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The continuous-time Markov chain (CTMC) is the mathematical workhorse of
evolutionary biology. Learning CTMC model parameters using modern, gradient-
based methods requires the derivative of the matrix exponential evaluated at the
CTMC’s infinitesimal generator (rate) matrix. Motivated by the derivative’s extreme
computational complexity as a function of state space cardinality, recent work
demonstrates the surprising effectiveness of a naive, first-order approximation for a
host of problems in computational biology. In response to this empirical success,
we obtain rigorous deterministic and probabilistic bounds for the error accrued by
the naive approximation and establish a “blessing of dimensionality” result that is
universal for a large class of rate matrices with random entries. Finally, we apply the
first-order approximation within surrogate-trajectory Hamiltonian Monte Carlo for the
analysis of the early spread of Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) across 44 geographic regions that comprise a state space of unprecedented
dimensionality for unstructured (flexible) CTMC models within evolutionary biology.

continuous-time Markov chains | Hamiltonian Monte Carlo | matrix exponential |
molecular epidemiology | random matrix theory

Phylogeographic methods (1–4) model large-scale viral transmission between human
populations as a function of the shared evolutionary history of the viral population of
interest. Data take the form of dates, locations, and genome sequences associated with
individual viral samples. Spatiotemporal structure interfaces with network structure given
by the phylogeny, or family tree, describing the viruses’ collective history beginning with
the most recent common ancestor. While one cannot directly observe this history, one
may statistically reconstruct the phylogenetic tree by positing that changes in the viral
genome happen randomly at regular intervals, thereby capturing the intuition that viral
samples with more differences between their (aligned) sequences should find themselves
further apart on the family tree.

The continuous-time Markov chain (CTMC) (5) represents the gold-standard
mathematical model for such evolution of characters (e.g., nucleotides) within a fixed
span of evolutionary time. A CTMC defined over a discrete, d -element state space consists
of a row vector �0 whose individual components describe the probability of inhabiting
each of the possible states at time t = 0 as well as a d ×d infinitesimal generator (or rate)
matrix Q with nonnegative off-diagonal elements qij, i 6= j, and nonpositive diagonal
elements qii = −

∑
j qij. For any lag t ≥ 0, the matrix exponential (6, 7) provides the

Markov chain’s transition probability matrix

Pt := etQ :=
∞∑

n=0

tnQn

n!
, [1]

which has elements [Pt ]ij that dictate the probability of the process jumping from state
i to state j after time t. It is straightforward to verify that Pt is a valid transition matrix,
having probability vectors for rows: If 1 and 0 are the column vectors of ones and zeros,
respectively, then Q1 = 0 and, therefore, Pt1 = 1. The law of total probability then
provides the marginal probability of the process at any time t ≥ 0 as �t = �0etQ .

Whether frequentist (8) or Bayesian (9–12) likelihood-based approaches to phyloge-
netic reconstruction allow phylogenetic tree branch lengths to parameterize time lags
within the CTMC framework. We present the exact statement of the phylogenetic
CTMC paradigm below (Section 3). Here, we note that the historical importance of
tree-reconstruction from aligned sequences leads to an early emphasis on the sparse
specification of Q based on biologically motivated assumptions (13–15). Classical
Markov chain Monte Carlo (MCMC) procedures (16, 17) work well for such
low-dimensional models. But the phylogenetic CTMC framework has applications
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beyond simple nucleotide substitution models. Within, e.g.,
Bayesian phylogeography, the work in ref. 1 provides a phylo-
genetic CTMC model for the spread of avian influenza across
d = 20 global geographic locations but, for computational
reasons, favors a low-dimensional O(d) parameterization of Q .
Similarly, Lemey et al. (2) model the spread of influenza A H1N1
and H3N2 between as many as d = 26 geographic regions
but—again for computational reasons—fit the model with
approximation techniques that provide no inferential guarantees.

Recently, Magee et al. (18) demonstrate the feasibility of
approximate gradient-based methods for both maximum a
posteriori and full Bayesian inference of flexible and fully-
parameterized rate models and apply these methods to a gold-
standard O

(
d2) mixed-effect CTMC model for the spread of A

H3N2 influenza between d = 14 geographic locations. The usual
CTMC log-likelihood gradient calculations feature the matrix
exponential derivative (Eqs. 13 and 15)

∇JetQ := lim
�→0

et(Q+�J)
− etQ

�
[2]

= etQ
∞∑

n=0

tn+1

(n + 1)!

