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Abstract

Abusive chronic alcohol consumption can cause metabolic and functional derangements in the 

heart and is a risk factor for development of non-ischemic cardiomyopathy. microRNA 214 

(miR-214) is a molecular sensor of stress signals that negatively impacts cell survival. Considering 

cardioprotective and microRNA modulatory effects of sildenafil, a phosphodiesterase 5 (PDE5) 

inhibitor, we investigated the impact of chronic alcohol consumption on cardiac expression 

of miR-214 and its anti-apoptotic protein target, Bcl-2 and whether sildenafil attenuates such 

changes. Adult male FVB mice received unlimited access to either normal liquid diet (control), 

alcohol diet (35% daily calories intake), or alcohol + sildenafil (1 mg/kg/day, p.o.) for 14 

weeks (n=6–7/group). The alcohol-fed groups with or without sildenafil had increased total 

diet consumption and lower body weight as compared with controls. Echocardiography-assessed 

left ventricular function was unaltered by 14-week alcohol intake. Alcohol-fed group had 2.6-

fold increase in miR-214 and significant decrease in Bcl-2 expression, along with enhanced 

phosphorylation of ERK1/2 and cleavage of PARP (marker of apoptotic DNA damage) in the 

heart. Co-ingestion with sildenafil blunted the alcohol-induced increase in miR-214, ERK1/2 

phosphorylation, and maintained Bcl-2 and decreased PARP cleavage levels. In conclusion, 

chronic alcohol consumption triggers miR-214 mediated pro-apoptotic signaling in the heart, 

which was prevented by co-treatment with sildenafil. Thus, PDE5 inhibition may serve as a novel 

protective strategy against cardiac apoptosis due to chronic alcohol abuse.

*Address correspondence to: Rakesh C. Kukreja, Ph.D., Professor of Medicine, Physiology, Biochemistry, Division of Cardiology, 
Box 980204, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-020D Richmond, VA 23298-0204, USA., 
Phone: (804)-628-5521, rakesh.kukreja@vcuhealth.org.
Authors’ Contribution AS, LX, RCK designed the study; AS, LX, FNA, AD performed the experiments and analyzed the data; AS, 
LX, RCK wrote the manuscript; all authors substantially contributed to the interpretation of the data, critically revised the manuscript, 
and approved the final version.

Conflicts of interest All authors declare no conflicts of interests related to this study.

HHS Public Access
Author manuscript
Mol Cell Biochem. Author manuscript; available in PMC 2024 January 22.

Published in final edited form as:
Mol Cell Biochem. 2020 August ; 471(1-2): 189–201. doi:10.1007/s11010-020-03779-7.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

microRNA; alcoholic cardiomyopathy; PDE5 inhibitor; apoptosis

Introduction

Alcohol abuse remains a serious health problem both in the Western world and in 

developing countries accruing an estimated 3 million deaths annually according to a 

report of World Health Organization (WHO) published in 2018 (https://www.who.int/

substance_abuse/publications/global_alcohol_report/en/). It is estimated that the per capita 

alcohol consumption would increase 17.8% by 2030 [1]. Chronic alcohol consumption 

is associated with organ impairment and failure including the heart with abnormalities 

characterized by decreased myocardial contractility, arrhythmias and secondary non-

ischemic dilated cardiomyopathy [2–4]. Individuals consuming toxic levels of alcohol either 

manifest with left ventricular (LV) dysfunction mostly with dilated cardiomyopathy [5] 

or remain asymptomatic with preserved cardiac function [6]. These cardiac perturbations 

caused by excessive alcohol intake are collectively known as alcoholic cardiomyopathy 

(ACM). The incidence of ACM is difficult to predict but depends on various factors such as 

the amount of intake, duration of alcohol drinking habit and individual genetic variability, 

which play important roles in determining the magnitude of injury to the heart [6]. Several 

hypotheses have been postulated to explain the deleterious impact of alcohol on the heart, 

including oxidative stress [3, 7], mainly due to generation of excessive reactive oxygen 

species (ROS) from alcohol metabolites [7], mitochondrial damage [8] and cell necrosis 

as well as apoptosis [9, 10]. Recent studies have identified microRNA-214 (miR-214) as 

a sensitive marker of cardiac stress which has also been shown to play detrimental role 

in heart disease [11]. miR-214 has been shown to be upregulated in response to pressure 

overload [12], fibrosis [13] and heart failure (HF) [14].

