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Abstract

Accurate measurements of the molecular composition of single cells will be necessary for 

understanding the relationship between gene expression and function in diverse cell types. One 

of the most important phenotypes that differs between cells is their size, which was recently 

shown to be an important determinant of proteome composition in populations of similarly sized 

cells. We, therefore, sought to test if the effects of the cell size on protein concentrations were 

also evident in single-cell proteomics data. Using the relative concentrations of a set of reference 

proteins to estimate a cell’s DNA-to-cell volume ratio, we found that differences in the cell size 

explain a significant amount of cell-to-cell variance in two published single-cell proteome data 

sets.

Graphical Abstract

Corresponding Author: Jan M. Skotheim – Department of Biology, Stanford University, Stanford, California 94305, United States; 
Chan Zuckerberg Biohub, Stanford, California 94305, United States; skothiem@stanford.edu.
Author Contributions
M.C.L. conceived the study. M.C.L. and L.V. performed data analysis and wrote the manuscript with J.E.E. and J.M.S, who supervised 
the study. M.C.L. and L.V. contributed equally.

ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jproteome.3c00441.
Histone H4 data and analysis for single cells from Brunner et al. (XLSX)
Histone H4 data and analysis for single cells from Specht et al. (XLSX)
Data and analysis related to Figure 2 (XLSX) Supporting Information (PDF)

The authors declare no competing financial interest.

HHS Public Access
Author manuscript
J Proteome Res. Author manuscript; available in PMC 2024 January 22.

Published in final edited form as:
J Proteome Res. 2023 December 01; 22(12): 3773–3779. doi:10.1021/acs.jproteome.3c00441.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

single cell proteomics; cell size; Histones; gene expression

INTRODUCTION

Individual cells are the basis of life. It is therefore important to develop techniques that 

accurately quantify the molecular composition of single cells. Extensive progress examining 

mRNA composition has been achieved at single-cell resolution, helping to catalog diverse 

cell types in multicellular organisms.1 However, mRNA sequencing gives an incomplete 

measurement of the state of the cell because diverse post-transcriptional mechanisms also 

impact gene expression. For example, the correlation between mRNA and protein amounts 
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is complicated by differing translation and degradation rates.2 Moreover, transcriptomic 

methods are blind to the diverse set of protein modifications that are often key to the activity 

and function. To address these limitations inherent to measuring only mRNA transcripts, 

single-cell proteomic methods have emerged.

Recent advances in single-cell proteomics are driven by low-volume sample preparation3–6 

and an increase in measurement sensitivity from a new generation of mass spectrometers.7 

Multiplexed peptide labeling approaches have also enabled the measurement of hundreds 

and sometimes thousands of proteins from single mammalian cells.5,6,8 Initial experiments 

have revealed that the proteomes of single cells may be influenced by the cell cycle phase,4,7 

although it is unclear which other physiological features underlie cell-to-cell proteome 

heterogeneity. It is important to measure these and other quantifiable sources of proteome 

variation to better characterize features that are specific to the cell types and states.

We recently showed that cell size, or more precisely the DNA-to-cell volume ratio, is 

an important determinant of proteome content.9,10 Contrary to the assumption that most 

cellular components would remain at a constant concentration in cells of different sizes, 

we found widespread, size-dependent changes in the concentrations of individual proteins 

(Figure 1A)10.9 These changes in protein concentration likely reflect, to a large extent, 

the size-dependent changes in the cellular growth rate.11,10 Importantly, a recent proteome 

analysis of the NCI60 cancer lines revealed a similar pattern of size-dependent changes 

to the proteome.12 Thus, regardless of cell type, cell size has an important influence on 

proteome composition and, therefore, should contribute to cell-to-cell heterogeneity in the 

proteomes of single cells. Here, we used publicly available single-cell proteomic data sets 

to determine whether the size-dependent proteome changes we described previously are 

evident in single-cell measurements.

METHODS

Data Curation

For Brunner et al., protein intensities for the individual G1 cells were obtained from 

PRIDE (ID: PXD024043). G1-labeled columns were extracted from the file named: 

“20210919_DIA-NN_SingleCellOutput.pg_matrix.tsv” (DIANN1.8 cell cycle folder). G1 

cells with the fewest number of protein identifications were excluded until a shared set of 

∼300 proteins was detected in each single cell. This resulted in the reanalysis of 70 of the 

93 G1 cell proteomes (Table S1). For Specht et al., a dataframe containing relative protein 

concentrations for each single cell was downloaded from https://slavovlab.net (“Proteins-

processed.csv”). Mock-treated monocytes were extracted from the “Proteins-processed.csv” 

dataframe using the “sdrf_scope2.tsv” table (Table S2).

