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Abstract

Purpose: The purpose of this work is to present a new method for reconstructing patient-specific 

three-dimensional (3D) vasculature of the brain from a pair of digital subtraction angiography 

(DSA) image sequences from different viewpoints, e.g., from bi-plane angiography. Our long-term 

goal is to provide high resolution visualization of 3D vasculature with dynamic flow of contrast 

agent from limited data that is readily available during surgical procedures. The proposed method 

is the second of a three-stage process composed of 1) augmenting vessel segmentation with 

vessel radii and timing of the arrival of a bolus of contrast agent, 2) reconstructing a volumetric 

representation of the augmented vessel data from the augmented 2D segmentations, and 3) 

generating a 3D model of vessels and flow of contrast agent from the volumetric reconstruction. 

Unlike previous methods, which are either limited to relatively simple vessel structures or rely on 

multiple views and/or prior models of the vasculature, our method requires only a single pair of 

2D DSA sequences taken from different view directions.

Methods: We developed a new mathematical algorithm that augments vessel centerlines with 

vessel radii and bolus arrival times derived directly from the 2D DSA sequences to constrain the 

3D reconstruction. We validated this method on digital phantoms derived from clinical data and 

from fractal models of branching tree structures.

Results: In standard reconstruction methods, reconstruction by projection of two views into 3D 

space results in ‘ghosting’ artifacts, i.e., false 3D structure that occurs where vessels or vessel 

segments overlap in the 2D images. For the complex vascular of the brain, this ghosting is severe 

and is a major hurdle for methods that attempt to generate 3D structure from 2D images. We show 

that our approach reduces ghosting by up to 99% in digital phantoms derived from clinical data.

Conclusion: Our dramatic reduction in ghosting artifacts in 3D reconstructions from a pair of 

2D image sequences is an important step towards generating high resolution 3D vasculature with 

dynamic flow information from a single DSA sequence acquired using bi-plane angiography.
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1. Introduction

We present a new method for reconstructing three-dimensional (3D) image volumes of 

the brain vasculature from two-dimensional (2D) angiography. The method reconstructs 

3D images from two 2D digital subtraction angiograph (DSA) sequences. Such sequences 

can be acquired on commercial biplane angiography systems that are commonly available 

in interventional radiology suites. This work is motivated by the goal of providing high 

resolution patient-specific models of 3D vessel structure in the brain and visualization of 

flow through these models to help neurosurgeons and neuroradiologists plan and monitor 

neurosurgical interventions.

Understanding patient-specific cerebral vasculature is important for several neurological 

disorders including intracranial aneurysms, arteriovenous fistulae, arteriovenous 

malformations, highly vascularized tumors and stroke, and for accessing lesions near the 

skull base where the vasculature is variable and complex. Our research focuses on image-

guided planning for surgery of cerebral arteriovenous malformations (AVMs), where a 

complete understanding of the vasculature near the nidus of the AVM, i.e., the feeding, 

draining and en passage vessels, can help reduce surgical complications (Benes and Bradáč, 

2017; Lawton and Lang, 2019; Rolston et al., 2013; Vassallo et al., 2018). Specifically, 

when surgically removing an AVM, the surgeon must ligate feeding vessels before draining 

vessels to avoid hemorrhage of the AVM and should avoid clipping en passage vessels to 

prevent inadvertent damage to healthy brain tissue (Kalani and Yashar, 2015). However, 

the cerebral vasculature is highly complex, particularly near the nidus of the AVM, and 

important feeding or en passage vessels may be too small to be resolved with conventional 

3D imaging and it may be obscured in 2D images by tortuous vessels and overlapping 

circulations.

2D DSA is the gold standard for planning and monitoring surgical and endovascular 

interventions for cerebrovascular disorders (Benes and Bradáč, 2017). In DSA, a pre-

contrast reference x-ray is recorded. A bolus of contrast agent is then injected intra-arterially 

and a time sequence of x-rays is acquired. The reference image is subtracted from each x-ray 

to generate a sequence of images showing the contrast agent moving through the vessels 

(Fig. 1). DSA images have high spatial resolution (0.08 mm x 0.08 mm to 0.2 mm x 0.2 

mm pixels) and relatively high temporal resolution (typically 1–3 frames per second (fps) 

and up to 8–15 fps) (Ide et al., 2012; Zhang et al., 2016) and DSA is broadly available 

in interventional radiology suites (Çimen et al., 2016). In addition, contrast agent can be 

injected locally at controlled rates so that imaging can be focused on a sub-circulation of 

interest. However, DSA images are 2D so it can be challenging and time consuming for 

clinicians to interpret the subtleties of 3D blood flowing in and out of complex pathologies 

such as AVMs.
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Tomographic imaging (e.g., magnetic resonance angiography (MRA) and computed 

tomography angiography (CTA)) are also commonly available clinically (Fig. 1). They can 

be visualized using direct volume rendering or 3D models of blood vessels in the brain. 