( n∑
`=0

(−1)`
(

n
`

)
Q`JQn−`

)
[3]

computed in the direction J of each of the d2 natural basis
elements Jij spanning the space of real-valued, d × d matrices
M(d) = M(d, R), thereby requiring at least O

(
d5) floating

point operations (19).
Within the phylogenetic CTMC models of Section 3, log-

likelihood derivative computations that require∇JetQ balloon to
O
(
KNd5), for N the number of biological specimens observed

and K the number of parameters parameterizing Q . To address
this overwhelming computational cost, Magee et al. (18) leverage
the simplistic approximation obtained by setting n = 0 within
Eq. 3:

∇̃JetQ := tetQ J. [4]

Ref. 18 show that this approximation helps reduce total cost to
O
(
Kd2 + Nd3) and use this speedup within surrogate-trajectory

Hamiltonian Monte Carlo (HMC) (SI Appendix) to obtain a 34-
fold improvement in effective sample size per second (ESS/s) over
random-walk MCMC within their 14-region phylogeographic
example. When trying to explain the remarkable empirical
performance of the naive approximation, the authors derive an
error upper bound (for an arbitrary matrix norm)

‖∇̃JetQ
−∇JetQ

‖ ≤
‖J‖‖Q‖

2
(e2t
− 2t − 1) [5]

that fails to leverage the specific forms of Q and J. Notably, this
bound explodes as either t or ‖Q‖ diverges to∞. Of course, the
latter quantity would be expected to grow large with dimension
d without more careful structural assumptions, e.g., that Q is a
rate matrix belonging to the class

R(d) :=
{
Q ∈M(d)|Qij ≥ 0 for j 6= i,

d∑
j=1

Qij = 0
}
. [6]

In the following, we use the finer structural properties of Q to
obtain more precise bounds on

E(t) := ∇JetQ
− tetQ J. [7]

In Theorem 1, we provide an affine (in t) correction to the
approximation Eq. 4 that yields an exponentially tight t → ∞
asymptotic for the error Eq. 7. Then, in Theorem 3, we establish
precise probabilistic bounds in the high-dimensional d → ∞
limit for a large class of randomly drawn rate matrices Q ∈ R.
Here, we show, for any Q ∈ R whose off-diagonal elements
are determined by independently and identically distributed
(iid) draws from a positive, sub-exponential distribution F , that
all of the nonzero singular values grow as �j(Q) ∼ d along
with asymptotically valid almost sure bounds for these rates as
d →∞.

In regards to this second result, Theorem 3, note that random
rate (or “Laplacian”) matrices have attracted a great deal of
attention from the probability research community, especially
in regard to their high-dimensional properties; see e.g., refs. 20–
25. In particular, seminal papers such as refs. 26–28 establish
broad characterizations of bulk behavior for the Laplacian
eigenspectrum. One contribution of this paper, of independent
interest, is a short and self-contained construction of useful
bounds for the singular values of Q ∈ R.

In Theorem 2 and Corollary 1, we show how Theorems 1
and 3 combine to provide a more refined analysis of E for
suitable randomly generated Q ∈ R(d). In Theorem 2, we
establish that particular terms appearing in the bound Eq. 24 in
Theorem 1 decay with a rate on the order of 1/d in the operator
norm topology for large d for certain classes of symmetric
generatorsQ . This class includes the random elements considered
in Theorem 3. Here, although Corollary 1 applies only for
symmetric matrices composed of sub-exponential draws, we
provide strong supplemental numerical evidence that our bounds
remain valid well beyond this special symmetric, sub-exponential
special case (Remark 5 and Fig. 1).

One notable practical implication of Theorem 2, Corollary 1
and Remark 5 is the identification of a further correction to Eq. 4.
Crucially, this correction has the same O

(
d3) computational

cost as Eq. 4 while leading to an asymptotically temporally
uniformly accurate approximation of ∇JetQ (Remark 5 and
Eq. 46).

Section 2 contains simulation studies comparing accuracy
of matrix exponential derivative approximations for different
distributional assumptions on the generator matrix; the posterior
distributions obtained using surrogate-trajectory HMC and
traditional HMC; and parameter identification under different
priors on generator matrix elements.

In Section 3, we follow these theoretical and empirical
investigations with an application of the naive, first-order
gradient approximation Eq. 4 to a challenge in phylogeogra-
phy requiring Bayesian inference of a rate-matrix of unprece-
dented dimensionality. Namely, we apply the approximation
to a gold-standard mixed-effects, phylogenetic CTMC model
that uses 1,897 parameters to describe the spread of SARS-
CoV-2 across a d = 44 dimensional state space consisting
of different global geographic locations. Such an application
complements the empirical studies of ref. 18 in a man-
ner that emphasizes the naive approximation’s potential for
impact.

1. Rigorous Results
This section lays out our rigorous results Theorems 1–3 and
Corollary 1, the proofs of which appear in SI Appendix.

