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SUMMARY

When evaluating the effectiveness of a treatment, policy, or intervention, the desired measure of efficacy
may be expensive to collect, not routinely available, or may take a long time to occur. In these cases, it
is sometimes possible to identify a surrogate outcome that can more easily, quickly, or cheaply capture
the effect of interest. Theory and methods for evaluating the strength of surrogate markers have been well
studied in the context of a single surrogate marker measured in the course of a randomized clinical study.
However, methods are lacking for quantifying the utility of surrogate markers when the dimension of the
surrogate grows. We propose a robust and efficient method for evaluating a set of surrogate markers that
may be high-dimensional. Our method does not require treatment to be randomized and may be used in
observational studies. Our approach draws on a connection between quantifying the utility of a surrogate
marker and the most fundamental tools of causal inference—namely, methods for robust estimation of the
average treatment effect. This connection facilitates the use of modern methods for estimating treatment
effects, using machine learning to estimate nuisance functions and relaxing the dependence on model spec-
ification. We demonstrate that our proposed approach performs well, demonstrate connections between
our approach and certain mediation effects, and illustrate it by evaluating whether gene expression can be
used as a surrogate for immune activation in an Ebola study.
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1. INTRODUCTION

When evaluating the effectiveness of a treatment, policy, or intervention, the desired measure of effective-
ness may be expensive to collect, not routinely available, or may take a long time to occur. In these cases,
it is sometimes possible to identify a surrogate outcome that can more easily, quickly, or cheaply capture
the effect of interest. For example, when evaluating an intervention designed to delay dementia onset, the
time required to observe enough dementia diagnoses is often very long, and surrogates that have been
considered for intervention evaluation include mild cognitive impairment, adiponectin levels, neuroim-
ages, amyloid plaques, and neurofibrillary tangles (Small, 2006; Teixeira and others, 2013). Similarly,
in studies evaluating treatments to prevent diabetes, surrogate measures for diabetes onset have included
changes in body weight, fasting plasma glucose, and hemoglobin A1c (Caveney and Cohen, 2011; Choi
and others, 2011). And it is presently obvious that a surrogate marker for SARS-CoV-2 vaccine efficacy is
required to develop the second generation of vaccines adapted to novel variants of concern (Karim, 2021).

Theory and methods for evaluating the strength of surrogate markers have been well studied in the con-
text of a single surrogate marker measured in the course of one or more randomized clinical studies—see
the detailed review in Joffe and Greene (2009). In particular, model-based approaches have been proposed
for continuous (Alonso and others, 2004) and binary surrogates (Alonso and others, 2016) in meta-analysis
and in the principal stratification framework (Gilbert and Hudgens, 2008). Robust nonparametric methods
have been proposed in Parast and others (2020) and Parast and others (2016). However, fully nonparamet-
ric methods are not available or not reliable when the number of markers is more than one or two. In these
cases, a parametric approach to evaluate a high-dimensional surrogate may be considered as proposed in
Zhou and others (2022), which requires the correct specification of two high-dimensional linear models.
Alternatively, an initial model may be used to reduce the dimensionality of the surrogate (Agniel and
Parast, 2021; Parast and others, 2016). However, the mis-specification of the parametric models or an
inappropriate initial model may produce badly biased estimates of the utility of the surrogate.

In this work, we propose a robust and efficient method for evaluating multiple surrogate markers, with
particular attention to the possibility that surrogates may be high-dimensional. Our approach revives the
spirit of the estimator in Freedman and others (1992), itself based on the pioneering work of Prentice (1989)
to draw on a connection between quantifying the utility of a surrogate marker and the most fundamental
tools of causal inference: namely, methods for estimating the average treatment effect. This connection does
not appear to have been made before in the surrogate marker literature, despite the extensive connections
made between mediation and surrogacy (Taylor and others, 2005; Joffe and Greene, 2009). Making this
connection facilitates the use of all of the machinery now available to robustly and efficiently estimate
average treatment effects. Specifically, we take advantage of state-of-the-art methods for incorporating
flexible machine learning and/or sparse high-dimensional models into the estimation of treatment effects.
These methods based estimation on the efficient influence function of key quantities and use sample
splitting to ensure convenient asymptotic distributions and inference while putting minimal restrictions on
what types of estimators may be used. Furthermore, we show that our proposed approach has connections
to certain mediation estimands when the assumptions underlying mediation analysis are satisfied.

