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Purpose: Deep learning can be used to automatically digitize interstitial needles in high-dose-rate (HDR) brachytherapy for patients
with cervical cancer. The aim of this study was to design a novel attention-gated deep-learning model, which may further improve the
accuracy of and better differentiate needles.
Methods and Materials: Seventeen patients with cervical cancer with 56 computed tomography−based interstitial HDR brachytherapy plans
from the local hospital were retrospectively chosen with the local institutional review board’s approval. Among them, 50 plans were randomly
selected as the training set and the rest as the validation set. Spatial and channel attention gates (AGs) were added to 3-dimensional convolutional
neural networks (CNNs) to highlight needle features and suppress irrelevant regions; this was supposed to facilitate convergence and improve
accuracy of automatic needle digitization. Subsequently, the automatically digitized needles were exported to the Oncentra treatment planning
system (Elekta Solutions AB, Stockholm, Sweden) for dose evaluation. The geometric and dosimetric accuracy of automatic needle digitization was
compared among 3 methods: (1) clinically approved plans with manual needle digitization (ground truth); (2) the conventional deep-learning
(CNN) method; and (3) the attention-added deep-learning (CNN + AG) method, in terms of the Dice similarity coefficient (DSC), tip and shaft
positioning errors, dose distribution in the high-risk clinical target volume (HR-CTV), organs at risk, and so on.
Results: The attention-gated CNN model was superior to CNN without AGs, with a greater DSC (approximately 94% for CNN + AG
vs 89% for CNN). The needle tip and shaft errors of the CNN + AG method (1.1 mm and 1.8 mm, respectively) were also much
smaller than those of the CNN method (2.0 mm and 3.3 mm, respectively). Finally, the dose difference for the HR-CTV D90 using the
CNN + AG method was much more accurate than that using CNN (0.4% and 1.7%, respectively).
Conclusions: The attention-added deep-learning model was successfully implemented for automatic needle digitization in HDR
brachytherapy, with clinically acceptable geometric and dosimetric accuracy. Compared with conventional deep-learning neural
networks, attention-gated deep learning may have superior performance and great clinical potential.
© 2023 The Authors. Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Introduction
Cervical cancer is the most common cause of cancer
death among women.1 Despite being a highly preventable
and treatable cancer, an estimated 342,000 people world-
wide died of the disease in 2020. High-dose-rate (HDR)
brachytherapy after external beam radiation therapy is
the standard-of-care treatment for patients with cervical
cancer.2 Computed tomography (CT)−based HDR
brachytherapy is often involved with freehand insertion
of interstitial needles, multineedle digitization, and treat-
ment planning for precision radiation therapy.

The dose distribution of HDR brachytherapy for
patients with cervical cancer often depends on the accu-
racy of needle digitization, where a small amount of
uncertainty in needle rotation or tip position may affect
the dwell time and position.3 However, the manual digiti-
zation used in the current practice of HDR brachytherapy
can be time consuming, user dependent, and error prone.
There is an urgent need to implement automatic needle
digitization integrated with current treatment planning
systems for HDR brachytherapy.

There are challenges in automatic digitization of inter-
stitial needles. First, the geometric relationship of needles
can be complex, with crossing or touching needles imped-
ing accurate and reliable needle digitization. Second, the
metal artifacts of interstitial needles can be severe in CT
simulation and prevent precise automatic needle digitiza-
tion.4 Consequently, accurate and precise needle digitiza-
tion independent of planners can be technically difficult.

Several methods of automatic needle or applicator dig-
itization have been proposed previously.4-13 However,
most of them were focused on digital reconstructions of
tandem & ovids applicator (T&O) or vaginal cylinder
applicators. Zhou et al5 introduced a web-based Auto-
Brachy system for vaginal cylinder applicators. Deufel et
al6 used Housfield units thresholding and a density-based
clustering algorithm for T&O with treatment planning
evaluation. Recently, deep-learning−based solutions have
attracted increasing attention owing to their wide applica-
tion to medical image analysis.14 For example, deep con-
volutional neural networks (CNNs), such as Unet, have
achieved significant progress in the past few years, includ-
ing image segmentation,15 image synthesis,16 dose
prediction,17,18 and lesion detection.19 For automatic digi-
tization of needles in brachytherapy, deep-learning
−based techniques have been used in different image
modalities.4,7-10 Zaffino et al7 adopted a 3-dimensional
(3D) Unet model for segmentation of multiple catheters
in intraoperative magnetic resonance imaging (MRI).
Zhang et al9 presented a 3D Unet model incorporating
spatial attention gates and total variation regularization
for needle localization in ultrasound-guided HDR pros-
tate brachytherapy. Jung et al4 extended their AutoBrachy
system with a 2.5-dimensional Unet model to digitize the
interstitial needles in 3D CT images for HDR brachyther-
apy. Other attempts to automatically segment and digitize
applicators based on 3D Unet in CT images were also
reported,11-13 but no attention-added CNN for needle dig-
itization has been implemented thus far.