Estimation of Cell Size

From the study of Brunner et al., we estimated the relative cell size for each of the single 

G1 cells using the “Histone H4 fraction”. To calculate the Histone H4 fraction, we divided 

the intensity value for Histone H4 (H4_HUMAN) by the summed intensity for all of the 

other proteins. To calculate this summed value, we considered only the ion intensity from 
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proteins that were identified in all cells considered for our analysis. We chose a single 

histone protein, rather than the average of all histone proteins, to minimize missing values 

and therefore maximize the number of cells considered for our analysis. Histone H4 was 

chosen because there is a single H4 variant, and it was detected in all but 3 cells. The use of 

other core histone proteins or an averaged value produced similar results (Figure S1). From 

the study of Specht et al., the relative cell size was estimated using the relative concentration 

of Histone H4 (log2).

The approach with a single reference protein can be extended to several reference proteins. 

Namely, we select a small number of reference proteins nr known to scale significantly with 

cell size, i.e., the absolute value of the measured slope sp for those selected proteins is 

relatively large. We therefore construct a reference data set of protein fractions Xr ∈ Rnr × N

and its associated measured slope values sr ∈ Rnr and solve the following regression 

problem:

min
m

Xr − srmT
2
2

= ∑
c, p

Xc, p
r − sp

rmc
2

where m ∈ RN is the vector of cell sizes we want to estimate, and the subscripts p and c
refer to a specific protein or cell, respectively. In other words, the approach aims to find 

the cell sizes m that, for the reference proteins selected, replicate as closely as possible the 

previously measured slopes.9 The estimated cell sizes allow the estimation of slopes for all 

of the proteins using standard linear regression.

Estimation of Proportion of Variance Attributable to the Cell Size

Subtracting the contribution of cell sizes for each protein in the data set yields a second data 

set X  whose total variance is expected to be lower. Indeed, if cell size is a contributor to 

cell-to-cell proteome variation, then removing its effect should decrease the total amount of 

variance. Denoting the sample covariance matrices of the original data set and the new data 

set with the effect of cell size removed by Σ and Σ , the total variances V  and V  are equal 

to the sum of the eigenvalues of their respective covariance matrices. Therefore, the amount 

of leftover variance after removal of the effect of slopes is given by V /V . If the contribution 

of cell size is meaningful, we expect this ratio to be smaller than 1. We can compare this 

ratio to the leftover variance after removing the first principal component in the data set, 

i.e., λmax/V , where λmax is the maximum eigenvalue of the sample covariance matrix. The first 

principal component is the direction in the feature space that accounts for maximal variance. 

Comparing these two metrics reveals the amount of variance contributed by the cell size.

Principal Component Analysis

A dataframe was created that contained individual proteins as rows with columns 

corresponding to single G1 cell proteomes. Principal component analysis (PCA) analysis 

was performed in Python by using the sklearn package. The results of the PCA analysis 

were visualized with Seaborn’s scatterplot.
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Pearson r Correlation Analysis

From the study of Brunner et al., a data frame containing intensity values of 295 proteins 

(row) for 70 single cells (column) was converted to intensity fractions. For each cell, the 

intensity of each protein was divided by the summed intensity of all proteins to calculate 

each protein’s proteome fraction, an estimate of a protein’s relative concentration. A Pearson 

correlation (python’s scipy package) was calculated by regressing the relative concentration 

of each individual protein against a proxy for each cell’s size (exemplified in Figure 1E, 

F). For Specht et al., we used the log2 ratio values published by the authors, so the r 

value was derived from a regression between the relative protein concentration (log2) versus 

the relative Histone H4 concentration (log2). Only the most abundant ∼350 proteins were 

considered for Figure 1H (filtered by peptide detections in our own data set). Our analysis of 

the entire Specht et al. study’s data set can be found in Figure S3 and Table S2.