However, vessels less than 1mm in diameter cannot be easily resolved and these methods do 

not provide information about blood flow (Zhang et al., 2016). Dynamic CTA (Matsumoto 

et al., 2007) and dynamic MRA (Gauvrit et al., 2005; Griffiths et al., 2000; Tsuchiya et al., 

2000; Ziyeh et al., 2005) provide some information about 3D blood flow, but at much lower 

spatial and temporal resolution that DSA. In addition, tomographic imaging is typically not 

available in the operating room for intraoperative imaging. 3D rotational DSA is acquired in 

a similar manner to 2D DSA and can often be acquired with the same device. After the bolus 

is injected and the vessels of interest have been fully infused with contrast agent the x-ray 

source and detector are rotated 180–240 degrees about the head while multiple (>100) 2D 

images are acquired. A tomographic image is then reconstructed to generate a 3D image of 

the vasculature at a single snapshot in time (e.g., typically at the end of arterial phase) with 

voxel sizes from 0.33 mm x 0.33 mm x 0.33 mm to 0.7 mm x 0.7 mm x 0.7 mm (Orth et al., 

2008).

Our goal is to generate 3D images of cerebral vasculature with spatial and temporal 

resolutions approaching that of 2D DSA from a single pair of 2D DSA sequences acquired 

on a biplane angiography system. There has been much work in this area during the past 30 

years (see, e.g., (Bullitt et al., 1997; Grist et al., 2012) for a history of vascular imaging), 

however, as discussed in a recent literature review (Çimen et al., 2016), there are still 

multiple challenges remaining.

1.1 Background

Much of the research in reconstructing 3D models of vasculature has been for imaging 

and modeling blood flow in the coronary arteries (Blondel et al., 2004; Cardenes et al., 

2012; Chen et al., 2013; Fang et al., 2018; Galassi et al., 2018; Jandt et al., 2009; Liao 

et al., 2010; Merle et al., 1998; Oueslati et al., 2018; Tran, 2017; Vardhan et al., 2019; 

Zifan and Liatsis, 2016; Zifan et al., 2008) (see literature reviews in (Chen and Carroll, 

2000; Çimen et al., 2016; Garcia, 2013)). Visualizing the main coronary arteries does not 

require sub-millimeter resolution and they are less complex than the tortuous vasculature 

of the brain. However, reconstruction of coronary arteries remains a challenging problem 

due to motion artifacts caused by breathing and the cardiac cycle which introduce non-rigid 

deformation during image acquisition. There has also been some work in visualizing and 

modeling 3D vasculature of the brain (Copeland et al., 2010; Spiegel et al., 2011; Wachter, 

2009). Although cerebral vasculature imaging does not suffer from severe motion artifacts 

(assuming the patient can hold their head still for the 10 or more seconds required for image 

acquisition), small vessels or small vessel features (e.g., aneurysms or stenosis) require 

sub-millimeter imaging. Additionally, the cerebral vasculature is complex, with dense, 

intertwining circulations and tortuous vessels that can overlap each other when projected 

onto 2D views and may run perpendicular to the viewing direction.

Related work in the field of computer vision reconstructs 3D shape from multiple 2D camera 

views or from video of moving objects. Some computer vision techniques are applicable 

Frisken et al. Page 3

Comput Med Imaging Graph. Author manuscript; available in PMC 2024 January 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to reconstructing 3D vessels from 2D DSA images. For example, (Berthilsson and Astrom, 

1997; Cai et al., 2011; Mai and Hung, 2010; Saini et al., 2015) reconstruct 3D curves from 

two or more 2D views and (Martin et al., 2014) reconstructs 3D structure of “jumbled” 

overlapping tubular objects from 2D video sequences.

There are two basic approaches for reconstructing 3D shape from 2D views: volumetric 
reconstruction and model-based reconstruction. 3D rotational DSA is a form of volumetric 

reconstruction. In volumetric reconstruction, multiple 2D images of the subject are taken 

at different viewing directions and the 2D views are back projected into 3D space and 

combined to generate a volumetric image. In the case of rotational DSA, 100’s of 2D 

projection images are acquired as the imaging device is rotated around the subject and 

a volumetric image of the vasculature is reconstructed from the 2D projections using cone-

beam back projection (Feldkamp et al., 1984). The use of contrast agent and subtraction of 

a pre-contrast image combined with a relative sparsity of contrast-enhanced vessels in DSA 

can support volumetric reconstruction from fewer 2D DSA images when the vasculature is 

not too complex (Copeland et al., 2010; Jandt et al., 2009). These methods filter the 2D 

images to enhance vessels and further reduce background noise (e.g., using (Frangi et al., 

