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We present BATH, a tool for highly sensitive annotation of
protein-coding DNA based on direct alignment of that DNA to a
database of protein sequences or profile hidden Markov models
(pHMMs). BATH is built on top of the HMMER3 code base, and
simplifies the annotation workflow for pHMM-based annota-
tion by providing a straightforward input interface and easy-to-
interpret output. BATH also introduces novel frameshift-aware
algorithms to detect frameshift-inducing nucleotide insertions
and deletions (indels). BATH matches the accuracy of HM-
MER3 for annotation of sequences containing no errors, and
produces superior accuracy to all tested tools for annotation of
sequences containing nucleotide indels. These results suggest
that BATH should be used when high annotation sensitivity is
required, particularly when frameshift errors are expected to
interrupt protein-coding regions, as is true with long read se-
quencing data and in the context of pseudogenes.
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Introduction
The process of annotating the protein-coding DNA within
sequenced genomes by comparison to a database of known
protein sequences is called translated search (1, 2). Label-
ing of genomic sequences by comparison to proteins is gen-
erally more sensitive than comparison to the DNA that en-
codes those proteins (DNA-to-DNA search), due to the addi-
tional information captured in the larger amino acid alphabet
and the ability to distinguish between synonymous and non-
synonymous substitutions (3, 4).

A common strategy in translated search is to translate ge-
nomic open reading frames (ORFs) into putative peptides
across all 6 frames, then to compare each sufficiently-long
peptide to a database of previously annotated protein se-
quences (5, 6). We will call this approach “standard” tran-
sition. The task of translating an ORF to the encoded
protein can be performed within the annotation tool (as in
tblastn (7)), or by a separate preprocessing tool that may ex-
tend the ORF selection process beyond simple length filtering
(such as a do novo gene prediction (8) or special handling of
short ORFs (9)).

Profile hidden Markov models. Recent years have seen
tremendous gains in the speed of sequence annotation, partic-
ularly with MMseqs2 (10) and DIAMOND (11), but state of
the art for maximum sensitivity continues to be observed by
using profile hidden Markov models (pHMMs (12, 13)) with

full Forward scores (see (10, 14) and Fig 3). These prob-
abilistic models of sequence homology yield substantially
higher sensitivity in sequence annotation (15), and serve as
the basis of a wide range of annotation pipelines (10, 16–
18) and sequence-family databases (19–21). Profile HMM
sensitivity gains are of paramount importance, particularly in
the context of microbial community datasets, where annota-
tion efforts often fail to identify large fractions (and in many
cases, the majority) of putative proteins (22–24).

The classic tool for pHMM-based sequence annotation,
HMMER3 (14), does not provide direct translated search
functionality. To perform a translated search using HM-
MER, the user must first produce a collection of ORFs, and
translate them into their encoded peptides. These candidate
peptides can then be compared to the user-provided protein
database using HMMER’s protein-protein search tools. Po-
sitional bookkeeping and E-value adjustment requires addi-
tional post-processing by the user.

Here, we introduce a new tool for translated pHMM
search, BATH, which fills the gap left by available tools.
BATH is built on top of the HMMER3 code base, and its core
functionality is to provide full HMMER3 sensitivity with
automatic management of 6-frame codon translation, posi-
tional bookkeeping, and E-value computation. Importantly,
BATH also explicitly models nucleotide insertions or dele-
tions (indels) that can introduce shifts in the reading frame of
a protein-coding region.

Frameshifts. A key challenge in translated search is the
presence in the genomic sequence of nucleotide indels that
lead to shifts in reading frame. These may represent er-
rors during sequencing (most commonly in homopolymer re-
gions), true mutations as in pseudogenes, or instances of pro-
grammed ribosomal frameshifting (25).

Frameshifts in protein-coding DNA lead peptide transla-
tion software using standard translation to predict fragmented
peptides, which in turn may reduce the ability to identify
a full-length protein, or even to annotate the protein at all.
Frameshifts due to sequencing error are of concern in the
context of modern long read sequencing, where indels re-
main a challenge (26, 27). This is particularly true for
metagenomic datasets, in which low read depth for low abun-
dance taxa (28, 29), or high population diversity as in viral
genomes (30), leaves little opportunity for error correction.
For example, Sheetlin et al (31) showed that the majority
of metagenomic reads from a polluted soil sample contain
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frameshifts.
The negative effect of frameshift errors on translated align-

ment has been a topic of interest for over 30 years (32, 33).
One way to overcome frameshift concerns is to employ a de
novo gene finding tool that models and corrects frameshift
mismatches (34, 35). An example of this approach is FragGe-
neScan (34), which corrects for frameshift errors while pre-
dicting ORFs in DNA sequence and is currently utilized in
the MGnify pipeline (36). In principle, by correcting se-
quencing errors prior to ORF calls, FragGeneScan should
enable annotation of some reads that are not annotated using
naive ORF calls. But if error correction is overly aggressive,
it can introduce new errors, causing other sequences to escape
annotation. Zhang and Sun (37) showed that this concern is
legitimate, and that FragGeneScan induces more errors than
it fixes, leading to reduced downstream sequence homology
sensitivity.

An alternative strategy is to perform homology search di-
rectly on the DNA, avoiding the calling of ORFs and ex-
plicitly modeling frameshifts. In effect, this uses homology
to guide ORF prediction, which in turn leads to better ho-
mology detection. We refer to this strategy as “frameshift-
aware” (FA) translated alignment. Instead of translating the
target DNA into proteins and aligning amino acids to amino
acids, this approach computes an alignment by comparing
the amino acids of the query directly to the target DNA, as-
signing scores for alignment between an amino acid and a
codon based on the scoring model’s value for the amino acid
encoded by that codon. Under this framework, frameshifts
can be addressed with the addition of what Pearson et al (38)
called “quasicodons”. Rather than limiting aligned codons
to the standard length of three nucleotides, Pearson’s quasi-
codons could be 2 or 4 nucleotides long; other implemen-
tations (39) of this concept also include quasi-codons with
lengths 1 and 5 nucleotides.

Variations on the FA approach have been implemented
within both scoring-matrix based tools LAST (40) and DI-
AMOND (11), as well as by HMM-based tools (37, 39, 41).
Of these, only DIAMOND and LAST produce E-value com-
putations to enable evaluation of the statistical significance
of their annotations, and the HMM-based approaches are all
orders of magnitude slower than HMMER3. None of these
methods provides full profile HMM sensitivity.

To fill this hole in the landscape of annotation software,
we developed BATH. The BATH pipeline utilizes the fast fil-
tering and accurate E-value estimates of HMMER3 to per-
form a combination of standard and frameshift-aware trans-
lation that maximizes the advantages of each approach while
minimizing the disadvantages. BATH’s software package in-
cludes the alignment search tool and several helper tools for
creating and manipulating pHMM files and is available on
GitHub at https://github.com/TravisWheelerLab/BATH.