However, the role of miR-214 in the regulation of cellular function differs between 

diseased and normal conditions [15, 16]. Recent reports suggested that miR-214 is 

cardioprotective during acute myocardial infarction (MI) [17, 18]. Despite previous efforts to 

understand the molecular mechanisms and treatment options for ACM, there is virtually 

no therapeutic modality which has significant impact in treating this disease. Chronic 

ethanol consumption results in metabolic perturbations in the cell through enhancing 

oxidative stress [3, 7], cell necrosis and apoptosis [9, 10]. Alcohol-induced activation 

of hepatocyte apoptosis was alleviated by resveratrol via SIRT1-dependent inhibition of 

endoplasmic reticulum (ER) stress, caspase-12, and phosphodiesterase (PDE) activity [19]. 

Interestingly, we previously demonstrated that both sildenafil and resveratrol protected 

against cardiac ischemia-reperfusion injury via activation of SIRT1 in mice [20]. Other 

studies from our group also demonstrated that sildenafil protects against myocyte cell 

loss following ischemia/re-oxygenation [21, 22], myocardial infarction [23, 24], as well 

as doxorubicin-induced cardiomyopathy [25]. In this context, we hypothesized that PDE5 

inhibitor, sildenafil may be a potential cardioprotective modality in ACM. Moreover, a 

recent publication also suggested that PDE-5 inhibition can modify miR signature profile 

through modulation of NO-cGMP pathway [26]. Also alcohol consumption has been 
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documented to cause epigenetic changes in alcoholic liver diseases [27] and to modulate 

miR expression and cell cycle [28]. Based on this background, we hypothesized that cardiac 

miR-214 and its associated apoptotic pathway may be affected following chronic alcohol 

consumption, whereas PDE5 inhibition with sildenafil might modulate such a pathologic 

process. Therefore, the current study was designed to determine the impact of long-term 

alcohol feeding on cardiac function and cardiac expression of miR-214 and its associated 

apoptotic signaling molecules. We further determined whether sildenafil can exert beneficial 

effects against alcoholic cardiotoxicity and attenuate the miR-214-related changes triggered 

by chronic alcohol consumption.

Materials and Methods

Animals and Liquid Diet Treatment

All animal procedures were approved by the Virginia Commonwealth University 

Institutional Animal Care and Use Committee (IACUC) and experiments were performed 

in accordance with the Guide for the Care and Use of Laboratory Animals (8th edition, 

National Academies Press, 2011).Nineteen adult male Friend Virus-B (FVB) mice (age 

12–14 weeks) were purchased from Harlan (Indianapolis, IN, USA). Mice were randomly 

grouped to receive unlimited access to one of the following 3 liquid diet formula purchased 

from BioServ (Frenchtown, NJ, USA) as the sole source of food and water for the entire 14 

weeks duration of the study. The mice in Control group (n=6) received normal rodent liquid 

diet (Product# F1259SP) and Alcohol group (n=7) received alcohol-enriched diet (Product # 

F1258SP, in which alcohol provides 35% of daily energy intake). Alcohol+Sil group (n=6) 

received alcohol-enriched diet added with water-dissolved sildenafil solution (final sildenafil 

dose of 1 mg/kg/day). This sildenafil dose was determined by the daily consumption of 

liquid diet volume, which was monitored daily throughout the entire 14-week treatment 

period. Two animals were housed in each cage and the volume of liquid diet consumption by 

each mouse was estimated as a half of the total volume intake per cage. Body weight of mice 

was recorded every week.

Assessment of Left Ventricle Function by Echocardiography

Cardiac function was evaluated using a Vevo770 imaging system (Visual Sonics Inc.) 

equipped with a 30 MHz linear transducer. Mice were lightly anesthetized with sodium 

pentobarbital (30 mg/kg; i.p.) and the echocardiographic procedure was carried out to 

measure LV end-diastolic diameter (EDD), end-systolic diameter (ESD), anterior wall 

diastolic thickness (AWDT), and posterior wall diastolic thickness (PWDT) for three 

consecutive cycles in M-mode using methods adopted by the American Society of 

Echocardiography. LV fractional shortening (FS) was calculated as (LVEDD-LVESD)/

LVEDD*100. Ejection fraction (EF) was calculated with the Teichholz formula. Heart rate 

was measured and averaged for 3 cardiac contractile cycles.