1998)), back project the filtered images into 3D and combine the back projected image 

values to generate a vesselness value for each voxel in the 3D image volume. These values 

can be directly rendered using volume rendering or further processed to generate models 

of the vasculature. In contrast, model-based reconstruction methods process the 2D images 

to generate 2D models of blood vessels in the form of vessel centerlines (which can be 

represented as points, connected points or curve segments) and/or a vessel tree composed 

of vessel end and branching points connected by vessel segments. Processing steps include 

filtering to enhance vessels, vessel segmentation, and centerline/model extraction. These 2D 

models of the vasculature are back projected into 3D space along x-ray projection lines 

(Fig. 2). Each model element (point, feature, centerline, etc.) from one view is matched 

with the most likely corresponding model elements of all other views. Triangulation of 

the back-projected coordinates of these matched elements is then used to determine the 

3D coordinates of the most likely matched element. The matching can be constrained by 

vessel connectivity and the vessel tree structure. 2D segmentation, model construction and 

matching can each be done manually, semi-automatically or fully automatically.

Previous work can be further classified by the number of views used to reconstruct 3D 

vasculature and/or the use of auxiliary data such as a prior 3D model. Reconstruction from 

two 2D views has been limited to relatively simple vascular geometry, such as a single 

curved structures (e.g., a catheter in fluoroscopy images (Delmas et al., 2015)), isolated 

curve segments (Bullitt et al., 1997), or the main coronary arteries (Cardenes et al., 2012; 

Merle et al., 1998; Oueslati et al., 2018) which exhibit minimal self-overlapping given well-

chosen view directions. These methods typically use model-based reconstruction and may 

require manual intervention to detect vessel endpoints and bifurcations. Most approaches 

have used 3 or more view directions (Blondel et al., 2004; Galassi et al., 2018; Henri and 

Peters, 1996; Lee et al., 2007; Li and Cohen, 2011; Liao et al., 2010; Tran, 2017). Henri 

et al. (Henri and Peters, 1996) used a model-based method to generate all possible matches 

from 2 views and then used a 3rd view and tree structure connectivity to narrow down 

possible matches. Most other approaches require 4 or more views (Galassi et al., 2018; Jandt 
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et al., 2009; Lee et al., 2007; Li and Cohen, 2011; Liao et al., 2010). Some authors have used 

2D DSA to enhance an a priori 3D model generated from 3D imaging such as MRA, CTA 

or rotational DSA (Bullitt et al., 1997; Davis et al., 2013; Platzer et al., 2008; Schmitt et al., 

2002; Spiegel et al., 2011; Wacker et al., 2008). This approach was first proposed by Bullit 

et al. (Bullitt et al., 1997) who used 2D DSA to add additional detail such as smaller vessels 

to the 3D model.

2D DSA has also been used to augment a priori 3D models with flow information (Copeland 

et al., 2010; Davis et al., 2013; Platzer et al., 2008; Schmitt et al., 2002). Copeland et 

al. (Copeland et al., 2010) projects a 2D DSA sequence into a 3D image to get a time 

sequence of 3D images. Schmitt et al. (Schmitt et al., 2002) and Davis et al. (Davis et al., 

2013) constructed an a priori 3D model from MRA and projected timing data from the 

2D DSA sequence onto the model to generate a visualization of flow. Platzer (Platzer et 

al., 2008) generated a 3D model of cerebral vasculature from a 3D MRA or CTA image 

and simulated flow using particle-based methods. The flow model is optimized iteratively 

by minimizing the difference between projections of the simulated flow and corresponding 

2D DSA views. Wachter proposed a method to acquire both 3D geometry and timing 

by performing rotational angiography during the contrast injection rather than after the 

structures of interest have already been saturated (Wachter, 2009). However, this method 

requires a new image acquisition protocol and does not reconstruct small vessels or the 

venous phase.

2. Materials and methods

2.1 Approach

Unlike previous work, our goal is to reconstruct 3D vasculature from a single pair of 2D 

DSA sequences acquired simultaneously using a bi-plane scanner. Unlike previous methods 

which constrain reconstruction by assuming a simplified vessel structure or multiple views 

or a prior 3D model, we use timing information as the bolus advances through the vessels 

and vessel diameters to constrain the 3D reconstruction and disambiguate overlapping 

vessels. Our approach requires three stages: 1) 2D image processing; 2) constrained 

volumetric reconstruction; and 3) model construction, as illustrated in Fig 3. This paper 

presents a novel method for stage 2). We present our mathematical formulation, detailed 

methodology and validation on 3D phantom models. We use two types of digital phantoms 

for validation: synthetic fractal trees that have programmable branching complexity and 

a structure similar to that of cerebral vasculature circulations (Fig 4.); and 3D models of 

different circulations in the brain extracted from MRA images (Fig. 5).