The standard Unet CNN structure uses the skip connec-
tion at multiscale levels, which leads to relearning the
redundant low-level features.20 The redundancy may slow
down the convergence or reduce the accuracy of tasks. We
aimed to propose an attention-integrated 3D Unet CNN
method to highlight salient regions and suppress irrelevant
information in needle digitization. Because the additive
attention gates (AGs) may increase model computation,20

we proposed to apply group normalization21 to improve
computation efficiency. The automatic needle digitization
was subsequently compared in terms of geometric and
dosimetric accuracies. Compared with the standard 3D
Unet method, the incorporation of spatial AGs may
increase the computation intensively.20 We proposed to
integrate group normalization21 at the encoder to improve
the convergence speed, which may be especially suitable for
a small batch size such as that in our study.

We aim to implement an attention-gated deep-learning
model for automatic needle digitization of HDR brachyther-
apy planning, which may improve efficacy and decrease het-
erogeneity introduced by manual digitization from different
planners in the current practice of HDR brachytherapy.
Methods and Materials
The planning workflow of automatic needle digitiza-
tion in HDR brachytherapy included 2 main steps: (1)
regions of interstitial needles nearby were segmented via
3D Unet, and (2) needle trajectories were digitized as
channels for the HDR radioactive source incorporated in
the treatment planning process.
Patient selection

Seventeen patients with different stages of cervical can-
cer who underwent freehand interstitial needle insertions
in HDR brachytherapy were retrospectively selected. The
patients’ characteristics are shown in Table 1. This study
was approved by the local institutional review board.
Each patient was treated with 4 or 5 fractions of HDR
brachytherapy with 4 to 6 trocar stainless steel needles
inserted during each fraction delivered on the Flexitron
HDR treatment unit (Elekta AB, Stockholm, Sweden).
There were 56 CT sets acquired on the CT simulator (Sie-
mens SOMATOM Sensation Open, Siemens Medical Sys-
tem, Germany) with 5-mm slice thickness, a resolution of
512 £ 512, and 0.8 mm in-plane voxel size (range, 0.6-1.0
mm). All interstitial needles were trocar with a diameter
of 1.5 mm and a length of 200 mm (Elekta AB). All HDR



Table 1 Patient characteristics

Characteristic Patients (N = 17)

Age, mean, y 53.6 § 11.0

Volume of HR-CTV, mean, cm3 122.8 § 67.6

Prescription dose per fraction, Gy 6 Gy £ 4-5 fractions

Number of needles, mean § SD 4.0 § 0.6

FIGO clinical stage, no. of patients

I A 4

II A 1

II B 4

III A 1

III B 2

III C 5

Total plans 56

CT slice thickness, mm 5

CT voxel average dimension, mm 0.8 £ 0.8

Abbreviations: CT = computed tomography; FIGO = International
Federation of Gynecology and Obstetrics; HR-CTV = high-risk clin-
ical target volume.
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brachytherapy plans were created on the Oncentra Brachy
Planning System, version 4.6 (Elekta AB), by experienced
medical physicists and approved clinically by experienced
radiation oncologists.
Image preprocessing

Fifty planning CT sets were randomly selected as the train-
ing data and the remaining 6 as the validation data. The mask
images of manually digitized needles were considered as
ground truth when the 3D Unet and attention-gated 3D Unet
were trained separately. We applied image augmentation,
including rotation, horizontal flip, vertical flip, and scaling on
the CT images and the corresponding needle-mask images, to
prevent overfitting on training a relatively small data set. We
also cropped the image size to 256£ 256 to improve computa-
tional efficiency, as routinely done in the preprocessing of
images before training the deep-learningmodels.6
Deep-learning neural networks with and
without AGs