RNA Isolation and Real-time PCR

Total RNA was isolated from heart tissues using miRNeasy kit (Qiagen, Germantown, 

MD, USA) for miRNA analysis. miR-214 specific stem loop primer was used to generate 

miR-214 cDNA using microRT reverse transcription kit (Applied Biosystems, USA) 
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according to the manufacturer’s recommendation. The obtained cDNA product was used 

to quantify miR-214 expression level with TaqMan amplicon specific probes by real time 

qPCR using Roche 480 III cycler (Roche Diagnostics Corp.) and sno-202 was used as an 

internal control. PCR cycles were as follows: Initial denaturation at 95°C for 10 minutes, 

followed by 40 cycles at 95°C for 15 seconds and 60°C for 1 minute. The relative 

miRNA expression was calculated using 2-ΔΔCt method and normalized to the expression of 

sno-202.

Western Blot Analysis

The total protein was extracted from ventricular tissue via homogenization in HEPES lysis 

buffer containing 10 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton, 0.1% SDS, protease 

and phosphatase inhibitors (Cell Signaling Technology, Danvers, MA) and was sonicated 

for 30 seconds. Protein concentration of the supernatant was evaluated using Bradford BSA 

protein assay reagent (Bio-Rad Laboratories, Hercules, CA). Equal amounts (60 μg per 

lane) of proteins or pre-stained molecular weight markers (Precision plus, BIO-RAD) was 

separated on 4–20 % SDS-polyacrylamide gels and then transferred electrophoretically to 

nitrocellulose membranes (0.2 μm pore size, Bio-Rad). Membranes were incubated for 1 

hour in blocking solution containing 5% milk in Tris-buffered saline (TBS), and incubated 

overnight at 4°C with one of the rabbit polyclonal antibodies: anti-P-ERK 1/2 (Thr-177/160; 

dilution 1:500, Santa Cruz Biotechnology), anti-ERK1/2 (dilution 1:500, Santa Cruz 

biotechnology), anti-beta Actin (dilution 1:1000;Santa Cruz Biotechnology) anti-Bcl-2 

(dilution 1:1000, Cell Signaling Technology); anti-Bax (dilution 1:1000, Cell Signaling 

Technology) and anti-PARP (dilution 1:1000; Cell Signaling Technology). Membranes were 

then washed briefly three times in TBS and the blots were then incubated for 1 hour with 

horseradish peroxidase (HRP)–conjugated secondary antibody (1:3000). Antibody binding 

was detected using enhanced chemiluminescence (Amersham Pharmacia, Pittsburgh, PA), 

and film was scanned and the intensity of immunoblot bands was quantified using Image J 

software (Bethesda, NIH).

Bioinformatics Analysis

Potential targets of miR-214 were predicted using the bioinformatics database miRBase 

by miRanda algorithm (http://www.mirbase.org) and validated microRNA target list was 

obtained using miRWalk (http://www.umm.uni-heidelberg.de/apps/zmf/mirwalk/).

Statistical Analysis

All results are expressed as mean ± SE. For any of the reported parameters, the statistical 

comparison was made among the three experimental groups using one-way ANOVA, 

followed by Student-Newman-Keuls post-hoc test for pair-wise comparison. Probability 

value of P<0.05 was considered statistically significant.

Results

Effect of Chronic Alcohol Ingestion on Food Intake and Organ/Body Weight

Mice fed with alcohol (with or without sildenafil) consumed significantly higher volume of 

the liquid diet compared with the non-alcohol control liquid diet during the entire 14-week 
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experiment period (Fig. 1A). There was an inverse relationship between volume of food 

intake and body weight reduction in alcohol-treated mice as compared with controls (Fig. 

1B), i.e. both Alcohol and Alcohol+Sil groups had significantly lower body weight at the 

end of 14 weeks as compared to Control group (Fig. 2A; P<0.05).There was no difference 

in body weight between Alcohol and Alcohol+Sil groups. In addition, the heart weight 

measured at the end of protocol showed a slight decrease in the alcohol-treated groups 

as compared with controls (Fig. 2B), although the ratio of heart weight to body weight 

did not change significantly among the 3 groups (Fig. 2C). The liver weight was not 

markedly different among the treatment groups although the liver to body weight ratio was 

significantly higher in Alcohol and Alcohol+Sil groups as compared with the Control (Fig. 