For stage 2, we use the following steps:

1. Generate, for each 2D view, a synthetic annotated 2D image to represent the 

output of stage 1,

2. Reconstruct a volumetric representation of the vessel structure using our new 

method (stage 2), and

Frisken et al. Page 5

Comput Med Imaging Graph. Author manuscript; available in PMC 2024 January 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Visualizing the reconstructed volume using iso-surface rendering to analyze the 

reconstruction

Phantom model processing, computation of annotated images, 3D reconstruction and 

validation were implemented in a custom C++ application that was designed and 

implemented for this project.

2.2 Data Preparation and Processing

2.2.1 Phantom Models—We used two types of digital phantoms of 3D cerebral 

vasculature: fractal trees and models generated from MRA images of human brains. Fractals 

are frequently used to generate realistic trees for computer graphics and animation. We used 

a fractal tree generator in (Weber and Penn, 1995) to generate models that are similar in 

complexity and geometry to arteries in the brain. Using fractal trees allowed us to generate 

pseudo-random models with controlled parameters such as general tree shape, mean branch 

lengths and radii, and the number of levels of branching. This allowed us to test our 

system with controlled levels of model complexity. We used Arbaro (Diestel and Moeller, 

2003–2012), an open source implementation of (Weber and Penn, 1995), with variations of 

their “desert-bush” with up to 3 levels of branching to generate our phantoms. Fig. 4 show 

examples of a fractal tree than we used to test our system.

As a second type of phantom, we used digital reconstructions of arterial trees from 

The Brain Vasculature (BraVa) database (http://cng.gmu.edu/brava, 2020). This database 

contains digital reconstructions of the human brain arterial trees from MRA images of 61 

healthy adult subjects along with extracted morphological measurements including vessel 

radii. Each data set in the database includes 6 major circulations stemming from the Circle 

of Willis, including the left and right anterior cerebral arteries, middle cerebral arteries, and 

posterior cerebral arteries. Examples of vasculature that we reconstructed from this database 

are shown in Fig. 5.

For both phantom types, we represent models as a list of vessel centerlines represented as 

line segments, where each segment is augmented with a vessel radius that varies linearly 

along the segment. Each model contains a base node and a hierarchy of branches that form 

an acyclic graph. For simplicity, we assume that the contrast agent is injected at the base 

node and travels at a uniform speed in the 3D model until a branch tip is reached. Thus, 

bolus arrival time is zero at the base node and increases linearly with path length, where 

path length at a point on the centerline is the distance that the bolus would travel from 

the base node along the 3D model centerlines to reach that point. We note that this model 

of flow is deliberately simplistic; Accurate models of blood flow through the branching 

cerebral vessels as they narrow to the size of capillaries are not yet available. Fortunately, 

an accurate model of blood flow is not required by this algorithm which only requires that 

the arrival of the bolus of contrast agent at each point along each vessel is the same in both 

DSA image sequences. This is true in bi-plane scanners where the two images are acquired 

simultaneously with a single injection of contrast.

2.2.2 Image Annotation—As input to the second stage of our pipeline, we compute two 

2D annotated images by projecting centerlines of each phantom model onto two orthogonal 
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views. The projection operation is based on a general cone-beam angiography system 

illustrated in Fig. 2 as described in (Chen et al., 2013; Jandt et al., 2009; Xiao et al., 2003). 

Our implementation can generate projections in arbitrary directions, but we chose to perform 

validations using front-to-back (anterior-posterior) and left-to-right or right-to-left (lateral) 
view directions. Although view directions could be optimized to reduce self-inclusions 

(perhaps depending on the arterial tree of interest or patient anatomy), we opted to use the 

standard clinical anterior-posterior and lateral views to ensure 1) that we will have sufficient 

retrospective data for next-step machine-learning automation of the annotated segmentation 

and bolus arrival time detection, and 2) that our method will work for current clinical 

practice, thereby facilitating validation without requiring additional DSA acquisitions during 

clinical imaging (which would require additional injection of contrast and additional x-ray 

exposure, thereby significantly increasing risk to the patient).

