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ABSTRACT13

The human cerebellum is activated by a wide variety of cognitive and motor tasks. Previous functional
atlases have relied on single task-based or resting-state fMRI datasets. Here, we present a functional
atlas that integrates information from 7 large-scale datasets, outperforming existing group atlasses. The
new atlas has three further advantages: First, the atlas allows for precision mapping in individuals:
The integration of the probabilistic group atlas with an individual localizer scan results in a marked
improvement in prediction of individual boundaries. Second, we provide both asymmetric and symmetric
versions of the atlas. The symmetric version, which is obtained by constraining the boundaries to be the
same across hemispheres, is especially useful in studying functional lateralization. Finally, the regions
are hierarchically organized across 3 levels, allowing analyses at the appropriate level of granularity.
Overall, the new atlas is an important resource for the study of the interdigitated functional organization
of the human cerebellum in health and disease.
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INTRODUCTION14

Decades of neuroimaging have shown cerebellar activation in a broad range of tasks, including motor,15

social, and cognitive tasks - yet its contribution to these different functions remains elusive [1, 2]. A16

major obstacle to understanding the cerebellar contribution is that the cerebellum consists of a mosaic of17

functional regions, specialized for distinct roles [3]. It is still common to use the anatomical subdivision18

into different lobules [4, 5] to define regions of interest, even though lobular boundaries do not align with19

boundaries in functional specialization [3].20

There are several existing maps based on resting-state or task-based functional Magnetic Resonance21

Imaging (fMRI) data [6, 7, 3] that parcellate the cerebellum into functional regions. These functional22

atlases outperform anatomical parcellations at predicting functional boundaries on an independent task23

set, with a task-based parcellation based on a large multi-domain task battery (MDTB) being particularly24

powerful [3]. Nonetheless, parcellations based on single datasets usually show some distinct weaknesses:25

For example, the MDTB parcellation[3] does not delineate the foot or mouth motor region very well,26

likely because of the absence of those movement types from the task set. Any single dataset and analysis27

approach will necessarily emphasize some features over others. To address these shortcomings, we have28

recently developed a Bayesian Hierarchical method that combines information across datasets into a29

single parcellation [8]. In this study, we apply this model to seven large task-based datasets to derive a30

novel cerebellar functional atlas.31

Another important limitation of existing group atlases is that they ignore the large inter-individual32

variability in functional brain organization [9, 10, 11, 12, 13]. This problem is particularly relevant33
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for the cerebellar cortex, where many functionally heterogeneous regions are packed into a relatively34

small volume [14, 3, 15]. Multiple groups have therefore pursued a precision mapping approach, using35

localizing data to define functional regions at the individual level [10, 11, 12, 15]. To enable such precise36

and fine-grained analysis, the new atlas is based on a probabilistic framework, which allows the user to37

use even limited individual data to optimally tailor the atlas to an individual [8, 16]. We evaluated this38

approach carefully by showing the utility of the personalized parcellation at predicting boundaries and39

functional specialization in the same individual in different tasks, as compared to both the group atlas,40

and a parcellation solely based on individual data.41

The cerebellum plays a key role in lateralized functions (i.e., language; [17]) and shows lateralized42

developmental trajectories [18]. The study of lateralization, however, is complicated by existing functional43

atlases, as they have asymmetric boundaries with ambiguities in correspondence between between left44

and right regions. We therefore developed a version of the atlas with symmetric boundaries and matching45

hemispheric parcel pairs. Importantly, we did not constrain the functional profiles to be the same across46

hemispheres, enabling us to study functional lateralization. The comparison to an asymmetric version of47

the atlas also allowed us to assess whether this symmetry constraint is adequate, or to what degree the48

spatial organization is truly asymmetric.49

Finally, questions about cerebellar function will benefit from being tested at different levels of50

granularity. For many anatomical and patient studies, it is often most appropriate to summarize measures51

in terms of broad functional domains (e.g., motor vs. social-linguistic-spatial regions), whereas more52

detailed functional studies require the definition of finer region distinctions (e.g., separate hand, foot,53

and tongue regions within the motor domain or separation between social and linguistic domains). We54

therefore created the atlas with a hierarchical organization of functional regions where the boundaries of55

the broad domains remain the same at each level of granularity.56

RESULTS57

Different fMRI datasets reveal a similar, but not identical, cerebellar organization58

A common functional atlas across different datasets only makes sense, if we assume that there is a robust59

functional organization that remains the same across tasks. However, the cognitive state of the brain (rest60

or specific tasks) likely influences how different functional regions work together. Therefore, parcellations61

based on different datasets may highlight different functional boundaries. As a first step, we therefore62

sought to characterize similarities between parcellations based on single datasets, using task-based and63

resting-state data. We trained our probabilistic parcellation model [8] on seven task-based and one64

resting-state datasets (Supplemental Table. 1) in isolation and then compared the resultant parcellations65