One key benefit of our approach is that it does not require randomization of treatment, which has
been required by previous nonparametric approaches to evaluating surrogate markers (Agniel and Parast,
2021; Parast and others, 2016). Assessments of surrogate markers are not solely limited to studies of
randomized treatment (Obirikorang and others, 2012). In fact, using surrogate outcomes based on complex
observational data is finding purchase in all corners of science (Wang and others, 2020). In Section 6,
we give an example where researchers are interested in studying whether gene expression can be used
as a surrogate for immune activation in an observational setting. Our approach exploits insights from
observational causal inference to estimate all relevant quantities and thus is equally applicable in both
observational and randomized settings.
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The structure of the rest of the article is as follows. In Section 2, we lay out the notation and the
setting in which we are working, and we motivate the importance of evaluating surrogate markers in
light of recent advances in the surrogate marker literature. In Section 3, we detail assumptions necessary
for identifying and interpreting parameters of interest. We discuss the identification, estimation, and
the asymptotic behavior of our estimator in Section 4 and discuss variance estimation and inference.
We evaluate the performance of the proposed approach using a simulation study in Section 5, and in
Section 6, we investigate whether gene expression could be used as a surrogate for immune response to
Ebola infection. We give final remarks and draw connections to other methods for evaluating surrogate
markers in Section 7.

2. EVALUATION OF SURROGATE MARKERS

2.1. Notation

Let A denote a binary treatment, and let the primary outcome of the study be Y . Let there be a vector S
of potential surrogate information, and let X be a vector of pretreatment covariates. The primary quantity
of interest is the treatment effect on the outcome � = E{Y (1) − Y (0)}, where Y (a) is the potential or
counterfactual outcome that would have been observed if treatment were A = a, possibly contrary to fact.
Similarly, let S(a) be the potential/counterfactual value the vector of surrogates would take if A = a. Let
the data observed in the current study be O = (Xi, Ai, Si, Yi)i=1,...,n, n iid realizations of O = (X, A, S, Y ).

2.2. Importance of quantifying surrogate strength

Understanding the strength of a potential surrogate is important for many reasons. In practice, information
about surrogate strength will inform decisions regarding whether to measure the surrogate in a future study
(especially if it is costly or invasive to measure) and/or whether to use the surrogate to assess treatment
effectiveness in a future study. In addition, a number of novel statistical methods for using surrogates in
future studies can only be applied when the surrogate is strong. For example, Parast and others (2019)
propose a robust nonparametric procedure to test for a treatment effect using surrogate marker information
measured prior to the end of the study in a time-to-event outcome setting, but they rely on the assumption
that the surrogate is sufficiently strong. As another example, Price and others (2018) propose constructing
a function ψa(·) of the surrogates that leads to some optimality properties, but it can be shown that this
method should only be used with a strong surrogate.

Specifically, they construct an optimal transformation of the surrogates ψa(·) in terms of minimizing
the following mean squared error

Mψ = E

[
e1(X)

{
Y (1) − ψ1(X, S(1))

}2
]

+ E

[
e0(X)

{
Y (0) − ψ0(X, S(0))

]2
]

, (2.1)

with ea(x) = P(A = a|X), under the constraint that it satisfies the so-called Prentice definition:

E(Y (1) − Y (0)) = 0 if and only if E
{
ψ1(X, S(1))− ψ0(X, S(0))

} = 0.

The optimal transformations in this case are shown to be ψa(x, s) = E{Y (a)|X = x, S(a) = s}. In addition
to this appealing optimality property, this proposal also resolves the so-called “surrogate paradox.” The
paradox states that the treatment could have a positive causal effect on a univariate surrogate S which
could have a positive correlation with the outcome, but the treatment could yet have a negative effect on
the outcome. The Price surrogate resolves the surrogate paradox by definition. The treatment effect on the
transformed surrogate is by definition equivalent to the treatment effect on the outcome: E{ψ1(X, S(1))}−
E{ψ0(X, S(0))} = �.



988 D. AGNIEL AND OTHERS

However, the Price surrogate’s resolution of the surrogate paradox is in some sense too good. The
surrogate paradox is thus resolved for every potential set of surrogates, good and bad. Even if the surrogates
S are completely unrelated to the outcome Y , E{ψ1(X, S(1))} − E{ψ0(X, S(0))} = �. In fact, the power to
detect a treatment effect in a future study using ψa(·) actually increases as the surrogate becomes weaker
(explaining less of the treatment effect), if the Prentice definition does not hold. Consider the toy example
depicted in Figure 1 (see Appendix A of the Supplementary material available at Biostatistics online for
details of the data generation). As the strength of the surrogate increases, ψa(·) becomes more like the
true outcome Y (a)

i . As the surrogate becomes weaker, ψa(·) becomes more like Ȳa the mean outcome in
treatment group A = a from the first study. This means that a weak surrogate ensures that the treatment
effect in the second study will be identical to the treatment effect in the first study because the distribution
of ψa(·)will cluster closely around the estimate of E(Y (a)) from the first study (see specifically, the fourth
panel of Figure 1). In this scenario, the second study is providing no new information about the treatment.
Thus, the Price surrogate should only be used with a strong S, and its use with a weak or possibly even
moderately strong set of surrogates may not be advisable.