Each pixel in an annotated image encodes four values that we use to constrain 3D 

reconstructions; the distance d to the closest point on the projected centerlines; the radius r
of the vessel at that point; the bolus arrival time t at that point; and vy, a function of the bolus 

velocity described below. For this paper, these values were computed directly from the 3D 

models. However, each component could be derived from 2D DSA sequences by extracting 

centerlines and radii (Chapman et al., 2004; Frangi et al., 1998; Gao et al., 2017; Lu et al., 

2016; Phellan and Forkert, 2017; Yaxley and Coleman, 2018; Zou et al., 2015) and bolus 

arrival times (Davis et al., 2013; Haouchine and Frisken, 2021; Platzer et al., 2008).

To define vy, we first define the 2D projected bolus velocity, v for a point x, y  on a 2D 

centerline as v ≡ vx, vy = (dx/dt, dy/dt), where dx/dy is the slope of the 2D centerline at 

x, y  and dt is the instantaneous change of arrival times at x, y . For each line segment 

of the 2D centerline, v can be computed from the 2D positions and bolus arrival times of 

the segment endpoints. Because vessels generally do not lie parallel to a given view, v is 

different from the 3D bolus velocity and it is different in different views. However, when 

two 2D views share a common axis, as is typical in angiography systems used to acquire 

DSA, the component of v in the shared axis is the same in both views. Without loss of 

generality, we assume the shared axis is the y-axis of our 2D projection images (i.e., the 

bottom-to-top or inferior-superior axis for our chosen view directions). Thus, the projection 

of the same vessel point into two different views will have the same value of vy. We make 

use of this fact to help constrain 3D reconstruction.

The simplest way to represent each 2D annotated image is as a 2D array of 4 floating point 

values: d, r, t, and vy. However, this can be memory intensive and computational expensive 

for high resolution DSA images (e.g., 20482 pixels → 67 MB per image). There are many 

ways to reduce storage and computation times, e.g., by representing each value as a single 

byte instead of a floating point value, by only annotating images within a few pixels of 

vessel centerlines and/or by computing and storing the annotated image in a spatial data 

structure such as a quadtree (Frisken et al., 2000). We take advantage of the fact that our 

centerlines are stored as a list of line segments and represent annotated images as 2D arrays 

of integer values, where the value of each pixel is the index of the line segment closest 

to the pixel if the centerline is closer than a specified radius of interest R, or −1 if it is 
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farther than R from the pixel. Distances, radii and other values are computed on the fly as 

needed by our reconstruction algorithm. For the results presented in this paper, we used pixel 

dimensions 1 mm2 and a radius of interest R = 5 mm for annotated images. We note that, 

because distances to centerlines are computed with floating point precision, this provides 

much higher resolution than a binary segmentation of vessel centerlines at the same pixel 

resolution (Frisken et al., 2000).

3. Theory and calculation

We present a volumetric reconstruction method, but we note that our approach could also be 

used to constrain model-based reconstruction. As described in the Background, others have 

reconstructed 3D vasculature from multiple 2D views by back projecting a distance field 

representation of 2D centerlines extracted from DSA images into 3D space. This approach 

can work when the vessel structure is relatively simple, and the number of projections is 

sufficient. However, with only two view directions, overlapping vessels and vessels that 

run nearly perpendicular to one of the view directions result in ghost structures that do not 

lie on centerlines of the true 3D vasculature (Fig. 6). With well-chosen view directions, 

simple structures, e.g., single vessels, short vessel segments or the larger coronary arteries, 

yield relatively few ghosts. In these situations, user input, vessel connectivity or an a 

priori model of vessel structure could be used to disambiguate the 3D reconstruction and 

eliminate ghosts. However, the amount of ghosting quickly increases with the complexity 

of the vasculature (Fig. 7). We address this problem by using additional metrics that can be 

derived directly from 2D DSA sequences (namely vessel radii, bolus arrival times and vy) to 

constrain the volumetric reconstruction.

To generate 3D reconstructions from pairs of 2D annotated images, an image volume of 

size 5123 with voxel dimensions 1mm3 was created. Each voxel was initialized to zero to 

indicate that the likelihood that the voxel contained a vessel centerline was zero. Then, for 

each voxel in the reconstruction volume, the voxel position was projected onto the annotated 

images using the same cone-beam projection geometry used to generate the 2D images. The 

annotation values (i.e., distance to the closest centerline point d, vessel radius r, bolus arrival 

time t, and velocity component vy) were computed in each annotated image from pixel values 

surrounding the projected voxel using bilinear interpolation. Then the voxel value V, i.e., 

was computed as the product:

V = D d1, d2 × C d1, d2, r1, r2, t1, t2, vy1, vy2 ,

(1)

where n1 and n2 indicate values for the variable n (i.e., d, r, t, vy  computed from annotation 

image 1 and 2 respectively, D is a method for combining distance values and C is a 

confidence in the reconstructed distance based on variation in the radii, bolus arrival time 

and velocity components.