In what follows, we adopt the following notational conven-
tions. For any A ∈M(d), we list the associated (not necessarily
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distinct) eigenvalues of A in ascending order according to their
real part, namely,

<�1(A) ≤ · · · ≤ <�d (A). [8]

Similarly, the singular values of A are written in ascending order

�1(A) ≤ · · · ≤ �d (A). [9]

We let S(d) = S(d, R) and S(d, C) represent the spaces of
d × d symmetric and Hermitian matrices, respectively.

We make use of multiple matrix norms leading to materially
different bounds as d →∞ (29). Take

‖A‖F :=

√√√√√ d∑
i,j=1

A2
ij =

√√√√√ d∑
j=1

�j(A)2 [10]

for the Frobenius norm and

‖A‖op :=
√
�d (A∗A) =

√
�d (AA∗) = �d (A) [11]

for the operator norm of A. Finally, note that when we simply
write ‖ · ‖; the statement then holds for any valid matrix norm
as in our formulation of Theorem 1.

1.1. Deterministic Bounds on Approximation Error in Time. We
begin by deriving a dynamical equation for the errorE(t), defined
in Eq. 7. Recall that X(t) := etQ for any Q ∈M(d) obeys the
(matrix-valued) ordinary differential equation

dX
dt

= QX, X(0) = I. [12]

Setting Y� = �−1(et(Q+�J)
− etQ ) and taking a limit as �→ 0,

we find that Y = ∇JetQ obeys

dY
dt

= QY + JX = QY + JetQ , Y(0) = 0. [13]

Thus, variation of constants yields that, for any t ≥ 0,

∇JetQ = etQ
∫ t

0
e−sQ JesQds [14]

= etQ
∞∑

k,m=0

∫ t

0

(−s)kQ kJsmQm

k!m!
ds

= etQ
∞∑

n=0

tn+1

(n + 1)!

( n∑
`=0

(−1)`
(

n
`

)
Q`JQn−`

)
.

[15]

Taking the first-order (n = 0) approximation in Eq. 15 produces
Eq. 4. Note that, from Eq. 14, this approximation ∇̃etQ J is
evidently exact in the special case when J and Q commute.

Next notice that, if we differentiate Ỹ := tetQ J in t, we find
that Ỹ obeys

d Ỹ
dt

= QỸ + etQ J, Ỹ(0) = 0. [16]

Thus, taking the error E(t) as in Eq. 7 and combining Eq. 13
with Eq. 16 yields

dE
dt

= QE + JetQ
− etQ J, E(0) = 0. [17]

Hence, again integrating this expression, we find

E(t) = etQ
∫ t

0
(e−sQ JesQ

− J)ds [18]

= etQ
∞∑

n=1

tn+1

(n + 1)!

( n∑
`=0

(−1)`
(

n
`

)
Q`JQn−`

)
[19]

as could also be directly deduced from Eqs. 14 to 15.
Given a rate matrix Q in R(d), recall that <�d−1(Q) ≤

�d (Q) = 0 by the Gershgorin circle theorem (30, Theorem
6.1.1). Imposing a further non-degeneracy assumption (e.g., that
<�d−1(Q) < 0) we therefore have an exponential decay in
Q etQ . This starting point suggests that, under fairly general
conditions, we may decompose Eq. 18 into a component where
Q etQ induces an exponential decay in time and a complementary
component taking the form of a time-affine correction term.

These observations lead to the following theorem, the proof
of which appears in SI Appendix.

Theorem 1. Suppose that Q , J ∈ M(d) for some d ≥ 1. We
assume that we can find an element Q+

∈M(d) such that Q is a
generalized inverse of Q+, namely,

Q+QQ+ = Q+ [20]

and such that

e�Q (I−Q+Q)=I−Q+Q , (I−QQ+)e�Q =I−QQ+,
[21]

for any � ∈ R. Furthermore, we suppose that Q+ and Q commute

QQ+ = Q+Q . [22]

Finally, taking ‖ · ‖ be any matrix norm, we assume that

‖Q e�Q‖ ≤ C0e−�� , for all � ≥ 0, [23]

where the constants C0 > 0, � > 0 are independent of �. Then,
under these circumstances,

‖Q+J(I−QQ+)− (I−Q+Q)JQ+ + t(I−Q+Q)JQQ+

+ ∇JetQ
− tetQ J‖ ≤ C(1 + t)e−�t

[24]

for any t ≥ 0. Here, C > 0 is a t-independent constant which is
given explicitly as

C0
(
‖(I−Q+Q)J(Q+)2

‖+‖(Q+)2J(I−QQ+)‖+‖Q+ J‖
)

+ C2
0‖Q

+JQ+
‖. [25]

Remark 1: To illuminate the scope of Theorem 1, we have the
following three classes of matrices maintaining the conditions
Eqs. 20–23 as follows.