Methods
BATH is implemented on top of the HMMER3 code base,
merging aspects of hmmsearch and nhmmer pipelines with
modifications specific to translated (and frameshift-aware)

search. The primary tool is bathsearch, which requires two
inputs – a protein query and a DNA target. The DNA tar-
get is simply a sequence file. The query may be provided as
a BATH-formatted pHMM file containing one or more pH-
MMs, either created from a file containing one or more mul-
tiple sequence alignments (MSAs) using the tool bathbuild,
or converted from a HMMER-formatted pHMM file using
the tool bathconvert. Alternatively, the user can simply sup-
ply a file containing MSAs or independent sequences as the
query input to bathsearch, which will then build the requisite
model on the fly.

BATH then implements a HMMER3-like accelerated anal-
ysis pipeline (14):

• Identify ORFs within the target DNA, and convert
them to peptides using standard translation. By default,
all 6 frames are considered, and peptides of length
≥ 20 are retained.

• Apply HMMER3’s MSV filter to comparisons be-
tween target peptides and the set of query proteins.
This computes an un-gapped alignment between each
query-target pair, and retains only those pairs with a
score corresponding to a P-value of 0.02 (theoretically
removing 98% of unrelated sequence pairings from
further consideration).

• Apply HMMER3’s Viterbi filter to remaining peptide-
to-protein pairs. This computes a maximum-scoring
gapped alignment for each query-target pair, then re-
tains only those pairs with a score corresponding to a
P-value of 0.001 (theoretically removing 99.9% of un-
related sequence pairings from further consideration).

• For each unfiltered match from the Viterbi stage, select
a window of genomic DNA around the surviving pep-
tide. The length L of the window is such that only 1e-7
of sequences emitted by the query pHMM are expected
to exceed length L (as in nhmmer (17)).

• Compute a protein-to-protein Forward score, following
the implementation in HMMER3’s hmmsearch For-
ward filter implementation. The score of the resulting
alignment is converted to a P-value (see below), and
this P-value is captured as F0.

• If F0 > 1e−5 and F1 > 1e−5, then filter the pair.

• For any unfiltered pair, if F0 ≤ F1, then follow
a non-frameshifted (HMMER3-style) post-processing
pipeline to compute protein-protein alignment bound-
aries, alignments, E-values, etc. Otherwise, follow
an FA variant of each post-processing step, in which
amino acid positions of the query are aligned to (quasi-
)codons in the target.

• Compute E-values, produce translated search output
that provides necessary bookkeeping information.
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Fig. 1. Comparison between the core model states of (A) a protein pHMM with each match state emitting a single amino acid (green), (B) a non-frameshift aware (non-FA)
codon pHMM with each match state emitting a 3-nucleotide codon (red), and (C) a frameshift aware (FA) codon pHMM with each match state emitting a quasi-codon with
length ranging from 1 to 5 (yellow). The protein model (A) is representative of the one used in HMMER3. The (non-FA) codon model is only an intermediary step in converting
the protein model into the FA codon model in (C) which is the pHMM used by bathsearch’s FA algorithms.
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(A) Standard DP Matrix (B) FA translated DP Matrix

Fig. 2. Comparison of toy DP matrices for (A) a protein alignment and (B) a frameshift-aware (FA) codon alignment. Profile HMM alignments are made up of pairings between
states in the query model and residues in the target. For a protein-to-protein alignment (A), there are only three types of pairings: a match state to an amino acid (shown as a
green circle) a delete state to a gap (filled grey circle), or an insert state to an amino acid (open grey circle). A codon alignment (B) has an analogous set of pairings: a match
state to a codon (shown as three pink circles), a delete state to a gap (three filled grey circles), or an insert state to a codon (three open gray circles). BATH’s FA alignment
also includes pairings between match states and quasi-codons (yellow circles and triangles for quasi-codons with insertions or blue filled and open circles for quasi-codons
with deletions).

Frameshift-aware model. The protein pHMM shown in
Figure 1A is based on the model used in HMMER3 (14). A
protein pHMM consists of transition probabilities between

states (shown as arrows), emission probabilities for each
amino acid within the Match (M) states (single green circles),
and emission probabilities for each amino acid in the Insert
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states (a single grey circle). To understand how bathsearch
converts a protein pHMM to an FA codon pHMM it is help-
ful to consider the construction of an intermediate non-FA
codon model 1B. The emission probability for a codon in a
match state is set to that of its encoded amino acid, under a
given codon translation table. This effectively collapses all
synonymous codons down to a single class, yielding proba-
bilities that are equivalent to the protein pHMM. In the codon
model, the Insert (I) states are altered so that they insert three
nucleotides instead of one amino acid, but the transition prob-
abilities that govern indel likelihood do not change.

To convert the codon pHMM to a FA codon pHMM (Fig-
ure 1C) additional emission probabilities need to be deter-
mined for both quasi-codons and stop codons. To identify
stop codons that may arise as the result of nucleotide sub-
stitutions, bathsearch precomputes a per-state probability of
emitting each stop codon s: for match state Mi, and for each
s, the codon c with the highest probability at Mi is identified
among those that are at most one substitution from s, and
the probability of s at Mi is set to that of c, multiplied by a
stop-codon penalty (default 0.01).

Bathsearch allows quasi-codons of length 1, 2, 4, & 5 and
assigns their emission probabilities using a similar proce-
dure to the one it uses for stop codons. For each possible
quasi-codon q, bathsearch considers the full set of codons C
that could be made from q by either removing the extra nu-
cleotides or adding back in the missing ones. From this set,
bathsearch assigns q to the codon c ∈ C (and to its amino
acid translation a) with the highest emission probability at
each Mi state, and sets the emission probability of q to that
of its assigned codon (which is the same as that of a from the
original protein pHMM) multiplied by a frameshift penalty
(default 0.01 for length 2 or 4 quasi-codons and 0.005 for
length 1 or 5 quasi-codons). The full set of emissions proba-
bilities is then normalized (all codon emissions probabilities
(except for stop codon) are multiplied by 1 minus the sum of
all stop codon and quasi-codon penalties.

For both stop codons and quasi-codons, the final emis-
sions probabilities are dominated by the penalties, but small
differences caused by the mapped amino acid probabilities
support reasonable choices of frameshift placement in case
of ambiguity. The penalties, and the normalization of the
non-penalized codons, can also be thought of as another set
of transition probabilities inside each match state, as illus-
trated in the magnified M5 state of Figure 1C. These transi-
tion probabilities serve to model the more random distribu-
tion of mutations that arise from sequencing errors or relaxed
selective pressures, whereas the amino acid derived emis-
sions probabilities and the unchanged transition probabilities
between the states maintain the specific distribution of muta-
tions seen within the query family and among related protein
sequences at large. The FA codon model also differs from
the HMMER3 protein model in the so-called “special states”
outside the core model, see Supplementary Figure S1 for de-
tails.