Therefore, for both decision-making purposes and to use statistical methods that take advantage of
strong surrogates, methods are needed to rigorously quantify the strength of the proposed set of surrogates
before using (functions of) the surrogates in practice. In the following section, we propose an efficient
method for estimating the strength of a possibly high-dimensional set of surrogates in observational
studies. Our aim is for this proposed method to complement existing work, like that of Parast and others
(2019) and Price and others (2018), that rely on the availability of a strong surrogate but currently lack
tools to assess surrogate strength, particularly in a high-dimensional surrogate setting.

2.3. Quantity to evaluate surrogate strength

In this section, we present a general method for evaluating the usefulness of a set of surrogates. This can
be used to evaluate the suitability of any set of surrogates or surrogate transformations and is appropriate
for S of any dimension. To evaluate the surrogates’ usefulness, we use the proportion of treatment effect
explained by S (PTE) defined as RS = (�−�S)/� = 1 −�S/�, with �S the residual treatment effect,
or the treatment effect that remains after controlling for the surrogate information. This measure has been
used frequently in the evaluation of surrogate markers, as far back as the pioneering works of Prentice
(1989) and Freedman and others (1992) and more recently in Parast and others (2020, 2016) and Agniel
and Parast (2021). If S(0), S(1) are independent of Y (0), Y (1) conditional on X, then �S = � and RS = 0.
In contrast, if all of the treatment effects can be attributed to S, then �S = 0 and RS = 1.

In the more recent works using this PTE, �S is defined in terms of a particular reference distribution,
e.g., taking �S = E {ψ1(S)− ψ0(S)|A = 1} to be the residual treatment effect among the treated group.
This choice of reference distribution is often arbitrary and was not required by the older (model-based)
approaches. To obviate the need for this choice of reference distribution and to take advantage of the
extensive development in average treatment effect estimation (and the associated intuition and machinery
that have been built up around it), we define �S = E {ψ1(X, S)− ψ0(X, S)}, the average treatment effect
conditional on the distribution of S(0) and S(1) both being equal to the distribution of S (all conditional
on X). Other choices of reference distribution could be used when there are substantive reasons to prefer
them. When there are no interactions with treatment – P{ψ1(X, S) = ψ0(X, S)} = 1 – choice of reference
distribution does not change �S. See Section 7 for further connections in this vein to Agniel and Parast
(2021) and similar recent methods.

This formulation of PTE also has deep connections to quantities important to mediation analysis without
requiring some of the restrictive assumptions common in the mediation literature. In particular, we show
in Appendix B of the Supplementary material available at Biostatistics online that �S is a function of
conditional natural direct effects and that � − �S is a function of conditional natural indirect effects

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac020#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac020#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac020#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac020#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac020#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac020#supplementary-data
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(Joffe and Greene, 2009; VanderWeele, 2013), when the assumptions for identifying those effects are met.
While many previous reviews of surrogate methods identify the causal effects framework for surrogate
evaluation solely with mediation (Joffe and Greene, 2009; Conlon and others, 2017), we use causal tools
without requiring all of the assumptions necessary for mediation. Importantly, we do not require that
all confounders of the surrogate–outcome relationship are measured and included in the study because
the aims of mediation and surrogate marker evaluation are different (VanderWeele, 2013). The aim of
identifying a mediator is determining whether the effect of treatment operates through the mediator itself,
e.g., through some biological pathway. Often, a good surrogate marker is similarly conceptualized as a
variable through which the treatment operates, but this is not necessarily required; a variable can be a
good surrogate if it captures the treatment effect on the outcome, even if the treatment effect does not
operate through the variable itself (sometimes called a nonmechanistic correlate of protection; Plotkin
and Gilbert, 2012).

3. ASSUMPTIONS

3.1. Identifying assumptions

We first require � �= 0, without which requirement the goals of identifying surrogate markers are prac-
tically and theoretically not meaningful. We further make the three typical assumptions of treatment
effect estimation: consistency, positivity, and no unmeasured confounding. Specifically, we assume that
the observed values of S and Y when A = a are identical to the counterfactuals S(a) and Y (a) such that
S = S(1)A+S(0)(1−A) and Y = Y (1)A+Y (0)(1−A).We furthermore assume that X contains all confounders
of the effects of A on the surrogates and the outcome, such that the treatment A is as good as randomized
conditional on the covariates X: (A.1) {S(0), S(1), Y (0), Y (1)} ⊥⊥ A

∣∣ X. In addition, we assume two forms of
positivity, which ensures that individuals in the two study arms are not too different from one another. First,
the usual positive probability of receiving either treatment for some ε1 > 0, P{ε1 < e1(X) < 1 − ε1} = 1,
and a related assumption that further conditions on the surrogates, P{ε2 < π1(X, S) < 1 − ε2} = 1, for
some ε2 > 0, where π1(S, X) = P(A = 1|S, X). Notably, letting fU(u) be the density of the random
variable U evaluated at u, because π1(x, s) = fS(s|X = x, A = 1)e1(x)/fS(s|X = x) = fS(1) (s|X =
x)e1(x)/

[
fS(1) (s|X = x)e1(x)+ fS(0) (s|X = x)e0(x)

]
, these two positivity conditions ensure that the con-

ditional distribution of the counterfactual surrogates under treatment and control cannot be too different
from one another, i.e., ensuring overlap. When the treatment has a large effect on S, this additional overlap
requirement may be suspect—e.g., there may be some values of s such that fS(1) (s|X = x) approaches 0
and thus π1(x, s) also approaches 0. We discuss a generalization of our approach that removes this overlap
condition in Appendix C of the Supplementary material available at Biostatistics online.