(i) Suppose that Q ∈M(d) is such that

<�d−1(Q) < <�d (Q) ≤ 0, �d (Q) is simple [26]

and such that, if �d (Q) has an imaginary component, then
its real part is strictly negative. Under these circumstances,
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writing Q in its Jordan canonical form yields, for some
m ≥ 1,

Q = Mdiag(J1, . . . , Jm−1, �d (Q))M−1. [27]

Here, under Eq. 26 each of these blocks Jj must be invertible
and so we may take

Q+ := M diag(J−1
1 , . . . , J−1

m−1, �d (Q)+)M−1, [28]

where

�d (Q)+ =
{

0 if �d (Q) = 0,
�d (Q)−1 otherwise.

[29]

(ii) We next consider the case where Q ∈M(d) is diagonaliz-
able and its spectrum lies strictly on the left half plane or at
the origin. This time, we can write

Q = M�M−1 where � = diag(�1(Q), . . . , �d (Q))
[30]

and we set

Q+=M�+M−1 with �+=diag(�1(Q)+, . . . , �d (Q)+).
[31]

The complex numbers �j(Q)+, j = 1, . . . , d are defined
as in Eq. 29.

(iii) Finally, we specialize to the case where Q ∈ S(d) is
symmetric. In this case, Q = U�U∗, where U is a unitary
matrix and � = diag(�1(Q), . . . , �d (Q)), �j(Q) are its
(real) eigenvalues. We suppose that these eigenvalues are all
nonpositive,

�d (Q) ≤ 0. [32]

Here, we take Q+ as the Moore-Penrose inverse, namely,

Q+ = U�+U∗, [33]

where �+ is as in Eq. 31.

In anticipation of Theorem 3 and our desired application in
Section 3, we are preoccupied with the dimensional dependence
of the constants in Eqs. 23–25 in our formulation of Theorem
1. We next provide some such desirable bounds in case (iii)
of Remark 1. Note that analogous results for generators Q in
the classes (i) or (ii) would seemingly require a delicate analysis
of the associated eigenspaces, i.e., of the structure of M in
Eq. 27 or Eq. 30 respectively. However, Remark 4 and Fig. 1
provide numerical evidence of a broader scope for dimensionally
improving approximations beyond the symmetric case, at least
for certain classes of randomly drawn matrices.
Theorem 2. Let symmetric Q ∈ S(d) be nonpositive, i.e., suppose
that Eq. 32 holds. Take Q+ as in Eq. 33 and define

d− = max{1 ≤ j ≤ d |<�j(Q) < 0}. [34]

Then, for any J ∈M(d),

‖t(I−Q+Q)JQQ+ + ∇JetQ
− tetQ J‖F

≤

(√
d−|�1(Q)|·

[
2
√

d − d−‖Q+
‖

2
F + ‖Q+

‖F

+
√

d−|�1(Q)|‖Q+
‖

2
F

]
(1 + t)e−t|�d−(Q)|

+ 2
√

d − d−‖Q+
‖F

)
‖J‖F [35]

with ‖Q+
‖

2
F :=

∑d−
k=1

1
�2

k(Q)
, whereas

‖t(I−Q+Q)JQQ+ + ∇JetQ
− tetQ J‖op

≤

( |�1(Q)|(2 + |�d−(Q)|+ |�1(Q)|)
�2

d−(Q)
(1 + t)e−t|�d− (Q)|

+
2

|�d−(Q)|

)
‖J‖op. [36]

Under the further assumption that �d (Q) = 0 and

�1d ≤ |�d−1(Q)| ≤ |�1(Q)| ≤ �2d [37]

for some 0 < �1 ≤ �2, we have

‖t(I−Q+Q)JQQ+ + ∇JetQ
− tetQ J‖F

≤

(�2

�2
1
·

[
2
√

d + �1d + �2d2
]
(1 + t)−t�1d +

2
�1
√

d

)
‖J‖F

[38]

and that

‖t(I−Q+Q)JQQ+ + ∇JetQ
− tetQ J‖op

≤

(�2

�2
1
·

[ 2
d

+ �1 + �2

]
(1 + t)e−t�1d +

2
�1d

)
‖J‖op. [39]

1.2. High-Dimensional Asymptotics via RandomMatrix Theory.
We turn to our probabilistic bounds on the singular values
of randomly generated rate matrices, Theorem 3. Although
interesting in its own right, this result leads to consequences
for the bounds in Eqs. 23 and 24 when applied in Theorem
2. Before proceeding, we briefly introduce further mathemat-
ical preliminaries associated with the so-called sub-exponential
random variables. To avoid confusion, note that the following
definition uses the term in the same way as, e.g., ref. 31, but that
other definitions that mean quite the opposite (i.e., heavier than
exponential tails) appear in the literature (32).