2D). Chronic alcohol feeding did not change the ratio of kidney weight to body weight (Fig. 

2E).

Effect of Chronic Alcohol Ingestion on Cardiac Contractile Function

Echocardiography results indicated a comparable heart rate among the 3 groups (see 

Fig. 3A–3C for representative echocardiographic images). LV ejection fraction (LVEF), a 

measure of ventricular contractility did not differ between the control and alcohol-treated 

groups (Fig. 3D). Other LV functional parameters such as End-Systolic Diameter (ESD), 

and End-Diastolic Diameter (EDD) were also similar among the Control and Alcohol groups 

(Fig. 3F–3G). These results suggest that chronic alcohol feeding for 14 weeks did not cause 

cardiac dysfunction in the mice. However, both LV ESD and EDD significantly declined in 

the Alcohol+Sil group (Fig. 3F–3G).

Chronic Alcohol Consumption Increases Cardiac miR-214 Expression and Sildenafil 
Suppresses miR-214

To further investigate the epigenetic modification underlying the chronic alcohol feeding, 

we assessed miR-214 expression in the cardiac tissues. In addition, potential protein 

targets of miR-214 were predicted using the bioinformatics database miRBase by 

miRanda algorithm (http://www.mirbase.org) and also by miRWalk (http://www.umm.uni-

heidelberg.de/apps/zmf/mirwalk/), which retrieves validated microRNA target list. Both 

software analyses showed a highly conserved binding site for miR-214 at the 3’UTR of 

Bcl2 mRNA and more specifically at the 8 mer seed region with high miVScore. (Fig. 4A). 

Delta–delta Ct value analysis indicated a 2.4-fold increase in miR-214 level in the hearts of 

alcohol-treated mice. The increase of miR-214 expression was abolished by co-treatment of 

sildenafil in the liquid diet (Fig. 4B).

Chronic Alcohol Ingestion Enhances Cardiac Stress Marker P-ERK1/2 and Reduces Anti-
Apoptotic Protein Bcl-2

Cardiac expression of phosphorylated ERK1/2 (P-ERK1/2; Thr-177 & 160 site), a putative 

stress marker, was significantly increased in Alcohol group (Fig. 5), suggesting excessive 

alcohol intake can impose stress to cardiac cells. Interestingly co-treatment with sildenafil 

did not show similar level of P-ERK1/2 induction implying that sildenafil partially 

attenuated the cellular stress caused by chronic alcohol intake (Fig. 5).
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We also investigated the effects of chronic alcohol intake on Bcl-2, one of the protein targets 

of miR-214. Based on the microRNA target prediction, we identified that miR-214 can bind 

to the 3’UTR of Bcl-2 and may regulate its expression (Fig. 4A). Corresponding to an 

up-regulated miR-214, the protein level of Bcl-2 was markedly decreased in Alcohol group 

as compared with Control group (Fig. 6A). Similarly, the suppressive effects of sildenafil 

co-treatment on cardiac miR-214 restored Bcl-2 protein levels in the heart comparable to the 

Control group (Fig. 6A). Moreover, Bax expression in the same hearts was used to calculate 

Bcl-2/Bax ratio (Fig. 6A), which significantly decreased with sildenafil co-treatment as 

compared to alcohol treatment group (Fig. 6C). Furthermore, the level of cleaved PARP 

in the alcohol-fed mice was significantly higher than the control groups (Fig. 6E) and this 

increase was completely prevented in Alcohol+Sil group. Densitometric analysis of the 

intensity of cleaved PARP to total PARP ratio (Fig. 6F) or to actin ratio (Fig. 6G) also 

confirmed the observation.

Discussion

The salient findings of the present study are: 1) chronic alcohol consumption for 14 

weeks significantly up-regulated miR-214 expression with concurrent down-regulation of 

its protein target Bcl-2 in the heart; 2) alcohol-induced cardiac stress was associated with 

increased P-ERK1/2 levels; 3) therapeutic intervention with co-administration of sildenafil 

prevented the dysregulated cardiac miR-214 and Bcl-2 expression and normalized the 

alcohol-enhanced P-ERK1/2 levels; and 4) LVEF and wall thickness in the mice following 

chronic alcohol treatment (with or without sildenafil co-administration) remained normal.