There are several possible methods for combining distance values. For our purposes, D
should range from zero for points known to be far from the centerline to one for points 
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that, subject to vessel overlapping and reconstruction ambiguity, have a high likelihood of 

being at the centerline. We tested two commonly used methods: the average distance (2) and 

maximum distance (3):

Davg = 1 − max d1 + d2 /(2R), 1 ,

(2)

Dmax = 1 − max max d1, d2 /R, 1 ,

(3)

Dividing by R scales the combined distance values to 1 at a distance R from the centerline. 

Clamping the scaled, combined distance values to 1 and subtracting the clamped values 

from 1 ensures that the output of both functions will be one at the centerline and zero 

where we are certain there is no centerline. We used (3) in the results presented in this 

paper, though both (2) and (3) produced similar results with significant ghosting when the 

confidence function is set to 1.0 (Figure 10, second row). The confidence function, C, 

applies constraints to the reconstruction by ensuring that the annotated vessel radii, bolus 

arrival times, and vy values are similar at the projections of each voxel into the 2D annotated 

segmentations. We combine these constraints using the multiplicative confidence function C:

C = Cr r1 − r2 × Ct t1 − t2 × Cvy vy1 − vy1 , where

(4)

Cn( Δn ) =

1 for Δn < nmin

Δn − nmin
nmax − nmin

for nmin < Δn < nmax

0 for Δn > nmax

,

(5)

where |x| is absolute value of x As can be seen in (5), Cn n, n > 0  is a function whose 

output ranges linearly from 1.0 to 0.0 for n between nmin and nmax and is clamped to 1.0 

for n < nmin and to 0.0 for n > nmax. Using nmin and nmax instead of a single threshold reduces 

the dependency on the threshold used for Δn. We set nmin and nmax to 2% and 10% of the 

maximum radius, arrival time, and vy value for each model, but results were not sensitive to 

nmin and nmax and these parameters are not critical for success.

3.1 Visualization

Reconstructed voxel values represent the likelihood that a voxel contains a vessel centerline. 

Likelihoods range from zero for points guaranteed to be further than R from a centerline 

to one for points where we have a high confidence that the point is on a centerline. 

A likelihood between zero and one indicates that the point may be less than R from 

a centerline but that our confidence is low that this point is not a ghost point, perhaps 
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due to overlapping vessels or a vessel that runs nearly perpendicular to one of the 

views. The reconstructed volume can be visualized using direct volume rendering or iso-

surface rendering. In this paper, reconstructed volumes are rendered as semi-transparent 

iso-surfaces, where an iso-surface value of 0.6 was selected to illustrate regions of high 

likelihood. Iso-surface generation and visualization were performed using 3D Slicer, an open 

source platform for medical image processing and visualization (www.3dslicer.org, 2020).

4. Results and Discussion

Figs. 8 and 9 show examples of a fractal tree model and a BraVa model of a middle cerebral 

artery respectively with their corresponding annotated 2D images. Figure 10 compares 

reconstructions of the models (top row) from Fig. 8 and 9 using different constraints. The 

reconstructed volumes show a great deal of ghosting when no constraints are used during 

reconstruction (second row). Using any of the constraints that we propose (i.e., vessel radii, 

bolus arrival times or velocity component vy) reduces the amount of ghosting and each 

constraint reduces the amount of ghosting differently, leaving behind different patches of 

ghosting. When all three constraints are combined, the result is nearly ghost free and the 

small remaining patches of ghosting generally lie far from true vessel centerlines. Most 

importantly, when the constraints are applied, the voxels where likelihood values are high 

lie mostly along true vessel centerlines. There are stretches along true vessel centerlines 

where the likelihood is small (< 0.6) due to overlapping vessles or vessels that run nearly 

perpendicular to one of the two projection views. However, these stretches are relatively 

short and could easily be combined during the third stage of our pipeline using vessel 

connectivity requirements to generate vessel models. While parameters used to weight the 

impact of the constraints in (5) were hand-tuned, our method is not particularly sensitive 

to these parameters. More careful hand tuning and/or deep-learning methods for setting 

parameters could improve our results. In addition, other confidence functions could be 

considered.

We applied our method to a fractal tree with three different levels of branching and the 

vascular models of the BraVa dataset. The BraVa dataset contains 6 circulations (left and 

right anterior, middle and posterior cerebral arteries) for 61 subjects. For each of these 

366 models, we generated annotated 2D images, reconstructed volumes and measured the 

amount of ghosting and the coverage of the vessel centerlines for each reconstructed volume. 