Definition 1: A random variable X is called sub-exponential if
there exists some constant K > 0 for which its tails satisfy

P(|X | ≥ t) ≤ 2e−t/K , ∀t ≥ 0. [40]

In this case, the sub-exponential norm of X is defined by

‖X‖ 1 = inf
{
s > 0 : Ee|X |/s

≤ 2
}
. [41]

The class of sub-exponential distributions is denoted by

L 1 =
{
FX (dx) : ‖X‖ 1 <∞

}
.

Remark 2: In fact, by Vershynin (31, Proposition 2.7.1, p. 33),
condition Eq. 40 is equivalent to the existence of some s0 > 0
such that Ee|X |/s0 ≤ 2, namely, ‖X‖ 1 < ∞ in Eq. 41. As a
notable example, if X ∼ exp(�), � > 0, then it is easy to see that
X ∈ L 1 , indeed.

We formulate our second major result as follows.

Theorem 3. Let FX ∈ L 1 be a distribution such that X ≥ 0 a.s.,
EX = � > 0 and Var X = �2 > 0. We consider a sequence of
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Fig. 1. Frobenius norm errors obtained by first-order approximation tetQJ and by affine-corrected first-order approximation tetQJ−t(I−Q+Q)JQQ+ (Theorem
2) under increasingly relaxed assumptions. Within each assumption set, we average over 20 independent Monte Carlo simulations of random generator
matrices for each dimension. Plot A corresponds to asymmetric generators with off-diagonal elements having independent and iid standard exponential
random variables that correspond to the sub-exponential distribution hypothesis. Plot B drops the identical distribution assumption by allowing each row and
column of the generator matrix to additively contribute its own mean—itself given by a standard exponential—to its corresponding exponentially distributed
entries. Plot C features rate matrices with iid Cauchy entries truncated to be positive. Empirically, the results of Corollary 1 extend beyond the symmetric, iid,
and sub-exponential hypotheses, suggesting scope of future work.

random matrices Q ≡ Q(d) = {qij}i,j=1,...,d ∈ R(d), d ∈ N,
where either

{qij}i,j=1,...,d, i 6=j
iid
∼ FX and

− qii =
∑

j∈{1,...,d}\{i}

qij, i = 1, . . . , d [42]

or we impose that Q ∈ R(d) ∩ S(d) as

{qij}i,j=1,...,d, i>j
iid
∼ FX , qij := qji for i < j and

− qii =
∑

j∈{1,...,d}\{i}

qij, i = 1, . . . , d .
[43]

Then, in either of these cases, for any d ∈ N\{1}, we have

� + Oa.s.

(√ log d
d

)
≤
�2(Q)

d

≤
�d (Q)

d
≤ � + Oa.s.

(√ log d
d

)
[44]

almost surely.

Remark 3: The bounds constructed in Theorem 3 are strongly
reminiscent of the bounds for eigenvalues provided in Theorem
1.5 of the seminal paper (28) (see also, for instance, Corollary
1.6 in ref. 26 and Corollary 1.1 in ref. 27).

Finally, let us observe that Theorems 2 and 3 as well as the
fact that

�j(Q) = |�d−j+1(Q)|, for e.g., any Q ∈ S(d) ∩R(d) [45]

combine to produce the following immediate corollary.

Corollary 1. Consider any sequence of random matrices Q ≡
Q(d) = {qij}i,j=1,...,d ∈ R(d), d ∈ N, as in Theorem 3 under
the second (symmetric) case Eq. 43. Then, taking �1 = �1(d) and
�2 = �2(d) as the resulting lower and upper bounds defined by
Eq. 44, we have that Q satisfies both Eqs. 38 and 39, cf. Eq. 45
relative to this sequence of �1,�2 for any J ∈M(d).

Remark 4: Our rigorous formulation of Corollary 1 is limited
to symmetric random rate matrices whose above diagonal
elements are independent and iid draws from a sub-exponential
distribution. However, strong numerical evidence suggests that
the scope of the approximations Eqs. 38 and 39 reach far beyond
the limitations of Corollary 1 in several different ways. Fig. 1
explores the consequences of relaxing various assumptions of
Corollary 1. The third plot involves folded Cauchy random
variables, the heavy tails of which violate the sub-exponential
assumption (Definition 1). There appears to be no significant
departure from the idea that the form t(I − Q+Q)JQQ+

corresponds increasingly well to the true approximation error
[Eq. 7] as the dimension increases.

Remark 5: Calculation of ∇̃JetQ := tetQ J requires O
(
d3)

operations by, e.g., computing the spectral decomposition Q as
in Eq. 30. One may then recycle this decomposition to determine
the additional term t(I − Q+Q)JQQ+ for little extra cost. In
view of Corollary 1 and Fig. 1,

∇̂JetQ := tetQ J− t(I−Q+Q)JQQ+ [46]

provides an accurate approximation of ∇JetQ for asymptotically
for large d . Thus, we anticipate further computational improve-
ments when fitting large, gold-standard models using this refined
approximation. That said, we leave the efficient and scalable
application of ∇̂JetQ to future work.

