Skip to main content
. 2024 Jan 8;6:1296508. doi: 10.3389/fdata.2023.1296508

Table 3.

Difference (± standard deviation) of ML utility and statistical similarity for Classification between original and synthetic data, averaged on five datasets.

Method ML utility difference Statistical similarity difference
Accuracy (%) F1-score AUC Avg JSD Avg WD Diff. corr.
CTAB-GAN+ 5.23 ± 1.493 0.090 ± 0.009 0.041 ± 0.003 0.039 ± 0.002 0.010 ± 0.001 2.03 ± 0.039
CTAB-GAN 8.90 ± 1.841 0.107 ± 0.008 0.094 ± 0.004 0.062 ± 0.002 0.013 ± 0.002 2.09 ± 0.031
IT-GAN 8.95 ± 1.911 0.229 ± 0.007 0.183 ± 0.002 0.078 ± 0.001 0.026 ± 0.002 2.63 ± 0.053
TVAE 7.86 ± 2.034 0.181 ± 0.010 0.140 ± 0.004 0.097 ± 0.002 0.017 ± 0.002 2.41 ± 0.055
CTGAN 21.51 ± 3.525 0.274 ± 0.012 0.253 ± 0.006 0.070 ± 0.002 0.025 ± 0.002 2.73 ± 0.097
TableGAN 11.40 ± 2.381 0.130 ± 0.009 0.169 ± 0.004 0.080 ± 0.001 0.055 ± 0.004 2.30 ± 0.078
MedGAN 14.11 ± 4.431 0.282 ± 0.017 0.285 ± 0.006 0.110 ± 0.004 0.159 ± 0.003 2.77 ± 0.181
CWGAN 20.06 ± 4.014 0.354 ± 0.022 0.299 ± 0.006 0.132 ± 0.002 0.136 ± 0.002 2.82 ± 0.167

A lower value indicates a better result. Best result in each column is highlighted in bold.