Avoiding redundant computation. Figure 2 shows a sim-
plified representation of the alignment paths available to a

protein alignment model and the FA codon model. The cor-
responding dynamic programming recurrence for the FA For-
ward recurrence contains more than 3.6x the calculations
of the standard protein Forward recurrence due to the addi-
tional transition options and large number of new potential
emissions. Straightforward implementation leads to exces-
sive memory requirements and run time, as reported with
the heuristic implementation in (37). This is also true of
algorithms downstream in the pipeline (e.g. Backward and
posterior decoding). BATH reduces the impact of this extra
complexity by only using the full set of FA algorithms on
target-query pairs that (according to the P-value comparison)
are more probable under an FA model of homology. Even so,
straightforward implementation of the full FA model is slow.
Fortunately, many of the expensive calculations are repeated
identically in consecutive passes through the recurrence, so
that it is possible to amortize the cost of the calculation by
memoizing values after their first calculation, and re-using
those values until they are no longer needed (see pseudocode
in Supplementary Figure S2). This reduces the number of
calculations to just 1.6x that of the standard protein pHMM
Forward recurrence.

Post-processing and E-value calculation. Once the
target-query pair has been fully analyzed, bathsearch reports
a final alignment, score, and E-value for each match that
passes a user-provided E-value cutoff. Each bathsearch align-
ment shows the original target DNA split into (quasi-)codons,
the amino acid translation of those codons, and the consen-
sus sequence of the query protein pHMM. The final score S
is computed in a second run of the appropriate Forward al-
gorithm after alignment boundaries have been identified (re-
moving non-homologous prefix and suffix regions of the tar-
get). In computing the P-value of a hit, scores are assumed
to follow an exponential distribution, and parameters of the
exponential are fit as described in (16). In HMMER, an E-
value (indicating the expected number of false positives at
a threshold of score S) is computed as a Bonferroni correc-
tion of the P-value, multiplying the P-value by the number of
tested pairs for a given query. When aligning to long chromo-
somes, there are many overlapping candidates for alignment;
in HMMER3’s DNA-to-DNA search tool, nhmmer (17), the
number of tested pairs is determined by first identifying value
L such that only 1e-7 sequences emitted by the query model
will exceed length L, then dividing the length of the target
DNA (x2 if searching both strands) by L. BATH does essen-
tially the same thing, except it multiplies the length of the
target DNA an additional x3 to count each possible transla-
tion frame.

Construction of benchmark. To evaluate BATH in the
context of other tools, we developed a benchmark that is
derivative of the profmark benchmark used to evaluate HM-
MER in (14). The new benchmark, which we call transmark,
was initiated with all the protein seed alignments from Pfam
v.27 (42). Each protein sequence in those alignments was
mapped to the encoding DNA using the UniProtKB IDMAP-
PING resource (43). As a result, transmark contains both the
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protein and the DNA multiple sequence alignments (MSAs)
for the Pfam families. Though several dozen individual se-
quences could not be mapped to their source DNA (appar-
ently due to naming error or a mismatch in notated position),
DNA source sequences could be located for at least one se-
quence in 14,724 of the 14,831 protein families in Pfam v.27.

Since most translated alignment software, including bath-
search, assumes a single NCBI codon translation Table (44)
for all sequences in the target database, we eliminated all
the DNA sequences that could not be correctly translated
using the standard translation table (i.e. the translation did
not match the Pfam protein sequence), leaving 14,569 fami-
lies with at least on representative sequence. Each remaining
family was then divided into a test set and a train set such
that no sequence in the test set was more than 60% identi-
cal to any sequence in the train set (at the DNA level), no
sequence in the test set was more than 70% identical to any
other sequence in the test set, and both sets had at least ten
DNA sequences. A final list of 2,673 families (202,837 test
sequences and 97,497 training sequences) could be split to
meet these criteria; these form the set of families and se-
quences used to construct a transmark benchmark.

The transmark benchmarks used here were built by select-
ing 1,500 of the 2,673 families at random and limiting each of
those families to a maximum of 30 train sequences and 20 test
sequences. The train sets were stored as MSAs (both as DNA
and as proteins) to be used as queries, and the test set DNA
sequences were embedded into 10 pseudo-chromosomes, of
length 100MB each, to be used as targets. These pseudo-
chromosomes were simulated using a 15-state HMM that was
trained on real genomic sequences selected from archaeal,
bacterial, and eukaryotic genomes, as in (17, 45).

In addition to 28,369 embedded test sequences, each trans-
mark benchmark used here also embeds an additional set of
50,000 “decoy” protein-coding open reading frames into the
pseudo-chromosomes. Each decoy was produced by sam-
pling protein sequences from Pfam v.27, shuffling the amino
acids to eliminate any true homology, and then using a codon
lookup table to reverse translate the amino acids into DNA.

For frameshift tests, transmark benchmarks were also cre-
ated with simulated indels in the embedded test sequences.
Nucleotide indels were added to each test sequence at a pa-
rameterized frequency, prior to embedding into the pseudo-
chromosomes. For example, at test-specific frequency of
0.02, each nucleotide position in the test sequence will serve
as the starting point of an indel with 2% probability, with
an equal probability of being an insertion or a deletion. An
initiated indel will extend with 50%. Thus a r = 2% indel
rate would result in an indel roughly every 17 codons, with
∼85.7% of those indels being not a multiple of 3 and there-
fore resulting in a frameshift.

Results
To investigate the utility of BATH, we evaluated it along-
side other tools for annotating protein-coding DNA. Evalu-
ations include measurement of sensitivity when seeking true
protein-coding DNA embedded within a simulated ‘genomic’

background, assessment of sensitivity in the presence of sim-
ulated frameshifts, analysis of alignment coverage and risk
of alignment over-extension, and application to real bacterial
sequence containing pseudogenized proteins.

Benchmark overview. Though most evaluated tools follow
a generally similar strategy involving sequence alignment of
protein query to target genomic DNA, differences in imple-
mentation details lead to differences in performance, both
speed and accuracy. All evaluated tools accelerate search
by quickly filtering away regions deemed unlikely to con-
tain homology, leaving only potentially homologous regions,
called seeds. These seed-selection strategies may be overly
restrictive, limiting the final set of matches while achiev-
ing their aim of increasing speed. Meanwhile, some of
the evaluated tools are designed to produce a profile (MM-
seqs2) or profile hidden Markov models (pHMMs: nhmmer,
BATH) based on the available per-family multiple sequence
alignments (MSAs). Profiles and pHMMs capture position-
specific character frequency, and provide expected gains in
sensitivity. Additionally, different frameshift models (or lack
thereof) will yield different performance on sequences con-
taining frameshifts, and other implementation details may
impact the length of identified matches. We developed a se-
ries of benchmarks to explore these outcomes.