(Fig. 1a).66

The parcellations overall showed clear similarities, but also some dataset-specific differences. A67

smooth boundary between motor regions in lobule I-VI and cognitive regions in lobule VII was present in68

all parcellations (e.g. between the magenta and pink regions in MDTB and Demand dataset in lobule VI).69

On the other hand, the ability to distinguish regions within motor and cognitive regions differed between70

datasets. For example, the somatotopic dataset only tested individual body movements, and therefore71

resulted in a clear somatomotor map, but did not delineate cognitive regions in lobule VII well, as can72

be seen by the fragmented pattern in Crus I/II and lobule IX. In contrast, the Demand dataset delineated73

regions involved in working memory and executive functions, but did not lead to a clear somatomotor74

map. Parcellations based on resting-state data (HCP) showed consistent boundaries in regions related to75

the default network (lobules VII) but appear to delineate other regions (e.g. motor) less finely.76

To quantify these similarities, we calculated the adjusted Rand Index (ARI) between parcellations at77

different levels of parcel granularity (10, 20, 34, 40 and 68 regions). The indices were averaged across78

granularities and normalized by the within-dataset ARI (Fig. 1c, see methods). Overall, the resultant79

reliability-adjusted ARIs were positive across all dataset pairs (One-sample t-test of the between-dataset80

ARIs averaged across granularities t27 = 17.885, p = 1.696× 10−16), indicating that there are clear81

commonalities across all different task and resting state datasets [20, 10, 21].82

To assess the similarity of the resulting parcellations better, we visualized the reliability-adjusted83

ARIs using multi-dimensional scaling (Fig. 1b). Unsurprisingly, task-based datasets that test similar84

task domains (i.e., working memory and multi-demand dataset) resulted in similar parcellations. The85

Somatotopic and the resting-state (HCP) parcellation occupied two other, opposing poles in the space of86

parcellations.87
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Parcellations based on datasets that included a large range of cognitive tasks (MDTB, MDTB-88

Highres, and IBC) occupied a middle position, suggesting that such parcellations can well capture stable89

features of functional boundaries across tasks. Indeed, when we compared the ARI for each specific90

task-based parcellations, we found that they were more similar to the parcellation derived from the91

MDTB dataset than to one derived from the HCP dataset (paired t-test: t149 = 9.605, p = 2.672×10−17;92

Fig. 1d). Testing each set of task-based parcellations separately confirmed that all, except for the93

Nishimoto parcellations (t24 = −0.838, p = 0.410) were significantly more similar to the MDTB than94

the HCP (resting-state) parcellations (MDTB-Highres: t24 = 16.404, p = 1.523× 10−14; IBC: t24 =95

3.513, p = .0017; WM: t24 = 4.727, p = 8.318×10−5; Demand: t24 = 3.262, p = .0033; Somatotopic:96

t24 = 12.538, p = 5.015×10−12). As indicated by the opposing poles occupied by Somatotopic dataset97

and HCP resting-state dataset (Fig. 1b), this difference was largest for the Somatotopic dataset, suggesting98

that rest and single-limb movements reveal quite dissimilar boundaries.99

In sum, this analysis shows that the resting-state parcellation captures many task-based boundaries,100

but also differs from a parcellation that delineates somatotopic motor regions. This is in line with previous101

observations that resting-state data do not always reveal motor regions of the cerebellum clearly [7, 22].102

In practice we found that the inclusion of resting-state data into the fused atlas tended to prevent a clear103

delineation of somatomotor regions. For the final atlas we therefore decided to rely on task-based data104

only given the goal here of comprehensively mapping motor and non-motor cerebellar regions.105

Dataset fusion improves prediction of functional boundaries106

Our Hierarchical Bayesian Parcellation framework [8] allows for data fusion by modelling each dataset107

separately and then combines them iteratively into a common group atlas. In this process, each dataset is108

weighted by a measure of its reliability (see methods, Hierarchical Bayesian parcellation framework).109

To verify that the fusion of datasets through our framework systematically improved on single-dataset110

parcellations, we adopted a leave-one-dataset-out approach. We trained the fusion parcellation on all111

task-based datasets except one and tested its ability to predict the functional boundaries within that left-out112

dataset. This ability was quantified using the Distance-Controlled Boundary Coefficient (DCBC) which113

compares the correlation between within-parcel voxel-pairs to the correlation between voxels-pairs across114

a boundary, while controlling for spatial distance [23], with higher values indicating better performance.115