These results are summarized in Table I. Table I confirms the visual results of Figs. 6 and 

7, which show that the amount of ghosting increases with complexity of the fractal tree. 

It also confirms the results of Fig. 10 which shows that our method for constraining the 

3D reconstruction of cerebral vasculature reduces the amount of ghosting by 99%, thereby 

greatly simplifying vessel model generation in stage 3 of our pipeline. Overlapping vessels 

and vessels that run nearly parallel to one of the 2D views result in likelihood values of less 

than 0.4 for 25% of true centerline voxels.

4.1 Discussion

While these results are promising, there is still much work to be done. This method relies 

on vessel centerlines segmented from 2D DSA that are annotated with vessel radii and 
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bolus arrival times. Our next steps will be developing and testing algorithms to perform this 

annotated segmentation. We plan to leverage the significant body of literature on segmenting 

vessel centerlines and radii (e.g., (Chapman et al., 2004; Frangi et al., 1998; Gao et al., 2017; 

Lu et al., 2016; Phellan and Forkert, 2017; Yaxley and Coleman, 2018; Zou et al., 2015)) 

and recent work on detecting bolus arrival times in 2D DSA sequences (Davis et al., 2013; 

Haouchine and Frisken, 2021; Platzer et al., 2008).

The work presented here assumes perfectly annotated segmentations in order to focus 

on how the proposed constraints could reduce ghosting artifacts in the volumetric 

reconstruction under optimal conditions. We have not addressed image artifacts present in 

real-world clinical data, including noise and differences in x-ray attenuation and scattering 

in the two DSA image sequences. Rather than trying to simulate the effects of these image 

artifacts on ghosting per se, we will address them using actual clinical data when we develop 

and test algorithms for performing annotated segmentation. We will then explore the impact 

of imperfect segmentation from clinical data on ghosting in volumetric reconstruction.

Since we intend to use this system intraoperatively, it is important to consider the speed 

of the proposed approach. Methods described in this paper were implemented in C++ and 

run on an off-the-shelf desktop system with a high-end graphics processor (Dell XPS 8940, 

i7–11700 processor, NVIDIA GeForce GTX 1660). While the implementation was not 

optimized for speed, the annotated images of Figs. 8 and 9 were generated in less than a 

second using the stroke rendering method described in (Frisken, 2008), and the volumes of 

Figure 10 were reconstructed in a few seconds. These times are well within requirements for 

intraoperative clinical use.

Finally, we plan to generate 3D models of the vasculature from the volumetric representation 

output from stage 2 so that we use the models in for simulating motion of a bolus of contrast 

agent through the vessels. Our constrained reconstruction method greatly reduces ghosting 

artifacts (Fig. 10) but also results in gaps in vessel centerlines where there is structural 

ambiguity in the two views. In future work, we will adapt existing approaches to generate 

models of the vascular structure from the output of stage 2. We plan to investigate the use of 

vessel connectivity and models of vessel growth and propagation as well as vessel radii and 

bolus arrival times to guide and constrain model generation.

5. Conclusions

We have presented a new method for reconstructing a 3D representation of blood vessels 

from two 2D DSA image sequences. Unlike previous approaches which constrain this 

ill-defined problem either by limiting the application to single curves or relatively simple 

vessel structures or by using multiple 2D images and/or a prior 3D model of the vasculature 

(e.g., from MRA or CTA), our method constrains the 3D reconstruction using temporal and 

structural data that can be derived directly from the 2D DSA sequences. Specifically, we use 

2D vessel centerlines, vessel radii and data about the timing of contrast agent as it moves 

through the vessels during image acquisition.
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This work provides a solution for one stage of a three-stage pipeline and is an important 

step towards our goal of generating 3D images of cerebral vasculature with a spatial and 

temporal resolution approaching that of 2D DSA from a single pair of 2D DSA sequences 

acquired on a biplane angiography system. Planned future work will address the other two 

stages of the pipeline, validate the entire pipeline on clinical data, and build a system that 

integrates the three stages into a single software system that is fast and robust enough to be 

used for preoperative planning and intraoperative guidance.
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Figure 1. 
Cerebral vasculature imaging of a healthy subject. Left: 2D DSA near the end of the arterial 

phase. Center: maximum intensity projection from MRA. Right: 3D model generated from 

CTA. MRA and CTA provide lower spatial resolution than DSA.
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Figure 2. 
Cone beam projection geometry typical in DSA angiography systems. Top: X-rays are 

projected from source S located at a distance L from the detector D about a central axis 

that intersects the detector at right angles at origin O. Image x, y  coordinates are centered 

at O with y defined the up vector. Bottom: In biplane angiography, two sources (S1 and 

