were conducted using an anti-STAT3 antibody
(Table S4 shows the antibodies used for ChIP) and Protein G
Magnetic Beads (HY-K0204, MCE, USA) to pull down DNA
fragments bound to STAT3. Specific primers were used to detect
the binding of STAT3 to target genes after the DNA was purified
and subjected to qPCR analysis. The input DNA was used as a
control, and the enrichment of the target gene promoter was
calculated as the ratio of immunoprecipitated DNA to input
DNA. The immunoprecipitation of the STAT3 was compared to
that of the IgG antibody (A00002, zen-bio, China) to determine
fold enrichment. The comparative Ct method was used to
analyze the data.

Patient-derived xenograft (PDX) studies
To evaluate the effect of WNT7A in vivo, PDX studies were
conducted. Four cases of fresh tumor tissues were obtained
from patients undergoing surgery, which were provided by the
First Affiliated Hospital of Fujian Medical University (Approval
Number: FJMU-IACUC 2021-0299) and the written informed
consent of each participant was obtained. The collected tumor

tissues were cut into small fragments (2–3 mm in size) and
placed in DMEM. Then 2–3 mm3 tumor blocks were implanted
into the male nude mice (BALB/c nu/nu, 6–8 weeks old,
Gempharmatech, China). When the primary mouse tumor grew
to about 100 mm3, it was transplanted into the second
generation. Two cases were chosen based on the second-
generation expression of WNT7A, and transplanted into 6 mice
of each group. Once the PDX tumors reach a suitable size or
when the study endpoint is reached, the mice are euthanized,
and the tumors are harvested for further analysis. Based on the
formula below, we calculated the volume of the tumor:
volume= length × width2 × 0.5.

Statistical analysis
All data are presented as mean ± standard deviation (SD).
GraphPad Prism 8.0 (GraphPad Software, San Diego, CA, USA)
was used for statistical analysis and graphical data representation.
Student’s t-tests, ANOVA, or χ2 tests were performed as
appropriate to evaluate statistical significance. All experiments
were performed in triplicate, and the data met the assumptions of
the statistical analysis.
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Fig. 7 TPCA inhibited WNT7A-induced activation of STAT3 signaling and proliferation, self-renewal, and anti-apoptosis in HNSCC cells.
a Western blot analysis showed the accumulation of pSTAT3 decreased with increasing TPCA concentration (0 μmol/L, 0.5 μmol/L, 1 μmol/L,
2 μmol/L), while the expression of pSTAT3 remains consistently higher in the WNT7A overexpression group. b Elevated WNT7A expression
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formation ability of HN30 cells. e, f Tumor sphere formation assay indicated that TPCA treatment impaired the sphere formation ability of
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