The first simulated benchmark for our analyses, trans-
mark00 was built as described in the Methods section as a
translated search benchmark. It contains 28,369 sequences
in the target set and 30,979 sequences in the query set from
1,500 Pfam families. The target DNA sequences, along
with 50,000 decoy ORFs, were embedded in simulated chro-
mosomes; insertion positions were recorded, and query se-
quences were retained as MSAs in both DNA and amino acid
alphabets. The ‘00’ in transmark00 alludes to the fact that
the simulated frameshift insertion rate is 0% (there are no in-
jected indels.

Some of the evaluated tools (BATH, MMseqs2, and nhm-
mer) are designed to produce profiles/pHMMs based on
the available per-family MSAs, and then to perform se-
quence annotation with those profiles/pHMMs; other tools
(tblastn, LAST, and DIAMOND) implement only straight-
forward sequence-to-sequence annotation. To accommodate
these differences we created two variants of the transmark00
benchmark. For the first variant, each tool is given the full
contingent of sequences from each family as query input;
tools that can produce and use a profile or pHMM are allowed
to do so, while other tools perform search with each fam-
ily member in turn, adjudicating between competing matches
based on best E-value. The one-search-per-sequence strategy
is referred to as family pairwise search (46). To explore per-
formance when per-family information is limited, a variant of
the same analysis was performed using only a single query
sequence per protein family (using the consensus sequence
derived from the query MSAs). These variants of trans-
mark00, with the full set of each family’s query sequences or
with just a single consensus sequence per family, are called
transmark00-all and transmark00-cons respectively.
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Tools. Analysis includes tools that are likely to be applied
in current analytical pipelines for sensitive annotation of
protein-coding DNA. We omit read mappers (47) as these
are designed for small levels of divergence, and also ignore
older tools (37, 38, 41) that are very slow, under-maintained,
and are outperformed by other presented tools in our expe-
rience. For all tools, default parameters were used except
where noted. E-value thresholds were set to 100 to enable
analysis of tradeoffs between recall and false discovery.
We include two variants of our tool:

• BATH is capable of utilizing a provided protein MSA
to produce a pHMM and uses that pHMM to label tar-
get DNA sequence. It may alternatively label DNA
with a single protein sequence. BATH implements a
frameshift model.

• BATH --nofs is identical to BATH, except that the
frameshift model is disabled. The results from this
variant are essentially the same as those produced by
translating the target genomic sequence into all pep-
tides of length ≥ 20, then running HMMER3’s hmm-
search or phmmer tool (except that BATH provides po-
sitional and E-value bookkeeping).

The following tools also perform protein-to-DNA alignment.
The final three tools are all faster than tblastn, and self-report
BLAST-level sensitivity (at least in sensitive settings):

• tblastn is the relevant translated search tool from
BLAST (7), and performs sequence-to-sequence com-
parison. This approach is not frameshift aware.

• LAST (31) produces frameshift-aware alignments
based on sequence-to-sequence comparison. As in-
structed in the userguide, we used last-train to create a
separate codon and frameshift scoring scheme for each
benchmark.

• DIAMOND (11) produces frameshift-aware align-
ments based on sequence-to-sequence protein-to-DNA
comparison. Because our primary focus is on accuracy
(rather than speed), DIAMOND was run with ‘-F 15
–ultra-sensitive’.

• MMseqs2 (10) can produce a profile from a family
MSA. This enables family-to-sequence alignment with
family-specific per-position scores (though note that
MMseqs2 does not implement the Forward algorithm
that provides much of the sensitivity seen in HM-
MER3 (14)). MMseqs2 is not frameshift aware.

Finally, we included one tool for DNA-to-DNA alignment,
to evaluate the accuracy of searching protein-coding DNA
with the DNA that encodes query proteins as opposed to the
translated alignment approaches used by the other tools.

• nhmmer (17) performs DNA-to-DNA alignment, and
can construct a pHMM from a family MSA if one is
available. In general, this is expected to perform with
less sensitivity than a method based on amino-acid to

codon alignment, but it will also be less impacted by
frameshift-inducing indels, since there is no ‘frame’ to
shift at the nucleotide level. Other DNA-to-DNA tools
were evaluated, but are omitted for clarity since nhm-
mer was the most sensitive of the group (in agreement
with (17, 48)).

Recovery of protein-coding DNA planted in simulated
genomes. Using the transmark00 benchmarks (all and cons)
described above, we evaluated each tool’s ability to recover
true positives while avoiding false positives. A true positive
is defined as a hit that covers > 50% of an embedded target
sequence that belongs to the same family as the query. A false
positive is defined as a hit where > 50% of the alignment is
to either an embedded decoy or the simulated chromosome.
Hits are ignored when > 50% of the alignment is between a
query from one family and an embedded test sequence from
a different family, as it is not possible to discern whether true
homology exists between these two instances.

Figure 3 shows that BATH (using pHMM search) identifies
a larger fraction of the planted family instances, at any false
positive rate, than other tools. In principle, the frameshift
model of BATH could cause an increase in the score of de-
coys, leading to an increase in false positives; in practice, this
seems not to be a concern, with the default (frameshift aware)
variant producing nearly identical results to the --nofs variant.
Before the first false positive, MMseqs2 (pHMM) and tblastn
(family pairwise) show similar recall, but tblastn shows addi-
tional sensitivity gain with minor increases in false discov-
ery rate. Other tools demonstrate poorer sensitivity. Despite
reports of blast-like sensitivity, DIAMOND (ultrasensitive)
shows much lower sensitivity in our test; surprisingly, sen-
sitivity on this frameshift-free benchmark is improved when
DIAMOND’s frameshift mode (-F) is enabled – we suspect
that this is because that mode leads to slightly different pa-
rameterization of the early filter stages, which appear to be
responsible for substantial reduction in sensitivity. Notably,
despite ignorance of the protein-coding signal of the query,
nhmmer shows sensitivity that is competitive with some of
the translated alignment tools.

The results in Figure 3B for transmark00-cons show that
BATH still outperforms the other tools even when there is
only a single sequence available per query family. The rel-
ative results are similar to those seen in family pairwise
search. In this single-sequence search paradigm, perfor-
mance of MMseqs2 and LAST improves relative to tblastn,
while nhmmer and DIAMOND see a relative degradation in
performance.