S2) and two detectors (D1 and D2), typically at right angles, can be used to produce two 

DSA sequences simultaneously. The sources and detectors are mounted so they can be 

rotated on a circular arc about the patient to obtain multiple sequences (e.g., for rotational 

angiography).
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Figure 3. 
The three stages of our full pipeline: 1) process each 2D DSA sequence to generate an 

annotated 2D image or an annotated set of 2D model elements; 2) reconstruct a volume 

representation from the annotated images/elements; and 3) generate a 3D model of the 

vasculature and simulate dynamic flow of contrast agent. This paper provides and evaluates 

a new algorithm for stage 2.
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Figure 4. 
Fractal trees used for testing. Fractal trees have the advantage that tree shape, branching 

pattern, average branch length and radius and number of branching level scan be controlled. 

Left: two orthogonal views of a fractal tree phantom with one branching level. Center: the 

same views of the phantom with two branching levels. Right: the same tree with three 

branching levels.
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Figure 5. 
Examples of 3D vessel phantoms of brain arterial trees generated from The Brain 

Vasculature (BraVa) database [60] which stores centerlines and radii of the left and right 

anterior, middle and posterior cerebral arteries from MRA of 61 subjects.
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Figure 6. 
A) Simple fractal tree phantom with one level of branching. B), C) Projections of 

the phantom onto two detector planes at 90 degrees to each other with B) illustrating 

overlapping of the smaller branches. D) A projection at 45 degrees between B and C. E) 3D 

reconstruction using only B) and C) shows ghosting (transparent blue ghost branches in the 

expanded circle). F) Ghosting is reduced when the third projection of C) is also used in the 

3D reconstruction.
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Figure 7. 
Left to Right: Fractal tree phantom with two levels of branching, projections of the phantom 

onto two detector planes at 90 degrees to each other, and the 3D reconstruction viewed from 

the one of the projection directions and from an oblique direction. When the reconstruction 

is viewed from one of the two view directions, it looks perfect (blue centerlines are well 

aligned with the centerlines of the original tree model). However, as shown in the oblique 

view of the far right, overlapping vessels in the two views lead to large amounts of ghosting 

in the reconstructed model.
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Figure 8. 
Annotations of a fractal tree phantom. Top row: lateral view. Bottom row: front-to-back view 

of the fractal tree with two branching levels. The two left images show the 3D model and 

the projected centerlines. The three right images, left to right, show annotations of the vessel 

radii, bolus arrival time, and vy encoded as grey scale values.
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Figure 9. 
Annotations of a BraVa vascular model. Top row: lateral view. Bottom row: front-to-back 

view of a phantom of the middle cerebral artery from a BraVa model. The two left images 

show the 3D model and the projected centerlines. The three right images, left to right, show 

annotations of the vessel radii, bolus arrival time, and vy encoded as grey scale values.
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Figure 10. 
Fractal tree phantom (left two columns) and a phantom of right middle carotid artery (right 

two columns) from oblique views showing ghosting. Each row (top to bottom) shows: a 3D 

model of the phantom; volume reconstruction with no constraints; volume reconstruction 

constrained by vessel radii; volume reconstruction constrained by bolus arrival times; 

volume reconstruction constrained by vy; and volume reconstruction constrained by all three 

constraints.
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TABLE I

NUMERICAL RESULTS

Data # of ghost voxels in 
unconstrained data

% reduction in # 
of ghost voxels using 
proposed method

# actual centerline 
voxels

% centerline voxels 
in reconstruction with 
likelihood > 0.4

Fractal trees

1 branch level 2,306 85.43 1838 100

2 branch levels 1,344,454 97.61 19,235 87.03

3 branch levels 4,513,565 95.34 65,629 56.38

BraVa models

Anterior cerebral 
artery

216,404 +/− 83,533 99.35 +/− 0.24 6779 +/− 1444 74.37 +/− 5.93

Middle cerebral artery 487,660 +/− 403,142 99.25 +/− 0.34 9142 +/− 5480 74.44 +/− 7.14

Posterior cerebral 
artery

454,240 +/− 382,475 99.24 +/− 0.29 8901 +/− 5379 74.89 +/− 7.12

Numerical results show 1) for fractal tree models (Fig. 4), the number of ghost voxels (and the number of centerline voxels) increases with 
branching complexity and 2) for the BraVa models of cerebral vasculature, the number of ghost voxels varied quite a lot between models due to 
differences in model complexity. However, in all cases, the number of ghost voxels was reduced by 99% by using our constrained reconstruction 
instead of an unconstrained reconstruction while 75% of the centerline voxels were assigned a vessel likeliness > 0.4 even with a great deal of 
vessel overlap in the 2D image sequences.
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