RESULTS

To investigate whether cell size can explain cell-to-cell variations in proteome content, we 

reanalyzed data from two recently published single-cell proteome data sets5,7 (Tables S1 

and S2). One of these utilized Bruker’s ultrahigh-sensitivity timsTOF SCP (label-free DIA) 

to measure the proteomes of single HeLa cells that were proceeding through the cell cycle 

after being synchronized.7 The authors distinguished the cell cycle phase of single cells 

based on their measurements. To disentangle cell size and cell-cycle-related effects, we 

only considered the proteomes of G1-enriched single cells for our analysis. An eigenvalue 

analysis of this set of G1 cell proteomes found that the top eigenvalues of the covariance 

matrix deviate significantly from the Marcenko–Pastur distribution,13 i.e., the distribution 

of eigenvalues for data sets with no latent variables (Figure 1C). This means that there is 

a significant signal in our data despite the noisy nature of single-cell proteomics data. To 

crudely approximate the relative size of each cell, we used the histone proteins because 

their amount is proportional to the amount of DNA.9,14 Smaller cells, therefore, possess 

proportionally higher concentrations of histone proteins than larger cells (Figure 1B). We 

used the fraction of total ion intensity represented by Histone H4 as representative of the 

inverse of the cell volume (a proxy for cell size). We chose Histone H4 because it has only 

one variant and was detected in nearly every G1 cell in the Brunner et al. data set. We 

performed PCA on 70 G1-enriched single-cell proteomes from Brunner et al., reasoning that 

proteins with cell size-dependent abundances could help explain the variance in these cells. 

The fraction of total ion signal attributable to histone H4 significantly correlated with the 

first principal component, indicating the importance of cell size in contributing to cell-to-cell 

proteome variation (Figure 1D). Other core histone proteins produced similar results (Figure 

S1). In contrast, substituting a histone protein for a common housekeeping enzyme, PGK1, 

whose concentration is expected to be independent of the cell size,9 did not produce a 

significant correlation (Figure S2).

To further explore the relationship between single-cell proteome variation and cell size, 

we calculated Pearson coefficients (r) for each protein from the correlation between its 

relative protein concentration and Histone H4, a proxy for cell size (Figure 1E,F). We then 

correlated these r values with the protein concentration size dependence previously reported 
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by Lanz et al. (Figure 1G). Concentration size dependence was calculated as a protein slope. 

In brief, the protein slope is calculated from a linear regression between the log2 of an 

individual protein’s concentration and the log2 of the cell volume. Thus, a protein slope 

value of 0 describes proteins for which concentration does not change with cell volume 

(scaling), a protein slope value of 1 describes proteins for which concentrations increase 

proportionally to cell volume (super-scaling), and a protein slope value of −1 describes 

proteins that are perfectly diluted by cell growth such that their concentration is inversely 

proportional to cell volume (subscaling). The Pearson r value correlating concentration 

and histone H4 derived from single cells was correlated with the previously published 

protein slope values (Figure 1G). Having established that cell size influences variation 

in one single-cell proteomics data set, we next sought to examine the robustness of this 

result in a second data set. To do this, we repeated this analysis on a second data set 

generated using a different single-cell proteomic platform.5 Using SCoPE2, Specht et al. 

distinguished individual monocytes that were or were not differentiated into macrophages. 

Like the HeLa cells measured by Brunner et al. (Figure 1G), Pearson regression analysis 

of single monocyte and macrophage proteomes from Specht et al. produced r values, which 

significantly correlated with the protein slope values (Figures 1H and S3). Taken together, 

these correlations strongly support the hypothesis that variations in cell size measurably 

contribute to single-cell proteome variation.

Since single-cell proteomics measurements are noisy, we anticipate that there is significant 

noise in our estimate of cell size using only histone H4. We therefore sought to derive 

a more robust method for measuring the size-dependent proteome variation in single cell 

proteome data sets. To do this, we decided to use more than one reference protein to 

approximate a cell’s size. We selected a subset of reference proteins and reconstructed 

cell sizes based on a least-squared-error heuristic (Figure 2A and Table S3). Under this 

framework, the estimated cell size distribution is the one that most closely reproduces the 

set of measured protein slopes for this subset of proteins. Assuming that protein-to-protein 

noise is uncorrelated, using more than one reference protein reduces measurement noise. 

The reference proteins were chosen based on their (i) large absolute measured slope value 

and (ii) large median correlation coefficients with other reference proteins. These criteria 

ensure that the reference proteins encode meaningful variations from which a signal can be 

extracted.