The effect of alcohol consumption on cardiovascular system is an area of intense research 

and there is a disparity in the prevalence of ACM among moderate and heavy drinkers 

[29, 30]. While the cardiac health benefits were observed at mild to moderate levels of 

alcohol consumption [31, 32], excessive alcohol intake can clearly induce many pathological 

changes including oxidative stress, organelle dysfunction [33], and compromised cardiac 

muscle contractility [34]. In addition, the role of aldehyde dehydrogenase (ALDH) [35] and 

ROS generation in alcohol-induced cardiac structural deformities and dysfunction has been 

suggested. Currently, there are no therapeutic approaches and strategies to treat ACM.

The mouse model of chronic alcohol ingestion used in the present report has many similar 

features observed in humans. Notably, animals fed with alcohol-enriched liquid diet showed 

similar addiction pattern as observed in alcoholics, which manifested from their increased 

volume of alcohol intake (Fig. 1A) and retarded gain in body weight (Fig. 1B). These 

harmful effects of addictive alcohol consumption on normal growth development may 

partially result from malnutrition and abnormalities in other organs such as liver. Regardless, 

PDE5 inhibitors, sildenafil and tadalafil (a long-acting PDE5 inhibitor) have been shown to 

reduce body weight in db/db and high fat diet induced obesity mouse models [36, 37].

In the present study, the cardiac function and ventricular wall thickness evaluated by 

echocardiography did not exhibit LV dysfunction or hypertrophy (Fig. 3). Treatment with 

sildenafil decreased the heart rate (Fig. 3E) that was higher in alcohol group. Rapid heart 

rate with chronic alcohol consumption is a risk factor for the development of cardiac 
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problems such as atrial fibrillation (AF) and cardiac arrhythmias [38–40]. These results 

suggest that sildenafil treatment may protect the heart from future incidence of AF in alcohol 

subjects. A few previous studies using murine models of ACM reported involvement of 

autophagy and hypertrophy in the hearts exposed to chronic alcohol intake [35, 41]. In some 

mouse models of ACM, cardiac hypertrophy and contractile dysfunction were observed 

[35, 42, 43]. The Framingham Heart Study reported that alcohol consumption in humans 

was not associated with an increased risk of congestive heart failure even among heavy 

drinkers [44]. Nevertheless, excessive alcohol drinking was associated with an increased 

risk of heart failure with underlying myocardial ischemia [45]. We previously demonstrated 

that treatment with sildenafil or tadalafil decreased LV ESD and EDD induced by I/R 

injury [46, 47] similar to the present study. However, alcohol by itself did not increase the 

LV ESD and EDD values. Taken together, the present study seems to be in line with the 

human observations suggesting a preserved LVEF even after a prolonged period of alcohol 

consumption.

In the present study, we observed that chronic alcohol-feeding caused some profound 

molecular changes at epigenetic level, such as altered miR-214 expression, and protein 

levels including ERK, Bcl2, Bax, PARP in the heart (Fig. 4 to 6). The elevated miR-214 

following alcohol consumption can regulate key proteins involved in cardiac cell death, 

which may eventually lead to ACM and heart failure. Interestingly, the prevalence of ACM 

with chronic alcohol consumption in patients is variable among asymptomatic (preclinical) 

or symptomatic (later stage) [2, 5, 48] and the severity of alcohol induced cardiac 

abnormalities largely depends on the amount as well as the duration of alcohol drinking 

habits [49]. A large population of alcoholics remains asymptomatic with normal cardiac 

function and they appear normal and healthy until challenged by ischemia, when they suffer 

increased susceptibility to heart failure and death. In fact, a recent study involving 10,824 

adults concluded that increased alcohol consumption was associated with decreased LVEF 

and the heavy drinkers had ~1.5-fold higher risk of decreased LVEF [50]. However, cardiac 

remodeling due to alcohol injury is a dynamic process where many molecular changes occur 

much in advance of the actual onset of heart failure.