3.2. Required assumptions to ensure interpretation of RS as a proportion

The interpretation of RS as the PTE depends on it actually being a proportion, lying between
0 and 1. We adapt conditions in Wang and Taylor (2002) and Agniel and Parast (2021) which
ensure that 0 ≤ RS ≤ 1. These conditions are as follows (assuming without loss of general-
ity that � > 0): (A.2)

∫ {e1(x)ψ1(x, s)+ e0(x)ψ0(x, s)} d
{
FX,S(1) (x, s)− FX,S(0) (x, s)

} ≥ 0; and (A.3)∫ {ψ1(x, s)− ψ0(x, s)} dFX,S(x, s) ≥ 0. The condition (A.3) ensures that �S ≥ 0, i.e., that the residual
treatment effect is in the same direction as the overall treatment effect�. Condition (A.2), which ensures
that � ≥ �S , requires that, roughly speaking, a propensity-weighted mixture of the two conditional
mean functions e1(x)ψ1(x, s) + e0(x)ψ0(x, s) is larger when s takes values from the distribution of the
counterfactual surrogates under treatment than if it took values from the distribution under control. These
two conditions are analogs of conditions (A6) and (A7) in Agniel and Parast (2021). See Appendix D
of the Supplementary material available at Biostatistics online for an alternative approach that may be

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac020#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac020#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac020#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac020#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac020#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac020#supplementary-data
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considered if these conditions are not or unlikely to be met, though the alternative approach lacks the
interpretability and connections to previous literature of the proposed approach.

4. IDENTIFICATION, ESTIMATION, AND INFERENCE

4.1. Identifiability

In this section, we show that the effects of interest are identifiable, propose a robust and efficient estimation
procedure, and describe the asymptotic properties of our proposed estimators. The effects of interest may be
identified as average treatment effects identifiable from the data, one of which conditions on the surrogates
(�S) and one which does not (�). In particular, the residual treatment effect may be identified as

�S = E {μ1(X, S)− μ0(X, S)} = E

[
AY

π1(X, S)
− (1 − A)Y

π0(X, S)

]
(4.2)

= E

[
AY − {A − π1(X, S)}μ1(X, S)

π1(X, S)
− (1 − A)Y − {1 − A − π0(X, S)}μ0(X, S)

π0(X, S)

]
, (4.3)

where μa(x, s) = E(Y |X = x, A = a, S = s). The result in the first equality of (4.2) follows from the
definition of �S and the fact that ψa(X, S(a)) = μa(X, S) because of (A.1), and the other results follow
shortly thereafter, following familiar paths as arguments for the identification of the average treatment
effect in other contexts. These results show that the residual treatment effect may be identified without
knowledge of the mean function for the outcome via the second equality in (4.2) and gives an augmented
inverse probability weighting (Bang and Robins, 2005) version of the estimand (4.3). � may also be
identified, following similar standard arguments and using similar functionals with μa(X, S) replaced by
ma(X) = E(Y |X = x, A = a) and πa(X, S) replaced by ea(X).

4.2. Proposed estimation

This identification of � and �S in terms of average treatment effects allows us to take advantage of the
rich literature on robust estimation of these quantities. We propose to estimate �S and � as

�̂S =n−1
n∑

i=1

[
AiYi − {Ai − π̂1(Xi, Si)}μ̂1(Xi, Si)

π̂1(Xi, Si)
− (1 − Ai)Yi − {1 − Ai − π̂0(Xi, Si)}μ̂0(Xi, Si)

π̂0(Xi, Si)

]

�̂ =n−1
n∑

i=1

[
AiYi − {Ai − ê1(Xi)}m̂1(Xi)

ê1(Xi)
− (1 − Ai)Yi − {1 − Ai − ê0(Xi)}m̂0(Xi)

ê0(Xi)

]

and thus, estimate RS as R̂S = 1−�̂S/�̂, where we leave estimation of the components:π1(X, S),μ1(X, S),
μ0(X, S), e(X), m1(X), m0(X) to be quite general. We propose and evaluate two different versions of this
proposed estimator: one where we estimate these components using the Super Learner (Van der Laan and
others, 2007), which finds an optimal combination of a set of candidate models or learners (denoted “DR-
SL”) and another that uses the relaxed lasso (Meinshausen, 2007) (denoted “DR-lasso”). In addition, our
proposed estimators use a sample-splitting scheme (Chernozhukov and others, 2017), which we describe
in detail in Appendix C of the Supplementary material available at Biostatistics online, to avoid placing
restrictive conditions on the estimation of the nuisance functions.