Based on our single reference protein analysis in Figure 1, the scaling behavior of proteins 

is expected to be qualitatively conserved across cell types. Using the reconstructed cell 

size distribution and the single-cell proteome measurements, we compute single-cell slopes 
for each of the remaining proteins in the data set, which were well correlated with the 

previously measured slopes (Figure 2B). These results are qualitatively similar to the 

analysis shown in Figure 1, but quantitatively more robust due to the use of five reference 

proteins to estimate the cell size. Indeed, a smaller number of rulers yields larger variations 

in the estimated single-cell slopes and cell size distributions (Figure S4). The correlation 

between estimated and measured slopes does not vary significantly when more than five 

rulers are used (Figure S5).
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Having found that cell size contributes to single-cell proteome variation, we next sought to 

quantify the extent of this contribution to the total variation in the single-cell proteomics 

data. To explore this contribution, we first subtracted the estimated contribution of cell size 

to each protein concentration from our data. This resulted in a significant decrease in the 

covariance and correlation coefficient among a set of proteins whose concentrations varied 

with cell size (Figure 2C,D). To assess whether the estimated cell size distribution is the 

primary source of variance in the data set, we compared the first principal component 

coefficients with the imputed single-cell slopes (Figure 2E). The strong correlation 

demonstrates that the estimated slopes closely align with the direction of the maximum 

variance. Consistent with this observation, no correlation is observed with the second PC 

coefficients (Figure S6). Finally, the imputed cell size distribution allowed us to estimate the 

proportion of variance in the data set that is attributable to cell size (see the Methods section; 

Figure 2F). The variance due to cell size differences is comparable to the variance attributed 

to the first principal component, which sets the upper bound for the removable variance by 

a single linear transformation. While using histone H4 as a single reference protein does 

remove some variance in the data set, using more reference proteins increases the amount 

of variance that can be accounted for. We note that using protein slopes derived from the 

measurement of another cell type9 yields generally similar results (Figure S7). In contrast, 

using a set of randomly generated protein slopes does not remove any variance in the data 

set.

DISCUSSION

Our goal here was to test for effects of cell size in single-cell proteomics data. Ideally, we 

would have directly measured cell size and cell cycle phase (e.g., using DNA content or 

a FUCCI reporter) for each cell in a single-cell proteomics data set. However, since we 

currently do not have the ability to do this, we instead re-analyzed publicly available data 

sets. Because our only goal was to see whether the effect of the cell size is measurable, 

we used internal protein proxies for the cell size such as 1/histone or a set of “ruler” 

proteins. We chose these proxies because we knew they would reflect the cell size based 

on our previous work examining bulk populations of cells.9 The results presented here 

definitively show that cell size is important and must be considered when analyzing single-

cell proteomes. While our simple methods are sufficient to prove this overall concept, we 

anticipate that future researchers will choose to accurately measure the cell size prior to 

preparing cells for single-cell mass spectrometry using emerging technology platforms.3,4,6

To properly correct for the proteome effects of the cell size (i.e., DNA-to-cell volume 

ratio), both cell size and cell cycle information must be accounted for. This is because the 

larger cells in a proliferating population are typically in late S or G2 phase and have thus 

duplicated their genome. This confounding factor can be corrected for as long as cell cycle 

information is collected alongside the cell size measurement. By collecting both cell cycle 

and size information for each cell, we expect that proteome heterogeneity due to differences 

in cell size can be accounted for and subtracted from the data to better isolate other cell 

biological features of interest. Our attempts to perform such a normalization using internal 

protein proxies for size (e.g., 1/Histone) are confounded by the noisy nature of single-cell 
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proteomes. However, once accurate size and cell cycle normalization are performed, other 

biological differences between cells should become more apparent in single-cell proteomes.

While our data demonstrate that cell size is a major contributor to variation in single-cell 

proteomes extracted from cells of the same type, it is important to note that the relationship 

may be more complex when data sets contain very different types of cells, as was recently 

demonstrated in a melanoma cell line.4 Nevertheless, even in these complex assemblies of 

cells, we still anticipate there to be some size-dependent signal because several different cell 

lines exhibit similar size scaling across their proteomes.9,12 We also note that differences in 

ploidy across cell types may have a large effect on the proteome. For example, a comparison 

of the proteomes of 2N, 4N, and 8N cells revealed that they were highly similar despite the 

near-4-fold increase in cell size.9 Thus, what we refer to as size scaling is more accurately 

attributed to changes in the DNA-to-cell volume ratio.

In summary, we reanalyzed the proteome heterogeneity in single-cell data sets reported by 

two independent groups using different single-cell preparation and measurement platforms. 