Recent developments in the field of microRNA and its role in alcohol toxicity [51, 52] 

have opened an interesting avenue to understand the molecular mechanisms of ACM. 

Non-coding RNAs including miRs add a new class of players for regulation of mRNA 

translation which influence protein stability. These non-protein coding small RNAs may 

play a key role in various cardiovascular disease conditions. However, little is known 

about the role of miRs in alcohol-induced cardiotoxicity. Several studies have focused on 

identification of miRs as useful biomarkers in alcohol-related diseases. Various miRs have 

been known to be aberrantly regulated in cardiac tissue such as miR-122 [53], miR-21 

[54] and miR-214 [55, 56]. The role of miR-214 in cardiac hypertrophy was elucidated in 

a rat model of phenylephrine-induced cardiac hypertrophy. The upregulation of miR-214 

by phenylephrine increased hypertrophy while its lentiviral knockdown prevented cardiac 

hypertrophy by regressing the expression of Enhancer of Zeste homology 2 (EZH2), a 

regulator of hypertrophy stimuli [13]. Interestingly ethanol-fed rats showed an increased 

expression of miR-214 in liver cells, which was associated with oxidative stress by 

targeting glutathione reductase and cytochrome P450 oxidoreductase [57]. Whether similar 
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mechanisms are involved in the pathogenesis of ACM remains uncertain. In relevance to our 

findings, genetic ablation of miR-214 prevented liver fibrosis and functions independent of 

TGF-β–Smad signaling pathway [58]. The upregulation of miR-214 observed in the present 

study after 14 weeks of alcohol ingestion may suggest an initiation of molecular signaling 

which could potentially lead to cardiac fibrosis.

Another interesting aspect of miR-214 is the relationship to ROS-induced cardiomyocyte 

injury. It is widely accepted that excessive alcohol drinking causes ROS overproduction 

that leads to organ damages [34, 43, 59–61]. It was suggested that miR-214 is involved 

in ROS generation [62, 63]. An increased tubular expression of miR-214 was also 

reported in mouse models of chronic kidney disease induced by ischemia/reperfusion [64]. 

The overexpression of miR-214 induced apoptosis and disrupted mitochondrial oxidative 

phosphorylation, which is similar to the findings reported in the present study. Similarly, 

an increased expression of miR-214 in monocytes was found in patients with chronic 

renal failure [65]. Another study using rat ventricular cardiomyocytes demonstrated a 

direct activation of miR-214 by H2O2, which was associated with increase in apoptosis 

via suppression of Phosphatase and Tensin (PTEN), another direct target of miR-214 

[66]. Here we found that chronic alcohol consumption significantly enhanced miR-214 

expression in the heart along with a concomitant decrease of its protein target Bcl-2, which 

is a key anti-apoptotic protein. Interestingly, previous studies demonstrated that miR-214 

is one of the most robustly upregulated miRs in various heart diseases such as dilated 

cardiomyopathy, ischemic cardiomyopathy and aortic stenosis in human subjects [67]. A 

recent report suggested that miR-214 regulates cardiac hypertrophy through association with 

lncRNA Phospholipid Scramblase 4 (Plscr4) through regulation of mitofusin-2 (Mnf2) [68]. 

Plscr4 acted as an endogenous sponge of miR-214 and downregulated miR-214 expression 

to promote Mitofusin-2 (Mfn2) and attenuate hypertrophy.

Taken together, the abnormally high expression of miR-214 following chronic alcohol 

treatment and the ability of sildenafil to prevent its induction reflected an alcohol-related 

epigenetic control of cardiac Bcl-2 expression. The decreased Bcl-2/Bax ratio indicated 

induction of apoptosis upon alcohol consumption which was prevented by sildenafil co-

treatment. Downregulation of Bcl-2 protein was often associated with cardiac apoptosis 

by various pathological stimuli including ischemia/reperfusion and chemotherapeutic agent, 

doxorubicin [25, 69]. In addition, an increased expression of cleaved PARP observed in 

alcohol consuming animals suggests DNA damage and cell death, such as those observed 

in neurodegenerative disease condition [11]. These novel findings may have a broader 

significance in cardioprotection, since miR-214 upregulation has been reported in ischemia 

injury, liver fibrosis and HF [70, 71], clearly indicates the pathologic roles of miR-214.