REMARK 1 While�S depends on the counterfactual quantities S(a) and is thus not the same target treatment
effect estimated by Chernozhukov and others (2017), because it is identified by the same observed data

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac020#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac020#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac020#supplementary-data
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quantities in (4.3), we can use the same machinery used in Chernozhukov and others (2017), though
requiring the stronger assumption (A.1).

4.3. Inference

Under very general conditions, including the standard causal assumptions identified in Section 3.1, �̂S

will converge at the parametric n− 1
2 rate and be asymptotically normal (Chernozhukov and others, 2017;

Farrell, 2015) so long as

E
[{μ̂a(X, S)− μa(X, S)}2

] × E
[{π̂a(X, S)− πa(X, S)}2

] = op(n
− 1

2 ), (4.4)

with similar results holding for �̂ if

E
[{m̂a(X)− ma(X)}2

] × E
[{̂ea(X)− ea(X)}2

] = op(n
− 1

2 ). (4.5)

As these estimators are built on the efficient influence functions, they are also semiparametrically efficient.
Furthermore, as we show in Appendix C of the Supplementary material available at Biostatistics online,
as long as the sample splits are the same for �̂ and �̂S, we will have n

1
2 (̂RS − RS) −→ N (0, σ 2) if both

(4.4) and (4.5) hold. Specifically, we have that

σ 2 = �−2
E

{
φ1(O,�, e, m0, m1)

2
} +�2

S�
−4

E
{
φ2(O,�S,π ,μ0,μ1)

2
} − (4.6)

2�S�
−3

E {φ1(O,�, e, m0, m1)φ2(O,�S,π ,μ0,μ1)} , (4.7)

where

φ1(O;�, e, m0, m1) = AY − {A − e1(X)}m1(X)
e1(X)

− (1 − A)Y − {1 − A − e0(X)}m0(X)
e0(X)

−�,

φ2(O;�S,π ,μ0,μ1) = AY − {A − π1(X, S)}μ1(X, S)
π1(X, S)

− (1 − A)Y − {1 − A − π0(X, S)}μ0(X, S)
π0(X, S)

−�S.

REMARK 2 When the dimension of S is not high, (4.4) and (4.5) are not in general restrictive, as many
parametric and nonparametric methods are able to achieve the slow rates required of the estimators under
certain conditions, including the lasso (Tibshirani, 1996), random forests (Wager and Walther, 2015), and
deep neural networks (Farrell and others, 2021), when used with a sample-splitting scheme. Ensemble
methods such as the Super Learner (Van der Laan and others, 2007) may also be used to combine these and
other methods to obtain good performance if any of the methods achieves the required rates of consistency.
As described in the prior section, our proposed approach combines both ensemble estimation of nuisance
functions and sample splitting; we demonstrate the good performance of this approach in finite samples
in Section 5.

In higher dimensions, the convergence in (4.4) and (4.5) is more difficult to ensure without further
restrictions. If only S is high-dimensional, then a typical approach is to assume that μa may be specified
as a sparse linear model μa(x, s) = β0 +βT

1x +βT
2s and π may be specified as a sparse logistic regression

model π1(x, s) = g(δ0 +δT
1x+δT

2s) for g(x) = ex/(1+ex), and with β1, β2, δ1, δ2 sparse enough to ensure
(4.4). Because of the fact that ea(x) = P(A = a|X = x) is related to πa(x, s) = P(A = a|X = x, S = s),
restricting π1(x, s) to this class of models is unproblematic so long as X is low-dimensional and e1(x)
may be estimated nonparametrically (i.e., without being restricted to the class of sparse linear models).
However, if X is also high-dimensional, sparse logistic models for e1(x) and π1(x, s)may not in general be

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac020#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac020#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac020#supplementary-data
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compatible with one another because of the well-known noncollapsibility of logistic regression (Guo and
Geng, 1995), unless S ⊥⊥ A|X (which would imply RS = 0) or S ⊥⊥ X|A (which would imply that X does
not confound the relationship between A and S). In these cases, the approach of Tan (2020) may be used to
estimate the nuisance functions, in which case only one of e1(x) and π1(x, s) are required to be a correctly
specified logistic regression. However, this approach did not appear to perform well in our simulations
in Section 5. Despite these theoretical considerations, our simulations suggest that an ensemble approach
using the Super Learner may outperform approaches based on sparse linear models, as in Tan (2020) or
in the version of our estimator that uses only lasso regression. More theoretical development in this area
may be warranted.