In both cases, we found that differences in cell size substantially contribute to the variance 

in single-cell proteomes. Remarkably, the effects of cell size trended in agreement with a 

recent report of cell size-dependent changes to the proteome that were measured in bulk 

for different types of cells.9 Taken together, these analyses support the conclusion that 

differences in cell size will account for a significant amount of proteome heterogeneity 

in single cells. We therefore recommend accounting for differences in cell size in future 

analyses of single-cell proteomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Cell size contributes to variation in the proteomes of single cells. (A) Proteomes vary with 

cell size. For example, the amount of histone proteins is maintained in proportion to the 

genome so that histone concentrations are inversely proportional to the cell size in G1 

cells. The protein slope describes how the concentration of an individual protein scales 

with the cell size (Lanz et al.). Proteins with a slope of 0 maintain a constant cellular 

concentration regardless of cell volume (“scaling”). A slope value of 1 corresponds to an 

increase in concentration that is proportional to the increase in volume (“super-scaling”), 

and a slope of −1 corresponds to dilution (concentration ∼ 1/volume; “sub-scaling”). (B) 

Schematic illustrating how relative histone protein concentrations can be used as a proxy for 

the cell size in single cell proteomics data sets in which the cell size was not measured. (C) 

Quantile-quantile plot between the distribution of eigenvalues of the empirical covariance 

matrix and a sample of the Marcenko–Pastur distribution, which is the distribution expected 
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from uncorrelated, normally distributed random variables. Eigenvalues above the gray 

identity line indicate the presence of an underlying signal. (D) Principal component analysis 

(PCA) analysis of 70 single cell proteomes. Each dot represents the proteome of a G1 cell 

from Brunner et al. The first principal component is plotted against a proxy for the G1 

cell size (1/H4 Fraction). The fraction of the proteome represented by histone H4 is the H4 

intensity/summed intensity of all other proteins. (E and F) correlation between the increasing 

G1 cell size (1/H4 Fraction) and the relative concentration (i.e., protein intensity/summed 

intensity of all other proteins) of two proteins previously found to (E) subscale and (F) 

superscale with the cell size (Lanz et al.). (G and H) A Pearson correlation coefficient was 

calculated by regressing the relative concentration of each individual protein against a proxy 

for each cell’s size (1/H4 concentration), as exemplified in (E) and (F). The r value for each 

protein from the (G) Brunner et al. and (H) Specht et al. data sets is plotted against the 

previously measured protein slope value.9 Histone H4 was excluded from the plot. Blue dots 

are x-binned data and error bars represent the 99% confidence interval. The plot in (H) was 

filtered to display the most abundant proteins. Figure S3B depicts an unfiltered version of 

this analysis.
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Figure 2. 
Robust estimation of cell size used to determine the size-dependent variance in single-cell 

proteomics data. (A) Schematic illustrating the methodology to estimate cell size. We first 

select a small subset of reference proteins, like histone H4, whose concentrations were 

shown to be strongly size-dependent (Lanz et al.). Using these reference proteins and their 

corresponding protein slope values, we performed a least-squares regression to estimate the 

size of each single cell. (B) Having estimated the size of each cell, we then calculate a size 

slope for each protein in our single cell proteomics data sets (“Single-cell Slopes”). Plot 

depicts a comparison of slopes estimated from the single cell proteomics data and those 

measured previously.9 Orange dots denote reference proteins and blue dots with error bars 

denote x-binned values. (C and D) Comparison of protein concentration covariance and 

correlation in the initial data set (C) and after removing the estimated effect of cell size (D) 

for a set of 5 proteins with large absolute measured slopes. Removing the estimated effect of 
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the cell size reduces the covariance and the correlation coefficient between protein pairs. We 

illustrate this effect with a given protein pair. (E) Relationship between the estimated slopes 

and the coefficients of the first principal component. Both quantities are very close to each 

other, indicating the estimated slopes approximate the direction of maximum variance in the 

data set. (F) Amount of variance leftover after removing the first principal component (blue), 

the single cell slopes (orange), the effect of H4 only (green), and the estimated effect of the 

cell size from random slopes (red). The number of proteins included in the analysis (x-axis) 

was gradually increased based on protein absolute slopes. For example, if 50 proteins were 

included in the analysis, this set contains the 50 proteins with the highest absolute slopes. 

The maximum amount of removable variance is bounded by the first principal component 

(PC1 blue).
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