Skip to main content
. 2024 Jan 8;15:1303036. doi: 10.3389/fnagi.2023.1303036

Table 2.

Comparison of our models MAE with the literature.

Study Model Modality Preprocessing MAE R 2
Only using the UK Biobank
Dartora et al. CNN1 T1 Rigid reg. 2.75 0.88
Dartora et al. CNN2 T1 Rigid reg. 2.66 0.89
Dartora et al. CNN3 T1 Rigid reg. 2.67 0.89
Dartora et al. CNN4 T1 Bias-field and motion cor., Skull-strip., Rigid MNI reg. 3.03 0.85
Bintsi et al. (2020) CNN (3D ResNet) T1 Skull-strip., non-linear MNI reg. 2.64 0.77
Bintsi et al. (2020) CNN (patches) T1 Skull-strip., non-linear MNI reg. 2.13 0.85
Kolbeinsson et al. (2019) CNN T1 Skull-strip., non-linear MNI reg. 2.58 -
Lam et al. (2020) R-CNN T1 Bias-field cor., Skull-strip., Rigid MNI reg. 2.86 0.87
Lam et al. (2020) CNN T1 Bias-field cor., Skull-strip., Rigid MNI reg. 4.36 0.66
Gupta et al. (2021) CNN (slices) T1 Bias-field cor., Skull-strip., Rigid MNI reg. 2.82 -
Dinsdale et al. (2021) CNN (Female population) T1 UK Biobank pipeline w/linear registration to MNI 2.86 0.87
Dinsdale et al. (2021) CNN (Male population) T1 UK Biobank pipeline w/linear registration to MNI 3.09 0.86
Jonsson et al. (2019) CNN (transfer learning) T1 Bias-field cor., Skull-strip., Dartel MNI reg., tissue maps 3.63 0.61
Peng et al. (2021) SFCN T1 Bias-field cor., Skull-strip., Rigid MNI reg. 2.14 0.39
Peng et al. (2021) CNN T1 Bias-field cor., Skull-strip., Rigid MNI reg. 2.38 -
Study Model Modality Samples/Cohorts Preprocessing MAE R 2
Using different cohorts
Dartora et al. CNN1 T1 16734/4 Rigid reg. 2.99 0.80
Dartora et al. CNN2 T1 16734/4 Rigid reg. 2.67 0.83
Dartora et al. CNN3 T1 17296/6 Rigid reg. 2.67 0.83
Dartora et al. CNN4 T1 16734/4 Bias-field and motion cor., Skull-strip., Rigid MNI reg. 3.08 0.77
Wood et al. (2022) 3D DenseNet T2 11735/2 Resampling, cropping, padding, intensity normalisation. 3.05 -
Wood et al. (2022) 3D DenseNet T2 11735/2 Resampling, cropping, padding, intensity normalisation, skull-strip. 3.65 -
Wood et al. (2022) 3D DenseNet T1 2387/1 Skull-strip., MNI registration 3.83 0.95
Wood et al. (2022) 3D DenseNet T1 2387/1 “Raw T1”* 4.86 0.90
He et al. (2022) 2D CNN T1 8379/8 Bias-field cor., field of view norm., Skull-stripp., registration to SRI atlas, cropping. 2.70 -
He et al. (2021) 3D FUS CNN T1 split 16705/8 Bias-field cor., field of view norm., Skull-stripp., multi-site data harmonisation with histogram matching to SRI atlas, split in two channels (contrast and morphometric), intensity normalisation. 3.00 -
Lee et al. (2022) 3D DenseNet T1/PET 4127/1 MRI: intensity correction, and segmentation of tissues, intensity normalisation; PET: registration to MRI and MCALT space, scale to SUVRpons, segmentation in meta-ROI. 4.20** -

CNN, convolutional neural network; CNN1, our CNN model in a hold-out approach; CNN2, our CNN model in a cross-validation approach; CNN3, our CNN model in a cross-validation approach, including two cohorts in the dataset; CNN4, our CNN model in a cross-validation approach, using skull-stripped images; R-CNN, recurrent CNN; SFCN, simple fully convolutional network; R2 = coefficient of determination. Dartoral et al. refer to the current study. *The authors do not specify if any processing was done. For the “raw” T2 images in the same study, resampling, cropping, and intensity normalisation were performed. **Calculated MAE only for the MRI. SUVRpons, standardised uptake volume ratio in relation to the pons; Meta-ROI, meta region of interest.