5. SIMULATIONS

5.1. Simulation overview

Our proposed estimator based on the Super Learner (“DR-SL”) is implemented using theSuperLearner
package (Polley and others, 2021) inR. The candidate learners we included were the lasso, ridge regression,
ordinary least squares, support vector machines, and random forests forμ1,μ0, m1, m0 and the lasso, logistic
regression, linear discriminant analysis, quadratic discriminant analysis, support vector machines, and
random forests forπ and e. Our second estimator using the relaxed lasso (“DR-lasso”) is implemented using
the glmnet package (Friedman and others, 2010), to estimate all needed functions. For all simulations,
we truncated estimates of the propensity and surrogate scores so that 0.01 ≤ π̂(Xi, Si), ê(Xi) ≤ 0.99
for all i. We used the default cross-validation procedure to select the tuning parameters for the Super
Learner. For the DR-lasso estimator, we used the default crossvalidation to select the tuning parameters.
It is possible that performance could be improved by tweaking the tuning parameters for the candidate
learners.

It is our understanding that there are no currently available methods to robustly estimate the PTE of a
high-dimensional surrogate. However, since there are available methods to measure the strength of high-
dimensional mediators, we compare our proposed approach to these available methods. While the goals
of mediation analysis and surrogate markers analysis are different and the necessary assumptions differ,
this allows us to offer some reasonable comparison to methods that are currently available, rather than
no comparison at all. Thus, to fairly compare, we set up the majority of our simulations such that S is a
mediator in that it lies on the causal pathway between A and Y . While mediation methods are attempting
to estimate a distinct quantity from RS, in three of the four following simulation settings, the estimation
of the “proportion mediated” (which is used in mediation) and RS are the same.

In our simulations, we compare our proposed approach to: high-dimensional mediation analysis
(HIMA, Zhang and others, 2016) as implemented in the HIMA package (Zheng and others, 2018);
Bayesian mediation analysis (BAMA, Song and others, 2020) as implemented in the bama package
(Rix and others, 2021); and high-dimensional linear mediation analysis (Zhou and others, 2020) as
implemented in the freebird package. All three of these methods propose p + 1 linear models: p
models for the surrogates/mediators—Sij = α0j + αjAi + ∑q

k=1 γ ∗
jkXik + eij, j = 1, ..., p; i = 1, ..., n—and

one outcome model—Yi = β0 + �SAi + ∑p
j=1 βjSij + ∑q

k=1 γkXik + εi—though the implementation of
freebird does not allow for the inclusion of covariates Xik . Using these models, the overall treatment
effect can be identified as � = �S + ∑p

j=1 αjβj, and as above the PTE (or proportion mediated) may be
identified as RS = 1 −�S/�.

We computed 95% confidence intervals (CIs) for RS as R̂S ± 1.96σ̂ , where σ̂ is an estimate of (4.6).
We computed 95% credible intervals for the BAMA estimator from the 2.5% and 97.5% quantiles of the

posterior distribution of 1 −�S/
(
�S + ∑p

j=1 αjβj

)
. CIs were not computed for the HIMA and freebird

implementations because they are not available.
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5.2. Simulation setup

We constructed four sets of simulations for a total of 18 simulation settings to assess the performance of
our proposed approach in both low- and high-dimensional settings.

For the first set of simulations, the data-generating mechanism for S(a) was linear in X, the data-
generating mechanism for Y (a) was linear in X and S(a), and the propensity score was linear on the
log-odds scale. Given this data-generating mechanism, we would expect that all methods (proposed and
comparisons) should perform reasonably well. We set the dimension of S (p) and of X (q) to be 100. We let
Xij ∼ N (0, 1), Ai ∼ Bernoulli{π1(Xi)},π1(Xi) = logit(γ TXi), where γ ∼ N (0, 1). The surrogates were
generated as S(a)i = αa + βT

aXi + ei, where α11 = 0.75,α12 = 0.25,α01 = α02 = 0,α1j ∼ U (0, 1),α0j ∼
U (−0.5, 0.5), j = 3, ...p. And only five of the covariates were important for determining the surrogate:
(β11,β12,β13,β14,β15) = (−1, −0.5, 0, 0.5, 1), (β01,β02,β03,β04,β05) = (−2, −1.5, −1, −0.5, 0),βaj =
0, a = 0, 1, j > 5. The outcome counterfactuals were given by Y (a)

i = a�S + ∑25
j=1 Xij + S(a)i1 + S(a)i2 + εi,

suggesting that only the first two surrogates and 25 of the covariates were important for determining the
outcome. The errors eij and εi were N (0, σ 2). We let the sample size vary between n = 100 and n = 500
and the level of noise between σ = 0.1 and σ = 0.5—for a total of four settings—and we set RS = 0.5.