The analysis shown here diverges from a recent trend of
reporting recall before the first false positive (RBFFP, as
in (10, 11)). We believe that reporting only RBFFP provides
only partial information, as it gives no insight into the trade-
off between sensitivity and false positive rates among hits in
the marginal range. Furthermore, we note that the score of
the first false positive is expected to grow as the number of
tested decoy sequences increases. The use of large decoy
sets can therefore obscure sensitivity differences in the range
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Fig. 3. ROC plots showing sensitivity (true positives) vs specificity (false positives) for all tested tools on a translated search benchmark using either (A) 10 - 30 query
sequences per family (B) a single query sequence per family. These benchmarks contain no simulated frameshifts.

Run Times (hours)

Query type BATH BATH
(--nofs) tblastn MMseqs2 nhmmer LAST DIAMOND

family pairwise 4.34 1.69 2.31 0.05 2.20 0.04 0.22
consensus sequence 3.54 1.64 0.06 0.04 2.08 0.03 0.13

Table 1. Run times (in hours) for all tools run on the transmark benchmark using both the family pairwise and consensus sequence query formats. All tests were run with 16
threads on a system with a 94-core Penguin Altus XE2242 @ 2.4GHz, and 512 GB RAM.

of moderate but important E-values. Even so, the measure is
a convenient summary statistic that enables the display of the
distribution of recall values across a set of queries; we present
such an analysis in Supplementary Figure S3, in which BATH
shows substantially greater mean and median (per query fam-
ily) RBFFP. Another deviation from recent trends is that our
benchmark does not make use of reversed protein sequences;
this is because strings contain approximate palindromes at
surprisingly high frequency, resulting in inappropriately high
estimates of false discovery (49).

Our analysis is not primarily focused on speed, and the
tests are not designed to explore relative performance on mas-
sive scale search, but a simple run time analysis (Table 1)
shows that BATH’s frameshift model does not dramatically
increase search run time relative to other methods imple-
menting the full Forward algorithm on pHMMS (BATH --
nofs & nhmmer). The table also provides a reminder that
the relative sensitivity losses of MMseqs2, LAST, and DIA-
MOND are offset by significant gains in speed, so that re-
searchers primarily interested in speed should consider these
as preferable options (though note that the speed of DIA-
MOND is under-represented in this analysis, since we used
DIAMOND’s slowest settings).

Recovery of protein-coding DNA containing simulated
frameshifts. Insertions and deletions (indels), whether due
to sequencing error or true biological processes, can interrupt
open reading frames in protein-coding DNA. The resulting
frameshifts can reduce search sensitivity by depriving align-
ment tools of full-length peptide-coding sequences for align-

ment and annotation. To explore the impact of frameshift
frequency, and the ability of BATH’s frameshift model to re-
cover lost signal, we created three more transmark bench-
marks with various rates of simulated frameshifts; trans-
mark01 has a 1% indel rate, transmark02 has a 2% indel rate,
and transmark05 has a 5% indel rate. For more information
on transmark indel rates see Methods. All of these bench-
marks use the full set of query sequences (rather than a single
consensus sequence).

Figure 4 mirrors the accuracy analysis of the previous
section, for indel rates r ∈ {1%,2%,5%}. Unsurprisingly,
tools with frameshift models (BATH, LAST, DIAMOND)
see smaller degradation in performance than do the other
translated search tools. BATH results demonstrate the ad-
vantage of combining pHMMs with a frameshift model. As
expected, nhmmer shows only modest sensitivity loss, since
it is only comparing sequences at the nucleotide level.

We also analyzed the distribution across query families of
recall before the first false positive (RBFFP), as shown in
Supplementary Figure S3. These results indicate that some
families experience total loss in sensitivity, but that in gen-
eral, BATH produces substantially greater mean and median
(per query family) recall than do other tools.

Coverage and Overextension. The above assessments are
measures of general recall: was a planted sequence identified,
or not? Another perspective on annotation accuracy is eval-
uation of the extent to which the annotation accurately iden-
tifies the full length of the planted sequence – this is partic-
ularly important when target sequences are likely to be iden-
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Fig. 4. ROC plots showing sensitivity (true positives) vs specificity (false positives) for all tested tools on three translated search benchmarks with varying levels of simulated
frameshift indels. (A) transmark01 has a 1% indel rate; (B) transmark02 has a 2% indel rate; (C) transmark05 has a 5% indel rate.

tified as fragments, as is expected for sequences containing
frameshifting indels. We measure this accuracy in two ways:
coverage and overextension.

To measure coverage, we identified the set of planted tar-
get sequences that were matched with E-value 1e-5 or better
by all tested tools (restricting to this common set ensures that
a tool is not penalized for finding a partial hit that other tools
do not find at all). We computed the fraction of nucleotides
in these targets that are captured in alignments produced
by each tool. Table 2 presents coverage values for bench-
marks contaiing 0% and 2% simulated frameshifts. In the
frameshift-free test, transmark00-all, protein-to-DNA tools
produce superior coverage to the DNA-to-DNA tool (nhm-
mer), and BATH’s coverage is slightly better than the oth-
ers. In the frameshifted variant (transmark02, which also
provides tools with all query sequences for a family), the
tools with no frameshift model (tblastn, MMseqs2, BATH --
nofs) show reduced coverage due to target fragmentation. In
the case of frameshifted target sequences, Table 3 shows that
frameshift-aware tools (and codon-oblivious nhmmer) gener-
ally match the target sequence with a single alignment, while

other tools are forced to match targets with multiple shorter
fragmented matches. The summary interpretation of these re-
sults, along with those in the previous section, is that BATH
find more hits (Figures 3 and 4) and also produces better cov-
erage of the hits that it finds.

Increased coverage could be the product of a simple
tendency to generate long alignments. A risk created by
such a tendency is that alignments may extend beyond
the bounds of the true instance and into flanking non-
homologous sequence, a problem known as ‘homologous
overextension’ (48, 50, 51). To assess this risk, we created
an overextension variant of the transmark00-all and trans-
mark02 benchmarks. In these variants (transmark00-over
and transmark02-over), only the middle 50% of each family
instance was embedded into the simulated DNA background.
The result is that each full-length query match should pro-
duce an alignment to a half-length planted sequence, and any
extension beyond those boundaries is a case of overexten-
sion. As in the coverage evaluation, we identified the set of
planted target sequences that were matched with E-value 1e-
5 or better by all tested tools, then computed measures of
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Average Alignment Coverage on Shared True Positives

Benchmark BATH BATH
--nofs tblastn MMseqs2 nhmmer LAST DIAMOND

transmark00 95.2% 95.2% 93.9% 94.9% 81.3% 88.6% 94.7%
transmark02 91.7% 63.5% 78.3% 61.9% 79.9% 85.6% 89.8%

Table 2. For two of the transmark benchmarks (transmark00-all which has no simulated frameshifts and transmark02 which has a 2% indel rate) we calculated average
alignment coverage for a set of shared true positives (the set of test sequences correctly annotated by all tools). For transmark00-all the set includes 10,582 hits and for
transmark02 the set includes 6,620 hits. For each sequence in these sets, we compared the true embedding coordinates of the test sequence to the alignment coordinates
reported by each tool. To calculate alignment coverage, we record the percentage of all the test sequence nucleotides that are included in a true positive alignment. If there is
more than one true positive alignment per tool, we combine the coverage of those alignments, being sure to only count each nucleotide once, to get the maximum coverage
across all alignments.