3D Unet (CNN)
The Unet model, a type of CNN in deep-learning algo-

rithms, has been widely used in image segmentation and
radiation therapy planning.22-25 The network architecture
of a traditional 3D Unet in our study is illustrated in
Fig. 1A. The encoding part consisted of 2 convolutional
layers with a kernel size of 3 £ 3£ 3, followed by rectified
linear unit (Relu) and max-pooling operation. The coarse-
feature maps were extracted at multiple scales in the
encoding stage and later combined with fine-feature maps
in the decoding stage through skip connections. The
decoding part consisted of an up-convolution with a
stride of 2 followed by Relu and concatenation, except the
final layer as the 1 £ 1 £ 1 convolution with the sigmoid
activation. The skip-connections trick combined the
coarse- and fine-level feature maps to obtain more refined
structures. There were a total of 22 convolutional layers
with zero padding in each layer in the proposed 3D Unet.
Inspired by Kearney et al,20 the entire 3D Unet model was
trained with a soft Dice similarity coefficient (DSC) loss
function, which is described in Eq. 3.
3D Unet with attention gates
Attention gates were incorporated into the 3D Unet

model previously described to highlight salient features
for small needles and progressively suppress feature
responses in irrelevant regions. To reduce false-positive
errors in needle digitization, we integrated AGs before the
skip connections.26 The multiscale coarse features
extracted from the encoder were selected to incorporate
into AGs before skip connections to merge relevant fea-
tures of fine needles with deep-learning neural networks.
Attention gates in the CNN + AG method had weighted
relevant spatial features (Fig. 1B) and were formulated as
follows:

qlatt; i ¼ cT s1 WT
x x

l
i þWT

g g þ bxg
� �� �

þ bc ð1Þ

al ¼ s2 qlatt x
l; g;Qatt

� �� � ð2Þ
where s1ð ¢ Þ was the Relu and s2ð ¢ Þ was a sigmoid acti-
vation function to restrict the range of attention coeffi-
cients. The gating signal g was the coarse-scale activation
map to encode features from large spatial regions, and x
represented the fine-level feature map. Attention gates
were characterized by the parameters Qatt, which included
the 1 £ 1 £ 1 convolution (WT

x ; W
T
g , c

T) and bias terms
(bc; bxg), and all parameters of AGs could be updated
with the standard back-propagation. The trilinear inter-
polation was used for grid resampling of attention coeffi-
cients. Therefore, the CNN + AG model was designed to
focus on target regions from a wide range of image fore-
ground content.
Training and validation of deep-learning models
The 3D Unet, both with and without AGs, was trained

with a soft Dice loss function to mitigate the imbalance
objectives during the needle’s digitization:

LSoftDice ¼ 1�
2

����P \T

��������P
����þ

����T
����þ

����e
����

ð3Þ



Figure 1 The network architecture of (A) 3-dimensional (3D) Unet and (B) attention-gated 3D Unet. The red-circled A
represents the attention gate incorporated in the standard convolutional neural network (3D Unet).

4 Y. Wang et al Advances in Radiation Oncology: January 2024
where P and T represented the prediction and ground
truth, respectively. e was a constant value of 0.0001,
which was introduced to prevent the numerator from
being divided by 0.

We used adaptive moment estimation (Adam) opti-
mizer with a learning rate of 5 £ 10−4 to train deep-learn-
ing networks. The maximum epoch was set to 200, with a
batch size of 1. The training stage was undertaken on an
Intel Core i9-10980XE CPU @3.00GHz, NVIDIA Quadro
RTX 5000 with 16 GB of memory. Both models were
implemented on the PyTorch framework.

Needle digitization and dose calculation
After acquiring the segmented contours, we calculated

the central trajectory coordinates of each needle by an
open-source software 3D Slicer (Slicer 4.10.2). Moreover,
we performed polynomial curve fitting to avoid a system-
atic error.

The central trajectory coordinates of each needle gen-
erated by the deep-learning−based method were
rewritten into the original treatment plan file. The proper-
ties of the treatment plan, such as prescription dose, num-
ber of dwell, dwell time of source, step size of source,
needle length, and needle offset, were kept the same. Dose
recalculation was conducted using the Oncentra Brachy
treatment planning system (TPS), version 4.6 (Elekta
AB), with the same parameters. Dose-volume histograms
(DVHs) and 3D dose distributions were compared
between manual digitization and automatic digitization of
interstitial needles using CNN and CNN + AG methods.
Evaluation

Geometric evaluation: Needle digitization
The distance metrics, including the DSC, Jaccard

index (JI), and Hausdorff distance (HD)27 were used
to assess accuracy. The DSC metric measured the spa-
tial overlap between the prediction and ground truth
regions:



Table 2 Needle digitization for 6 validation cases

DSC, % JI, % HD, mm Tip error, mm Shaft error, mm Time, s

3D CNN 88.5 § 1.8 79.4 § 2.8 5.8 § 3.9 2.0 § 1.6 3.3 § 3.3 1.3

3D CNN + AG 93.7 § 1.4 88.2 § 2.5 3.0 § 1.9 1.1 § 0.7 1.8 § 1.6 1.6

P value <.05 <.05 - - - -

Abbreviations: 3D CNN = 3-dimensional convolutional neural network; AG = attention gate; DSC = Dice similarity coefficient; HD = Hausdorff dis-
tance; JI = Jaccard index.
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DSC ¼ 2� P \T
P þ T

ð4Þ

The JI measured the similarity between the 2 regions
by calculating the ratio of intersection and union as

JI ¼ P \T
P [T

ð5Þ

where P and T are the deep-learning model prediction
and ground truth mask regions, respectively. The HD was
defined as

HD A;Bð Þ ¼ max D A;Bð Þ;D B;Að Þð Þ ð6Þ

D A;Bð Þ ¼ maxa2Aminb2B

����
����a� b

����
���� ð7Þ

where A and B are the measured voxel set of deep-learn-
ing model prediction and ground truth; a and b are the
points of sets A and B, respectively; and jj ¢ jj is the Euclid-
ean distance between points A and B. The HD metric
measures the maximum mismatch between the automatic
segmentation and ground truth. A smaller HD and larger
DSC and JI coefficients indicate better segmentation per-
formance.

In terms of the geometric evaluation of needles central
trajectory, we used the tip error and shaft error7 to evalu-
ate the accuracy of needle position. The needle tip error
was defined as

Etip ¼ 1
N

XN
I ¼ 1

���� Pi � I
���� ð8Þ

where N indicated the total needles path number. Pi and
Ti were the predicted length and ground truth length for
the ith needle. The needle shaft error was defined as

Eshaft ¼
1

MN

XM
j ¼ 1

XN
I ¼ 1

����
���� P x; yð Þ � T x; yð Þ

����
���� ð9Þ

where M indicated the number of measured points in the
needle’s central trajectories, P(x,y) represented the pre-
dicted coordinates, and T(x,y) represented the ground
truth coordinates for the ith needle. We performed paired
t tests to assess whether the geometric results between
CNN and CNN + AG methods were statistically signifi-
cant at P < .05.
Dosimetric evaluation
The dose recalculation of deep-learning models in the

Oncentra Brachy TPS was the same as that of manual digi-
tized needles based on the updated American Association
of Physicists in Medicine Task Group Report 43.28 The iso-
dose lines and DVHs were compared between automated
and manual needle digitization. The DVH metrics, such as
D90% and D100% for the high-risk clinical target volume
(HR-CTV) and D2 cc for organs at risk (OARs)—the blad-
der wall, rectum wall, intestines, and sigmoids—were
reported.29 In general, the dosimetric differences between
the manual and automatic plan were assessed as follows:

Dose difference ¼ Dmanual � Dautomatic ð10Þ

Relative dose difference ¼ Dmanual � Dautomatic

Dmanual
ð11Þ
Results
Geometric comparison

The number of interstitial needles was 4 to 6 in the
training set and 3 to 6 in the validation set. The average
DSC and JI of CNN + AG were 93.7% and 88.2%, respec-
tively (Table 2), demonstrating consistency with the
ground truth of manual needle digitization using deep
learning. Furthermore, the mean DSC and JI were statisti-
cally significantly higher (P < .05) using CNN + AG than
using CNN only. The average HD obtained using
CNN + AG was 2.9 mm smaller than that using CNN
only, showing deep learning with AGs was more accurate
than CNN only. The average difference of tip and shaft
positions using CNN + AG versus ground truth of manual
segmentation was 1.1 § 0.7 mm and 1.8 § 1.6 mm,
respectively, which was also more accurate than the
CNN-only method. Our proposed CNN + AG method
was superior to the CNN method, revealing that the inte-
grated attention mechanism with group normalization of
the deep-learning model was feasible in needle digitiza-
tion, despite needles crossing or touching in the CT of
freehand needle insertions in HDR brachytherapy.