In the present study, we observed increased levels of phosphorylated ERK1/2, which is a 

well-known stress marker in many disease conditions including alcohol intake. These results 

are compatible with those reported in similar studies on alcohol-induced liver disease [72, 

73]. A consistent upregulation of ERK phosphorylation for a prolonged period of time 

may lead to cardiac fibrosis [74] and extracellular matrix deposition [73]. Interestingly, the 

alcohol-induced activation of ERK can be prevented by sildenafil co-treatment, indicating 

PDE5 inhibition alleviated cellular stress in the heart. These novel findings are conceptually 
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in agreement with the previous studies on resveratrol-induced cardioprotection via SIRT1-

dependent inhibition of endoplasmic reticulum stress, caspase-12, and PDE activity [19].

In conclusion, as illustratively summarized in Figure 7, the present study demonstrated 

miR-214 as a potentially new therapeutic target of PDE5 inhibitor sildenafil in 

reducing cardiac stress induced by chronic alcohol consumption. Sildenafil may induce 

cardioprotective effect by downregulating miR-214 and restoration of its target anti-

apoptotic protein Bcl-2 level in the heart. Future studies are needed to further understand 

molecular mechanisms underlying the protective effects of sildenafil against ACM.
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Figure 1. 
(A) Mean volume (ml/day) of liquid diet consumed by the mice during a 35-day 

experimental period. Symbols: open circle – Control group (n=6); open square – Alcohol 
group (n=7); open triangle – Alcohol+Sil group (n=6). (B) Time course of weekly 

measurement of body weight of the animals received Control diet (green), Alcohol (red), 

or Alcohol + Sil (blue) for 14 weeks. Data are presented as Mean ± Standard Error.
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Figure 2. 
Body weight and organ to body weight ratio among animals at the end of the protocol. 

(A) Body weight changes (Δ Body Weight) between the pre-treatment baseline and after 14 

week of treatment with control diet (n=6), alcohol diet (n=7), and alcohol + sildenafil (n=6); 

(B) Heart weight, (C) Body weight, (D) Heart to body weight ratio, (E) Liver to body weight 

ratio, (F) kidney to body weight ratio from the various treatment groups, i.e. Control (n=6); 

Alcohol (n=7), and Alcohol + Sil (n=6). Data in the bar graphs are Mean ± Standard Error.
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Figure 3. 
Representative images of echocardiography analysis of cardiac function in the mice after 

received (A) Control, (B) Alcohol, or (C) Alcohol + Sil liquid diet for 14 weeks. The results 

from quantitative analyses are shown in (D) left ventricular ejection fraction; (E) heart rate; 

(F) LV end-systolic diameter - ESD; and (G) LV end-diastolic diameter - EDD. Data in the 

bar graphs are Mean ± Standard Error.
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Figure 4. 
(A) Computational analysis of miR-214 sequence alignment with Bcl-2 mRNA target using 

miRANDA prediction algorithm. (B) Real-Time PCR analysis of miR-214 expression in the 

cardiac tissues collected from the treatment groups of Control (n=6), Alcohol (n=7), and 

Alcohol + Sil (n=6). Data in the bar graphs are Mean ± Standard Error.
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Figure 5. 
(A) Expression of phospho-ERK1/2 (Thr-177/160) and total ERK1/2 protein levels in the 

heart showing stress level induced by alcohol treatment and prevention by co-treatment with 

sildenafil. (B) Densitometry quantification of phospho-ERK1/2 bands normalized to total 

ERK. Data in the bar graphs are Mean ± Standard Error (n=3/group).
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Figure 6. 
(A) Western blot pictures showing protein expression of Bcl-2, a target of miR-214 and 

β-actin as loading control; (B) Densitometry of Bcl-2 normalized to β-actin. (C) Western 

blot analysis of cleaved PARP to total PARP ratio as marker of apoptosis in control; alcohol 

and alcohol+Sil groups. (D) Bar graph representation of cleaved PARP to total PARP ratio. 

Data in the bar graphs are Mean ± Standard Error (n=3/group).
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Figure 7. 
An illustrative summary of cytoprotective pathways by which PDE5 inhibition with 

sildenafil protects against alcohol cardiomyopathy and its pathological signaling involving 

miR-214, Bcl2, ERK1/2 and PARP.
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