Average Number of Alignments Used to Achieve Coverage

Benchmark BATH BATH
--nofs tblastn MMseqs2 nhmmer LAST DIAMOND

transmark00 1.0 1.0 1.0 1.0 1.1 1.0 1.0
transmark02 1.0 2.1 2.1 2.1 1.1 1.3 1.0

Table 3. The average number of alignments needed for each tool to get the coverage is seen in Table 2.

Percent of Shared True Positives with Overextended Alignments longer than 3 nucleotides

Benchmark BATH BATH
--nofs tblastn MMseqs2 nhmmer LAST DIAMOND

transmark00-over 53.3% 53.3% 51.8% 33.6% 22.5% 28.1% 49.8%
transmark02-over 56.8% 28.7% 39.0% 18.6% 18.7% 38.6% 43.0%

Table 4. For each benchmark we first found the set of shared true positives found by all tools - 7678 hits for transmark00-over and 4115 hits for transmark02-over. From this
set, we calculated the percent hits that had overextension longer than 3 nucleotides.

Average Length of Overextensions (longer than 3 nucleotides) on Shared True Positives

Benchmark BATH BATH
--nofs tblastn MMseqs2 nhmmer LAST DIAMOND

transmark00-over 14.1 14.1 28.5 17.9 13.2 13.2 30.2
transmark02-over 25.6 14.5 28.5 18.9 13.3 20.7 33.5

Table 5. The average length of all overextensions that were at least 4 nucleotides long, taken from the set of shared true positives.

overextension on those hits.
Table 4 shows, for each tool, the percent of hits for which

the alignment extends at least 4 nucleotides (more than a sin-
gle amino acid) beyond the bounds of the true planted in-
stance. Table 5 shows the mean length of these overexten-
sions. Coverage and overextension are expected to correlate
since a tool with low coverage will often fail to reach the end
of a matched instance (incomplete coverage), and overexten-
sion is only possible after true boundaries have been reached.
In line with this expectation, BATH shows a slightly elevated
frequency of overextension on transmark00-over, though the
average length of BATH’s overextensions is less than half that
of the average overextension length of both tblastn and DIA-
MOND. BATH produces longer, and slightly more frequent,
overextension on transmark02-over than on transmark00-
over. This is due to the BATH opting to use frameshift-aware
translation over standard translation far more frequently for
transmark02-over than for transmark00-over.

Accuracy of E-values. Sequence annotation depends on ac-
curate estimation of the significance of an identified match,
usually provided by alignment tools with an E-value. For
search of a given query against a given target genome G, pro-
ducing an alignment with score S, the E-value of an align-
ment gives the number of alignments expected to meet or

exceed the score S if G consisted exclusively of unrelated
(random) sequences. Empirical studies demonstrate that
HMMER3 E-value predictions are reasonably accurate for
search against randomly generated sequences of nucleotides
or amino acids (16), but these analyses do not extend to a
frameshift model. To evaluate E-value reliability, we created
a target set by generating 10 million random amino acid se-
quences of length 400 and then reverse-translated them into
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Fig. 5. Expected and actual occurrence of E-values for BATH when running 150 ran-
domly selected Pfam pHMMs against 10M randomly generated target sequences.
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DNA sequences of length 1,200, ensuring each of these non-
homogous decoy sequences has at least one full-length open
reading frame. For the query set, we randomly selected 150
pHMMs from Pfam. We then searched these targets and
queries using BATH’s three modes: --nofs which uses only
standard translation, --fsonly which uses only frameshift-
aware translation, and default BATH which lets the algorithm
choose which form of translation to use.

Figure 5 demonstrates that estimated E-values are reason-
ably accurate for all three modes. The black line shows
the expected occurrence of E-values less than or equal to
the value of x-axis, when aligning to non-homologous se-
quence. The three red lines show the actual occurrence of
those E-values from BATH’s three modes. The small differ-
ence seen between the lines from BATH --nofs (dotted line)
and BATH --fsonly (dashed line) is explained by the impact
of stop codons on the length of hits. While each of the ran-
dom target sequences was generated to have at least one full-
length ORF (frame 1), stop codons are often present in the
other frames (frames 2 through 6). Since the standard trans-
lation used by --nofs cannot align stop codons, alignments to
frames 2 to 6 will often be abbreviated compared to the same
alignment from --fsonly. E-value parameterization for BATH
models only the chance that a given random protein sequence
will reach a target score; it does not model the chance that
random DNA sequence will contain sufficiently-long ORF
in all frames to produce an appropriately long random pro-
tein. When BATH is allowed to incorporate frameshifts, it
overcomes the modelling challenges created by this data frag-
mentation, and can properly model P-values produced though
both the standard and frameshift-aware Forward implementa-
tions.

Annotation of pseudogenes – a case study. Pseudo-
genes are segments of DNA that resemble functional genes
but have been rendered non-functional due to the accumula-
tion of mutations (including frameshift inducing indels), and
usually result from gene duplication or reverse transcription
of an mRNA transcript.

Here, we explore the utility of BATH in annotating pseu-
dogenes within the genomes of bacterial strains of Canditatus
hodgkinia, which live as obligate endosymbionts in the cells
of periodical cicadas (Magicicada) (53). The genome insta-
bility common in endosymbionts, combined with the unusual
life cycle of Magicicada, has led to extreme lineage split-
ting among the hodgkinia in all Magicicada species. Whereas
the ancestral form of Canditatus hodgkinia had only one cir-
cular chromosome, as many as 42 unique hodgkinia chro-
mosomes have been found in a single Magicicada species.
Large-scale deletions and pseudogenization have reduced
genome annotation coverage from nearly 100% for single
chromosome hodgkinia in other cicada species, to just 25.3%
(20.2% protein-coding and 5.1% RNAs) across the hodgkinia
chromosomes of Magicicadas (53, 54). The remaining se-
quence landscape presents a useful challenge for a tool such
as BATH, since essentially all unannotated sequence is ex-
pected to be made up of pseudogenes resulting from gene
loss enabled by lineage splitting and community complemen-

tation (54).
We searched 231 Canditatus hodgkinia chromosomes

identified in seven Magicicada species using a curated set of
165 query protein families from hodgkinia in several other
cicada species [Matt Campbell, personal comm.]. Annota-
tion was performed with tblastn, BATH (default), and BATH
--nofs. Table 6 shows the total coverage of those genomes
(percent of all nucleotides involved in some annotation), pro-
duced by each tool, along with the coverage due to manual
curation, as captured in GenBank. BATH (default) demon-
strates clear gains in coverage, particularly in full-length hits
(hits that cover at least 66% of the query length). An exam-
ple of one of the Canditatus hodgkinia chromosomes (from
the species Magicicada tredecim) is shown in Figure 6A, and
provides examples of both novel matches (not found in Gen-
Bank or by tblastn) and improved continuity of matches that
were fragmented by tblastn and BATH --nofs.