2. Empirical Studies
Before applying the naive matrix exponential derivative approxi-
mation to the phylogeographic analysis of SARS-CoV-2, we carry
out a few targeted studies that illustrate the empirical performance
of the approximate derivative and its affine correction Eq. 46
(Fig. 1); agreement between CTMC generator matrix empirical
posterior distributions generated by surrogate-trajectory HMC
algorithms using approximate derivatives and the truth (Fig.
2); and point estimation of generator matrix element values
under different sparsity regimes and different CTMC state space
dimensionalities d (Fig. 3).
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Fig. 2. Posterior density plots for surrogate-trajectory HMC using the naive approximate derivative, the corrected approximation Eq. 46 and the exact matrix
exponential derivative for elements of a 5 × 5 generator matrix. The near-perfect overlap reflects the fact that each algorithm’s transition kernel leaves the
posterior distribution invariant (33). To generate data, we randomly draw standard normal generator entries once and simulate 20 independent initial/final
position pairs from a CTMC with time interval t = 1. We show the true value in red and negate diagonal elements to simplify presentation.

Here, we fill in remaining simulation details not included in
figure captions. In the simulations contributing to Fig. 1, we
randomly generate new, independent direction matrices J at each
time step within each of the 20 independent runs. The results are

not sensitive to J in general. We also note that under Definition 1
the Cauchy distribution is not sub-exponential and therefore
represents a deviation from core assumptions of Section 1. Using
varying distributions on the elements of generator matricesQ , the
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Fig. 3. Posterior means versus truth for CTMC generator matrix elements within differing sparsity regimes and with different dimensionalities d, holding
observation count fixed at 300. We generate posteriors using surrogate-trajectory HMC with the naive matrix exponential derivative. To affect sparsity levels,
we generate generator matrix entries according to the Bayesian bridge distribution (34) with different exponents (� ∈ {1,1/2,1/4} for plots A, B and C,
respectively), normalizing by the largest absolute values to ease comparison. Smaller � values encode more peaked distributions with heavier tails and thus
enforce greater sparsity. Plot C reflects the fact that the Bayesian bridge prior with exponent � = 1/4 helps identify non-null parameters in small sample
contexts (18). With this intuition in mind, we specify such a prior on generator random effects in Section 3.
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simulations contributing to Figs. 2 and 3 both randomly generate
N independent initial states y0

1 , . . . , y0
N according to uniform

distributions over their respective CTMC state spaces. For each of
these initial states y0, we then simulate from the CTMC for time
interval t = 1 to obtain samples y1

1 , . . . , y1
N . The likelihood then

takes the form
∏

n(y
0
n)

T eQy1
n . For the simulation contributing

to Fig. 2, we specify standard normal priors and sample from the
posterior by generating 100,000 iterations from each algorithm.
For the simulation contributing to Fig. 3, we generate 500,000
MCMC samples using surrogate-trajectory HMC with the
naive matrix exponential derivative and calculate the posterior
mean of each generator matrix element using the final 100,000
samples.

3. Application: Global Spread of SARS-CoV-2
Ref. 18 consider phylogenetic models that involve CTMC
priors and show that the first-order approximation Eq. 4 of
the matrix exponential derivative Eq. 2 performs remarkably
well within surrogate HMC (SI Appendix), achieving an over
30-fold efficiency gain compared to random-walk Metropolis
for a 14-state model with over 180 model parameters. Here,
we demonstrate similar strong performance of the first-order
approximation within surrogate HMC for a 44-state model with
almost 1,900 model parameters.

3.1. Phylogenetic CTMC. Start with a (possibly unknown) rooted
and bifurcating phylogenetic tree T consisting of N leaf nodes
that correspond to observed biological specimens and N − 1
internal nodes that correspond to unobserved ancestors. The tree
also contains 2N −2 branches of length tv connecting each child
node v to its parent u.

Given T , we model the evolution of d characters along
each branch of the tree according to a CTMC model with
d × d generator matrix Q and stationary distribution � =
(�1, . . . ,�d ) = limt→∞ �̃etQ , for �̃ any arbitrary probability
vector. Examples of characters are the d = 4 nucleotides within
a set of aligned genome sequences (13) and the set of d = 15
geographic regions visited by an influenza subtype (2). We may
scale tv to be raw time (e.g., years) or the expected number of
substitutions with respect to � depending on the given problem.
In the former case, one may augment the model with a rate scalar
 that modulates the expected number of substitutions across all
branches, and the finite-time transition probability matrix along
branch v becomes Pv := etvQ . In the following, we further posit
Q = Q(�) for � a vector of parameters.