In the second set of simulations (six more settings), the data-generating mechanism was less linear,
including interactions between covariates in both the propensity score and the model for S, though the
outcome model was still a simple linear combination of X and S. In the third set of simulations (two
more settings), the dimension of the surrogates (p = 1, 000) was much larger than the sample size
(n = 50, 200), and correct specification of the outcome functions also included nonlinear terms. These
simulations should mimic what may happen in practice since all models are typically subject to some
amount of mis-specification. We expected the nonlinearity to induce bias in the competing methods (which
require linear models to hold). In the fourth set of simulations (six more settings), we specified S so that
it was not a mediator but was instead downstream of a true mediator. We performed 1000 replications
for each simulation setting. We give full details and results for these simulations in Appendix E of the
Supplementary material available at Biostatistics online.

5.3. Results

As expected, the first data-generating mechanism was well approximated using linear models. When the
sample size was large (n = 500) and σ = 0.5, all methods performed well, with a relatively small bias (see
Figure 2). The median R̂S estimates were 0.46 (BAMA), 0.48 (freebird), 0.49 (HIMA), 0.48 (DR-SL), and
0.49 (DR-lasso), all of which compare favorably to the true RS value of 0.5. The distribution of estimates
for the proposed approaches was a bit tighter than for the competing methods. The empirical 2.5% and
97.5% quantiles were 0.32 and 0.60 for DR-SL, 0.35 and 0.59 for DR-lasso, 0.15 and 0.67 for HIMA,
0.11 and 0.63 for BAMA, and −0.85 and 0.71 for freebird. Results were similar for the sample size with
less noise (σ = 0.1), except for the freebird approach which began to estimate the PTE to be exactly
1 in almost all simulations: the empirical 2.5% and 97.5% quantiles of the R̂S distribution for freebird
were exactly 1. At the lower sample size (n = 100), HIMA did not run, while BAMA estimates tended
to be near 0 and freebird estimates were again clustered tightly around 1. Our proposed approaches had
median R̂S values of 0.45 (DR-SL) and 0.56 (DR-lasso), though with more variability than when n = 500.
The median absolute deviation (|̂RS − RS|) was smaller for both DR-SL and DR-lasso than any of the
competing approaches for all settings.

CI coverage for the proposed estimators tended to be quite good for DR-SL in all settings: coverage was
95% (n = 100, σ = 0.1), 96% (n = 100, σ = 0.5), 94% (n = 500, σ = 0.1), and 97% (n = 500, σ = 0.5).
Coverage for the DR-lasso estimator was worse in general: coverage was 88% (n = 100, σ = 0.1), 82%
(n = 100, σ = 0.5), 89% (n = 500, σ = 0.1), and 96% (n = 500, σ = 0.5) However, BAMA CIs also

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac020#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac020#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac020#supplementary-data
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Fig. 2. Distribution of estimates of R̂S in the first data-generating mechanism. Lighter shaded regions represent the
distribution of the proposed estimators (“DR-SL” and “DR-lasso”); darker shaded regions represent the distribution
of the comparison estimators (“BAMA,” “freebird,” and “HIMA”). The true value of RS is given as a vertical dotted
line at 0.5. At the lower sample size (n = 100), HIMA did not run and so is not shown.

did not uniformly obtain nominal coverage: 96% (n = 100, σ = 0.1), 99% (n = 100, σ = 0.5), 92%
(n = 100, σ = 0.1), and 85% (n = 500, σ = 0.5). Even when BAMA CIs had nominal coverage, they
were more than four times larger than the CIs for the proposed estimators: for example, BAMA CI half-
lengths were 1.40 (n = 100, σ = 0.1) and 1.61 (n = 100, σ = 0.5), while the corresponding half-lengths
were 0.25 and 0.30 for DR-SL and 0.28 and 0.44 for DR-lasso.

The proposed estimators also outperformed the competing methods in the additional simulation settings
where models were subject to mis-specification and the dimensionality of the surrogates was much larger
than the sample size. See Appendix E of the Supplementary material available at Biostatistics online for
complete results.

6. EBOLA IMMUNE RESPONSE APPLICATION

The concentration of binding antibodies is often used as the primary outcome of interest in studies of Ebola
vaccine efficacy, being itself a surrogate of vaccine efficacy as measured by the effect on the incidence
of infections (Roozendaal and others, 2020). Because gene expression is the means by which DNA is
turned into RNA and eventually proteins, it is associated with cellular function. Thus, the establishment
of the humoral immune response may be captured by changes in gene expression as suggested by early
works on systems vaccinology (Li and others, 2014). Furthermore, gene expression changes may occur
days or even weeks before traditional measures of immune function (Rechtien and others, 2017). If gene

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac020#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac020#supplementary-data
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expression can act as a surrogate for immune response, then it could possibly be used to shorten vaccine
trials or to quickly measure the effect of vaccination in a population. Finally, genome-wide expression data
offer the opportunity at looking at very different ways of influencing the response to intervention which
constitutes potential surrogate markers. In this study, we sought to use observational data on long-term
Ebola survivors and healthy controls to shed light on the possibility of gene expression’s use as a surrogate
for antibody response to Ebola virus. This aim is inspired by the study of potential surrogates of protection
among Ebola disease survivors (Sullivan and others, 2009).