Figure 6B shows a specific example of a frameshifted
alignment produced by BATH, along with the abbreviated
annotations from tblastn and BATH --nofs (corresponding to
the annotation indicated by the arrow in the upper left sec-
tion of Figure 6A). By aligning through frameshifts, BATH
is able to join high-scoring regions in different frames into
a single alignment. The BATH --nofs alignment is shorter
than tblastn’s because tblastn’s standard translation allows for
alignment to stop codons which BATH (--nofs) does not.

False Frameshifts – a case study. One concern with the
use of frameshift-aware translation is the potential that a tool
will infer frameshifts that are not truly present in the se-
quence. We examined the risk of such “false frameshifts”
by computing the rate at which BATH calls frameshifts in
the true positives from transmark00-all and transmark00-
cons. Of all the true positives found in transmark00-all
fewer than 0.2% had frameshifts in their alignments and for
transmark00-cons the occurrence of false frameshifts in true
positives was just 0.4%.

Even these low false frameshift rates may overstate the true
risk. The results are based on the assumption that the Pfam-
sourced test sequences are correctly translated from their
source DNA, but manual inspection of the highest-scoring
“false frameshift” alignments from BATH all showed evi-
dence that the protein in Pfam is translated from genomic
DNA containing one or more frameshifts. One example is
phosphatase CheZ from Sodalis glossinidius, a Gammapro-
teobacteria. The DNA that encodes this protein was aligned
by BATH with a single frameshift (see Figure 7 for the align-
ment) not seen in the canonical translation of this protein
found in Pfam. The frameshift seems plausible as it allows
two high-identity regions in different frames to be stitched
through a single nucleotide deletion, whereas the Pfam pro-
tein (initially sourced from Uniprot) produces a low-quality
alignment in the 5’ segment. Using ESMFold (55), we pre-
dicted the structure of both the Pfam-sourced sequence and
the protein sequence suggested by frameshifted alignment.
Figure 8 shows a predicted disordered structure on the 5’
end of the Pfam variant that is well structured in the BATH-
informed variant. Further investigation is needed to deter-
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Coverage of protein-coding genes across all Canditatus hodgkinia chromosomes identified in Magicicada
GenBank BATH BATH --nofs tblastn

all hits 20.2% 37.2% 25.8% 30.4%
full-length hits 20.2% 33.6% 18.6% 19.8%

Table 6. Percent of nucleotides annotated by either the GenBank annotations, or by one of the three methods tested (BATH, BATH --nofs, and tblastn) across 231 Canditatus
hodgkinia chromosomes from 7 Magicicada species. Only annotations with an E-value of less than 1e-5 were included in these percentages. Full-length hits are defined as
hits that cover more than 66% of the length of the query. The 66% cutoff was selected based on the shortest query coverage seen in the GenBank annotations (66.67%).

(A) annotation of hodgkinia chromosome

(B) BATH alignment from hodgkinia chromosome

Fig. 6. Example annotations from GenBank, BATH, BATH --nofs, and tblastn of (A) a single hodgkinia chromosome (image generated using SODA (52)) and (B) a single
alignment from that chromosome. The GenBank annotations were crafted by Campbell et al. (53) with expert knowledge and a custom-built pipeline. The three tool
annotations show hits with E-values less than 1e-5. The arrow in the upper left quadrant of (A) points to the location of the BATH alignment seen in (B). Each line of the BATH
alignment consists of four rows. The top and bottom rows show the residues of the query (in amino acids) and target (in nucleotides), respectively. The row second from the
bottom shows the amino acid translations of the target codon or quasi-codon below, and the line second from the top shows whether the match between the target and query
was positive scoring (showing either the amino acid in the case of an exact match or a ’+’ in the case of a positive scoring mismatch) or negative scoring (left blank).
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Fig. 7. BATH alignment for the DNA encoding the CheZ protein (Uniprot:Q2NR86) from Sodalis glossinidius to the benchmark model derived from Pfam family PF04344.
BATH found a single frameshift in this sequence - outlined in red. The translation after this frameshift (outlined in orange) is in the same frame as the Pfam translation, but the
section before the frameshift (outlined in blue) is in a different frame and therefore has a different translation than Pfam. The BATH-predicted alignment shows high identity
with the query pHMM, with 93% of the matches being positive scoring, providing strong support for the validity of the BATH translation.

(A) BATH Translation

(B) Pfam Translation

Fig. 8. Structure Predictions for competing translations of the DNA encoding the
CheZ protein (Uniprot:Q2NR86, Pfam:PF04344) from Sodalis glossinidius from (A)
BATH and (B) Pfam. The orange regions show where the translations agree and
the blue regions. The single red amino acid is identified as a quasi-codon by BATH,
and serves as the bridge between two reading frames (see previous Figure). The
blue regions differ at the level of predicted amino acid, and the Pfam translation is
predicted to be disordered while the BATH translation is predicted to form an alpha
helix structure.

mine if this frameshift (along with others predicted by BATH
during these analyses) is the result of a sequencing error or
if it is a true mutation in the sequenced Sodalis glossinidius
genome.

Considering the very low rate at which BATH called any
frameshifts in the transmark00 benchmarks, combined with
the fact that at least some of these frameshifts seem credible,
the risk of false frameshifts from BATH appears negligible.
Instead, we find that BATH’s ability to find frameshifts even
where we did not expect them can lead to improved transla-
tion that could benefit existing databases.

Conclusions
BATH provides superior sensitivity for the annotation
of protein-coding DNA with or without the presence of
frameshifts. It achieves this sensitivity by applying pHMMs
and the Forward algorithm to the challenge of translated
search and by modifying the pHMMs and alignment algo-
rithms to be frameshift-aware. BATH also provides excel-
lent alignment coverage and accurate E-values. Run-times
are similar to other tools implementing the Forward algo-
rithm (nhmmer) but significantly higher than other less sen-
sitive tools (MMseqs, LAST, and DIAMOND). Future work
on BATH will focus on improving run times.
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Supplementary Materials
Additional supplementary materials can be found at https://github.com/TravisWheelerLab/BATH-paper, including code for
construction and analysis of trasnsmark benchmarks.