Let data Y be the d × N matrix with columns yn, n ∈
{1, . . . , N }, each having a single nonzero entry (set to 1)
corresponding to the observed state of the biological specimen.
One may use any node v to express the likelihood

p(Y|�) = pT
v qv, [47]

where pv and qv are the post-order and pre-order partial
likelihood vectors, respectively (35). The former describes the
probability of the observed states for all observed specimens (i.e.,
leaf nodes) that descend from node v, conditioned on the state
at node v. The latter describes analogous probabilities for all
observed specimens not descending from node v. For leaf nodes,
pn := yn, n ∈ {1, . . . , N }, and one may specify the root node’s
pre-order partial likelihood to be any arbitrary probability vector
a priori. Let “◦” denote the Hadamard or elementwise product

between matrices or vectors of equal dimensions. If we suppose
that node u gives rise to two child nodes, v and w, then

pu = Pvpv ◦ Pwpw , qv = PT
v (qu ◦ Pwpw) . [48]

Using the chain rule and the fact that pv does not depend on Pv,
one may write the likelihood’s derivative with respect to a single
parameter �k thus:

∂

∂�k
p(Y|�) ∝

2N−2∑
v=1

tr

(
∂(pT

v qv)
∂Pv

∂PT
v

∂�k

)

=
2N−2∑
v=1

tr

(
(qu ◦ Pwpw)pT

v

(
∂etvQ

∂�k

)T
)

=
2N−2∑
v=1

pT
v

( d∑
i,j=1

∂etvQ

∂qij

∂qij

∂�k

)T

(qu ◦ Pwpw),

[49]

where we suppress the dependence of u and w on v.
Whereas the recursions of Eq. 48 facilitate fast likelihood

computation, inferring � using gradient-based approaches such
as HMC requires a large number of repeated evaluations of
the matrix exponential derivative. These computations become
particularly onerous when one opts for a gold-standard mixed-
effects model (18) and specifies

log qij = bij + �ij , i 6= j. [50]

Here, the fixed effects bij are elements of some non-random
matrix B, and the random effects �ij are mutually independent
a priori and inferred as model parameters. The dimension K of
� in this model is O(d2), so the O(KNd5) cost of the log-
likelihood derivative Eq. 49 becomes a massive O(Nd7). In
this context, Magee et al. (18) shows that an approximate log-
likelihood derivative based on the first-order approximation to
the matrix exponential helps achieve a considerable speedup over
the exact derivative, requiring only O(d4 + Nd3) floating-point
operations yet facilitating high-quality proposals in the context
of surrogate HMC.

In the following section, we use this method to analyze the
global spread of SARS-CoV-2 and show that the first-order
approximation maintains its performance for an even higher-
dimensional problem than previously considered.

3.2. Bayesian Analysis of SARS-CoV-2 Contagion. We use the
phylogenetic CTMC framework to model the early spread of
SARS-CoV-2—the virus responsible for the ongoing COVID-19
pandemic—based on N = 285 observed viral samples collected
from 31 regions worldwide between 24 December 2019 and 19
March 2020. These regions comprise 13 provinces within China
and 18 countries without. Understanding the manner in which
viruses travel between human populations is an object of ongoing
study, and phylogeographic analyses point to the central role of
travel networks including those measured by airline passenger
counts (3) or Google mobility data (36). Here, we include three
such predictors of travel in our CTMC model by expanding the
fixed effects in regression model Eq. 50 to take the form

B = �1X1 + �2X2 + �3X3 [51]

forX1,X2, andX3 fixed 44× 44 matrix predictors and �1, �2, and
�3 real-valued regression coefficients. Note we have expanded the
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Fig. 4. Matrix predictors described in Eq. 51 combine in a linear manner to form the fixed-effect matrix B featured within the mixed-effects regression model
Eq. 50. Air traffic proximities (A) are proportional to the number of air passengers exchanged between airports within respective regions (3). Intracontinental
proximities (B) take values between −1 for regions on different continents to 1 for adjacent regions. The Hubei asymmetry (C) roughly characterizes the Hubei
quarantine of early 2020.

number of regions between which viruses may travel to d = 44
by including two additional Chinese provinces and 11 additional
countries. Fig. 4 presents the three predictors of interest: X1
contains air travel proximities between locations as measured
by annualized air passenger counts between airports contained
within a region (3); X2 contains intracontinental proximities
arising from physical distances when two regions inhabit the
same continent and fixed at the minimum otherwise; finally, X3
describes the Hubei asymmetry, i.e., the nonexistence of human
travel out of the Hubei province in early 2020.