In total, 26 Ebola survivors of the 2013–2016 Ebola outbreak in West Africa were recruited from the
Postebogui cohort (Etard and others, 2017) as well as 33 healthy donors as described in Wiedemann and
others (2020), each of whom had an expression for 29 624 genes quantified from whole blood RNA-seq
(freely available from the Gene Expression Omnibus repository with accession code GSE143549) as well
as the concentration of specific Ebola binding antibodies measured. Clearly, this is a setting where the
number of potential surrogate markers (the genes) is substantially larger than the sample size. Given the
superior performance of the DR-SL in our simulation study, and the high-dimensional setting, we focus
only on using the DR-SL estimator to quantify how much of the overall difference in humoral immune
response between survivors and healthy donors could be captured by the measured gene expression data.
We used the same candidate learners as specified in Section 5. Propensity and surrogate scores (̂e and π̂ )
were truncated at 0.05 and 0.95 to prevent instability due to extreme weights, and X included age and sex.

Ebola survivors were estimated to have a much higher abundance of Ebola-specific antibodies (�̂ =
3, 998, SE = 851.5). Using DR-SL, the residual treatment effect, �S, was estimated as �̂S = 3, 242
with SE = 727.8, and the proportion of the difference explained by gene expression was estimated as
R̂S = 0.1890, with a SE of 0.07923. Thus, a large part of the humoral immune response cannot be explained
by the differences in gene expression. Of note, we assumed no unmeasured confounding factors although
it cannot be guaranteed in such a real-life context where survivors and healthy volunteers are two selected
populations. If unmeasured confounding inflated both �̂ and �̂S roughly equally, this could have the
effect of artificially deflating R̂S. Another explanation for the low estimated R̂S could be that, while gene
expression measured shortly after infection may potentially be a good surrogate, measuring it long after
infection (as in this study), does not capture the treatment effect as well. Measurement error in S could also
deflate the PTE. Importantly, one other potential violation of our assumptions is that about one-third of the
observations have truncated surrogate scores—π̂−k(Xi, Si) < 0.05 or π̂−k(Xi, Si) > 0.95. This suggests
that positivity might be (nearly) violated. We discuss this further in Appendix C of the Supplementary
material available at Biostatistics online along with a potential solution.

7. DISCUSSION

We have proposed a very general approach to evaluating surrogate markers which can be applied in
randomized experiments or in observational studies and can be used regardless of the dimensionality of
the surrogates. Our approach is robust in that we have defined the PTE of the surrogates without reference
to any models, and we have shown how machine learning approaches like Super Learner may be used to
very flexibly estimate nuisance functions. Our simulation results suggest that our Super Learner estimator
(DR-SL) outperforms competing methods even when the underlying data-generating mechanism is linear
and still gives reasonable results even when high-dimensional linear models are mis-specified.

Our approach here is intimately tied to previous approaches for evaluating surrogate markers. The
approaches in Agniel and Parast (2021) and in Parast and others (2016) can be seen to be similar to a
version of our approach where the average treatment effect among controls is estimated under further
assumptions. In Agniel and Parast (2021), they further require strict randomization of treatment, and
they assume that S is a realization of a smooth continuous function. Parast and others (2016) make
similar assumptions but take S to be a scalar surrogate. They estimate a version of (4.2) among controls:

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac020#supplementary-data
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https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac020#supplementary-data


Evaluation of high-dimensional surrogates 997

�S = E {μ1(S)− μ0(S)|A = 0} using kernel smoothing and taking advantage of the fact that treatment is
randomized. Their estimates have the form �̂S = n−1

0

∑
Ai=0 {μ̂1(Si)− Yi}, where n0 = ∑n

i=1 I {Ai = 0}
and μ̂1(·) is estimated via kernel smoothing (possibly after dimension reduction). Our approach here could
easily be adapted to estimate a similar quantity by using methods for doubly robust estimation of the average
treatment effect on the treated (Shu and Tan, 2018; Moodie and others, 2018; Chernozhukov and others,

2017) by, for example, �̂S = n−1
0

∑n
i=1

{
Ai

1−π̂(Si)
π̂(Si)

− (1 − Ai)
}

{μ̂1(Si)− Yi} , where π̂(s) = P̂(Ai|Si = s)

may be estimated using a model similar to the one used for μ̂1(s). Furthermore, our approach could be
used to facilitate the use of machine learning methods in the estimation of μ̂1(·), π̂(·), to include covariates
to control for confounding, or to simplify or strengthen asymptotic results. For example, results for the
kernel estimator used in Agniel and Parast (2021) obtain rates of convergence of n− 1

2 only under very
limited technical conditions, but using sample-splitting parametric rates of convergence could be obtained
under very general conditions.

8. SOFTWARE

We include software to implement our proposed methods in the R package crossurr available at
github.com/denisagniel/crossurr.

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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