Fig. S1. Illustration of the pHMM “special states” (shown in orange) in the protein pHMM used by HMMER3 (14) and BATH and the frameshift-aware codon pHMM used by
BATH. These states allow for local alignments by permitting any non-homologous regions of the target to align to these special states rather than to the core model. The
FA codon model uses three sets of the N, B, J, E, and C states, one for each translation frame. This forces the model to address any frameshifts inside the core model by
emitting a quasi-codon, rather than in the special states.
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/* Special conditions for 0-4th, Lth and Kth indices are omitted for simplicity */
1 L← length of target DNA window
2 K← length of FA codon model
3 Memo[4][K] ; // Matrix for storing memoized values
4 M [L][K][6] ; // Match state matrix
5 I[L][K] ; // Insert state matrix
6 D[L][K] ; // Delete state matrix
/* T (X,Y ) is the log transition probability from state X to state Y */

/* EV (Mj(xi) is the log emissions probability from the jth M state of a (pseudo-)codon of

length V ending with the ith target nucleotide */
7 for i in {1..L} do
8 N(i)←N(i−3) + T (N,N) ; // N state transitions to N state

9 B(i)← log2

(∑{ 2N(i)+T (N,B)

2J(i)+T (J,B)

})
;

// N state transitions to B state
// J state transitions to B state

10 for j in {1..K} do
11 for m in {4..1} do
12 Memo(m + 1, j)←Memo(m,j) ; // Shift memoized values up by one row
13 end

14 Memo(1, j)← log2

∑


2B(i−1)+T (B,M)

2M(i−1,j−1)+T (Mj−1,Mj)

2I(i−1,j−1)+T (Ij−1,Mj)

2D(i−1,j−1)+T (Dj−1,Mj)


 ;

// B state transitions to M state
// M state transitions to M state
// I state transitions to M state
// D state transitions to M state

15 M(i, j,1)←Memo(1, j) + E1(Mj(xi)) ; // M state emits length 1 pseudo-codon
16 M(i, j,2)←Memo(2, j) + E2(Mj(xi)) ; // M state emits length 2 pseudo-codon
17 M(i, j,3)←Memo(3, j) + E3(Mj(xi)) ; // M state emits codon
18 M(i, j,4)←Memo(4, j) + E4(Mj(xi)) ; // M state emits length 4 pseudo-codon
19 M(i, j,5)←Memo(5, j) + E5(Mj(xi)) ; // M state emits length 5 pseudo-codon

20 M(i, j,0)← log2(2M(i,j,1) + 2M(i,j,2) + 2M(i,j,3) + 2M(i,j,4) + 2M(i,j,5)) ; // Sum all M state emissions

21 I(i, j)← log2

(∑{ 2M(i−3,j)+T (Mj ,Ij)

2I(i−3,j)+T (Ij ,Ij)

})
;

// M state transitions to I state
// I state transitions to I state

22 D(i, j)← log2

(∑{ 2M(i,j−1)+T (Mj−1,Dj)

2D(i,j−1)+T (Dj−1,Dj)

})
;

// M state transitions to D state
// D state transitions to D state

23 E(i)← log2

∑ 2M(i,j)

2D(i,j)

2E(i)


 ;

// M state transitions to D state
// D state transitions to E state
// Sum with all transitions to E state

24 end

25 J(i)← log2

(∑{ 2E(i)+T (E,J)

2J(i−3)+T (J,J)

})
;

// E state transitions to J state
// J state transitions to J state

26 C(i)← log2

(∑{ 2E(i)+T (E,C)

2C(i−3)+T (J,C)

})
;

// E state transitions to C state
// C state transitions to C state

27 end

28 T ← log2

∑ 2C(L−2)

2C(L−1)

2C(L)


+ T (C,T ) ; // C state transitions to T state in all three frames

Fig. S2. Pseudocode for the frameshift-aware Forward filter algorithm used by bathsearch. The FA algorithms employed by bathsearch use larger matrices, both because
DNA targets have three times the residues of their protein counterparts and because the probabilities of various (quasi-)codon lengths often need to be stored separately,
quintupling the number of M state cells. They also require more operations at each i,j position (where i is a residue in the target and j is a position in the model) to account for
each of the separate (quasi-)codon emission probabilities and transition lookbacks. FA matrices also resist the application of the SIMD optimizations employed by HMMER3
for protein-to-protein alignment. In a protein-to-protein matrix such as (A), each new cell in row i can only transition from a cell in row i or row i-1. In (B), however, a cell
in row i can transition from a cell in row i, i-1, 1-2, i-3, i-4, or i-5. This prevents straightforward use of the “sparse rescaling” employed in HMMER3 to prevent underflow in
SIMD calculations (14). Therefore all FA algorithms in BATH are implemented without the benefit of SIMD optimization. To avoid repeated calculations, a “Memo” matrix is
used to store values that will be used by subsequent M(i,j) cells. This dramatically reduces the number of additional calculations needed for frameshift-aware Forward versus
standard Forward.
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Fig. S3. Distribution of recall before first false positive (RBFFP) values across all query family searches, with various simulated frameshift rates. In the transmark
benchmarks, protein-coding sequences belonging to 1,500 Pfam families (up to 20 instances per family) were embedded into ten 100MB simulated genomic sequences,
along with 50,000 decoy open reading frames derived from shuffled Pfam sequences. For each family, up to 30 instances are kept as a query set (see Methods for details). A
true positive is defined as a hit in which > 50% of the alignment is between a query from a family and an embedded test sequence from the same family. A false positive is
defined as a hit where > 50% of the alignment is to either an embedded decoy or the simulated chromosome. Hits where > 50% of the alignment is between a query from
one family and an embedded test sequence from a different family are ignored as it is not possible to discern whether true homology exists between any two families. To find
the true positive recovery before the first false positive, the true and false positives from each tool were sorted by their reported E-values (smallest to largest). If a tool had
more than one hit to the same test sequence only the hit with the lowest E-value is kept. For each family, RBFFP is computed as the fraction of true (embedded) positives
fpr the family that were reported with an E-value lower than the first false positive. Ridgeline plots show the distribution of these per-family RBFFP values. (A) shows that
BATH produces a greater fraction of families with high RBFFP on the non-frameshifted planted sequences than do other tools. The other three plots (B-D) show the decay
in mean/median RBFFP as the frequency of frameshifts increases, and that BATH experiences less decay in coverage than other translated search tools as frameshift rates
increase. All tests were performed using variant in which each family is represented by the full set of training family sequences, so that the query tool can either compute a
profile or perform family pairwise search.
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