In the context of a Bayesian analysis, we specify independent
normal priors on �1, �2, and �3 with means of 0 and variances of 2.
We also assume that the 1,892 random effects �ij follow sparsity-
inducing Bayesian bridge priors with global scale parameter � and
exponent � = 0.25. Here, we follow ref. 37 and specify a Gamma
prior on �−� with a shape parameter of 1 and a rate parameter of
2. Finally, we place a flat prior on the rate scalar  . Inferring the
posterior distribution of all 1,897 model parameters requires an
advanced MCMC strategy. Namely, we adopt an HMC-within-
Gibbs approach, updating the scalars  and � independently but
updating all 1,895 regression parameters (both fixed and random

effects) using surrogate HMC accomplished with the first-order
approximation

tvetvQ Jij ≈
∂etvQ

∂qij

within Eq. 49.
We generate 8 million MCMC samples in this manner,

saving 1 in 10,000 Markov chain states, in order to guarantee
a minimum ESS greater than 100. By far, the worst-mixing
parameter is the global scale �, which obtains an ESS of 185.
The three fixed-effects regression coefficients �1, �2, and �3
obtain ESS’s of 721, 721, and 644, respectively. The median
and minimum ESS for the 1,892 random effects �ss′ are 721 and
190, respectively. We note that, after thinning and removing
burn-in, the sample only consists of 721 states, so ESS of 721
implies negligible autocorrelation between samples.

The Left plot of Fig. 5 presents posterior densities for the
fixed-effect coefficients from regression Eq. 50. The air traffic
proximity, intracontinental proximity and Hubei asymmetry
coefficients have posterior means and 95% credible intervals of
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Fig. 5. Posterior inference. Posterior densities (A) for the three fixed-effect regression coefficients corresponding to the predictor matrices of Fig. 4 reflect
largely positive associations between predictors and infinitesimal rate matrix, although air traffic proximity has the only statistically significant coefficient with
posterior mean of 0.76 and 95% credible interval of (0.50, 1.03). The posterior mean (B) infinitesimal rate matrix closely resembles the air traffic predictor, while
reflecting the Hubei asymmetry to a lesser extent.
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Fig. 6. Posterior predictive modes for (unobserved) ancestral locations color a phylogenetic tree that describes the shared evolutionary history of 285
SARS-CoV-2 samples.

0.76 (0.50, 1.03), 0.04 (−0.04, 0.12), and 0.27 (−0.39, 0.78),
respectively. While these results suggest a positive association
between each predictor matrix and the infinitesimal generator
matrix Q , the only predictor with a statistically significant
association is air traffic proximity. This result agrees with
a previous phylogeographic analysis of the global spread of
influenza (3). The Right plot of Fig. 5 presents the posterior
mean for generator Q . As one may expect, the matrix looks
similar to that of the air traffic predictor matrix in Fig. 4, but
one may also see the influence of the Hubei asymmetry in,
e.g., the squares corresponding to travel between Guangdong
and Hubei provinces. Finally, we randomly generate regions of
unobserved ancestors from their posterior predictive distributions
every 100-thousandth MCMC iteration. After collapsing regions
into 8 major blocks, Fig. 6 projects the empirical posterior
predictive mode of these blocks onto the phylogenetic tree
T . The general pattern looks similar to that of figure 1
from ref. 38, although the geographic blocking scheme differs
slightly.

In addition to these scientific questions of interest, we are
interested in the performance of the first-order approximation
as a surrogate gradient for HMC in such a high-dimensional
setting. Whereas we know that the surrogate-trajectory HMC
transition kernel leaves its target distribution invariant regardless
of the approximation quality (33), transitions that rely on
poor gradient approximations result in small acceptance rates,
more random walk behavior and high autocorrelation between
samples. Since ESS is inversely proportional to a Markov chain’s
asymptotic autocorrelation, larger ESS suggests a useful gradient
approximation. To isolate the approximation’s performance, we
fix the Bayesian bridge global-scale � at 2.5×10−5. We generate
a Markov chain with 80,000 states, saving every tenth state and
removing the first 1,000 states as burn-in. Despite the relatively
small number of iterations, we observe large ESS that suggest

satisfactory accuracy of the first-order approximation within the
context of high-dimensional surrogate HMC. The ESS for the
three fixed-effect regression coefficients �1, �2, and �3 are 1,053,
1,343, and 498, respectively. The median and minimum ESS for
the 1,892 random effects �ij are 1,514 and 1,161, respectively.

4. Discussion
We develop tight probabilistic bounds on the error associated
with a simplistic approximation to the matrix exponential
derivative for a large class of CTMC infinitesimal generator
matrices with random entries. Our “blessing of dimensionality”
result shows that this error improves for higher-dimensional
matrices. We apply the numerically naive approach to the analysis
of the global spread of SARS-CoV-2 using a mixed-effects
model of unprecedented dimensions. The results obtained herein
suggest the further study of CTMCs through the lens of random
matrix theory. Furthermore, this analysis suggests a refinement of
the first-order approximation to the matrix exponential derivative
that may be particularly useful within modern, high-dimensional
settings.

Data,Materials, and SoftwareAvailability. Public data have been deposited
in Github (39).
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