One example of needle digitization generated by attention-
gated 3DUnet is shown in Fig. 2. The digitization using atten-
tion-gated 3D Unet was in good agreement with the ground



Figure 2 The needle digitization of a patient example using attention-gated 3-dimensional (3D) Unet. Red indicates man-
ual contours and central trajectories of needles; green, automatic needle digitization using attention-gated 3D Unet; Pink,
high-risk clinical target volume; yellow: bladder; and purple: rectum.
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truth. The total time of training for the proposed attention-
gated 3D Unet versus 3D Unet only was about 12.6 and
3.3 hours, respectively. However, in the validation set, the
time of automatic needle digitization was only 1 to 2 seconds
per patient, without a significant difference.
Dosimetric analysis

The dose difference in the CTV and OARs of manual
and automatic digitization is shown in Fig. E2. The 3D
dose distribution of 2 examples is shown in Fig. 3, where
isodose lines generated by the ground truth (manual
Figure 3 The 3-dimensional (3D) dose distribution of the gro
network (CNN), and 3D CNN plus attention gates−based autom
area indicates the high-risk clinical target volume.
digitization), CNN, and CNN + AG models were compared
in the axial plane. Both the CNN and CNN + AG methods
had consistent dose distribution with the manual digitiza-
tion of interstitial needles (Table E1), which meant the
CNN + AG method could be a surrogate for manual digiti-
zation of interstitial needles. Also, the CNN + AG method
demonstrated slightly better performance than the CNN
method. The manual digitization process of HDR brachy-
therapy is time consuming and can take up to 15 minutes.
The entire automatic needle digitization without additional
human guidance and rewriting the treatment plan into the
commercial TPS takes about 1 minute on average, which
reduces the time for needle digitization by 93%.
und truth (manual digitization), 3D convolutional neural
atic digitization of 2 patient examples. The white shadow



Figure 4 The loss and Dice evolution of the training and validation set.
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Consequently, the proposed CNN + AG−based automatic
digitization method would be integrated into the TPS and
used to create clinically acceptable plans for further time
savings and would reduce user dependency in HDR
brachytherapy treatment planning.
Discussion
Needle digitization is one of the most critical steps of
CT-based HDR brachytherapy planning and remarkably
affects planning quality and curative effect.29 We have
proposed a novel deep-learning method with AGs for
automatic digitization to accelerate the workflow of
brachytherapy and to avoid potential human errors. Two
different 3D Unet−based deep-learning models were cre-
ated, with and without spatial AGs. Both models had geo-
metric and dosimetric consistency with manual
digitization in the TPS. Furthermore, the AGs integrated
into the 3D Unet model served as a feature selector by
progressively highlighting salient features while suppress-
ing task-irrelevant information. We adopted group nor-
malization to improve the accuracy and convergence
speed of automatic needle digitization in this work.

The results also showed that the performance of the
CNN + AG method was superior to the CNN model, with
statistically significant improvement in DSC and JI (P <
.05). In addition, the lowest loss and highest DSC were
more quickly reached for the CNN + AG model, showing
a faster convergence of the CNN + AG method (Fig. 4).

To the best of our knowledge, this work is the first to
report both geometric and dosimetric differences between
manual and automatic digitization of interstitial needles in
HDR brachytherapy using attention mechanisms. Previ-
ously, Hu et al11 and Deufel et al6 conducted dosimetric
analysis using automatic digitization of Fletcher applicators.

There are several limitations in our study. First, the per-
formance of the CNN + AG model was constrained by the
slice thickness of CT simulation. Deufel et al6 suggested
that geometric agreement of manual and automatic digiti-
zation could be improved by higher resolution and thin-
ner-sliced CT images. Qing et al30 reported that the tip
position of needles was affected by the slice thickness of the
CT. Hu et al11 reported a greater DSC, lower HD95 dis-
tance, and smaller tip error for automatic digitization of the
Fletcher applicator when CT slice thickness was reduced to
1.3 mm. In the future, CT slice thickness should be reduced
to improve accuracy of automatic needle digitization.

Second, we constructed 3D deep-learning models with
and without AGs based on CT only and did not include
MRI-guided HDR brachytherapy. Magnetic resonance
scans should be introduced as input images in the future,
with automatic digitization of MRI-compatible needles.
Shaaer et al31 proposed a 2D Unet automatic reconstruc-
tion algorithm based on T1- and T2-weighted MRI, which
had potential to replace conventional manual catheter
reconstruction, although the reconstruction time was still
relatively long (approximately 11 minutes).

Third, potential uncertainty in the manual contour
still exists and may affect the accuracy of needle digiti-
zation, which could be resolved by implementing more
cases to the deep-learning model or inviting multiple
planners for the manual-digitization step. Future work
will be involved with an end-to-end design for auto-
matic digitization of the HR-CTV, OARs, and needle
trajectories with high-resolution CT to improve the
overall performance.
Conclusions
A deep-learning model incorporated with AGs was
proposed and evaluated geometrically and dosimetrically
for automatic digitization of interstitial needles in HDR
brachytherapy for cervical cancer. This model has clinical
potential to improve planning efficiency.
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