We found that the fused group atlas outperformed single dataset parcellations averaged across granularities116

(t110 =−4.466, p = 1.936×10−5; Fig. 1e left).117

In addition to providing a winner-take all group map, our framework can also provide individual118

parcellations by integrating subject-specific data (see methods: individual precision mapping). This ability119

critically depends on the group atlas not only having appropriate boundaries, but also quantifying the120

uncertainty across participants adequately. We found that individual parcellations based on the fused atlas121

outperformed those derived from single dataset (t110 =−2.564, p = .0171; Fig. 1e right), confirming the122

superiority of the fused atlas, both when using a winner-take-all projection or a probabilistic parcellation123

to derive individual maps [8].124

Comparing symmetric and asymmetric atlasses125

To enable the study of hemispheric specialization, we initially constrained our atlas to have spatially126

symmetric regions across the left and right cerebellar hemispheres, while allowing different functional127

profiles. To determine how much this constraint forced the group map to deviate from the true functional128

organisation, we also estimated an asymmetric version of the atlas without using the symmetry constraint129

(see methods, Symmetry constraint).130

We compared the ability of the asymmetric and the symmetric atlas to predict functional boundaries,131

again adopting a leave-one-dataset-out approach. For the group DCBC, we found a small, but significant132

difference between the asymmetric and symmetric atlas across levels of granularity (10-68 regions;133

t110 =−2.344, p = .0201) (Fig. 1B). This advantage was larger at the individual level (t110 =−5.023, p =134

1.981×10−6). Overall, however, the predictive power of the symmetric atlas was only 5% (group) or135

14% (individual) smaller than the asymmetric versions. Given the many practical uses of the symmetric136

atlas for controlling for region size and location in lateralization studies, we provide both symmetric and137

asymmetric versions of the final atlas.138

3/33

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 1, 2024. ; https://doi.org/10.1101/2023.09.14.557689doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.14.557689
http://creativecommons.org/licenses/by-nc-nd/4.0/


Basemap for hierarchical atlas outperforms existing parcellations139

Instead of choosing a fixed number of regions, we used three nested levels of resolution, linked in a140

hierarchical scheme. This allows the user to analyze their data at different levels of granularity in a141

consistent fashion. To decide on the “base map” of this hierarchy, we examined the predictive performance142

of the fusion atlas across the tested levels of granularity at the group and individual levels (Fig. 1f). We143

found that the performance of the group map saturated early, reaching its best value at 20 regions. However,144

this peak was not significantly different from the finest granularity of 68 regions (t110 = 2.783, p = .0063).145

In contrast, the ability to predict boundaries in the individual increased monotonically, with the finest146

granularity outperforming the next lower granularity of 40 regions (t110 = 7.584, p = 1.143×10−11). We147

therefore based the hierarchical atlas on the map with the finest granularity of 68 functional regions.148

The fused atlas based on all datasets significantly outperformed existing parcellations in predicting149

boundaries tested on all datasets. Across all subjects of all evaluation datasets, both the symmetric and150

the asymmetric atlas base map resulted in a higher average DCBC than existing anatomical (Lobular:151

[5]), task-based (MDTB: [3], and resting-state parcellations (7 and 17 regions: [7]; 10 regions: [6]), all152

t110 > 3.545, p < 5.788×10−4 (see Supplemental Fig. S1)153

We then clustered the 34 regions per hemisphere of the basemap into 16 regions per hemisphere154

according to the functional similarity between regions (see methods: parcel similarity and clustering).155

Finally, we organized these 16 regions into 4 broad functional domains. Based on their functional156

activation profiles, we denoted these four functional domains as motor (M), action (A), multi-demand (D),157

and social-linguistic-spatial (S) (Fig. 2c). At the medium level, we numbered the regions within each158

domain from medial to lateral (Fig. 2d). Finally, the finest level was annotated with a lowercase letter159

(a-d). In the following description of the regions, we will focus on the medium level, as it provides a good160

compromise between precision and succinctness.161

Characterization of functional regions162

Each functional region is characterized by its response profile across datasets and its spatial distribu-163

tion across individuals. In describing the functional profile, we focused on responses estimated from164

subject-specific regions in the MDTB dataset (see methods: Functional profiles for the MDTB dataset),165

supplemented by more domain-specific datasets for the motor and demand regions (Somatotopic, Demand,166

WM).167

Motor regions168

Regions that exhibited a clear preference for movements of a specific body part were grouped into the169

motor domain. All regions had a superior (lobules I-VI) and an inferior (lobule VIII) aspect. We also170

found a third representation of these body-part-specific regions in the posterior vermis, consistent with171

recent results at the individual subject level [22].172

M1 encompassed the oculomotor vermis, which responded most strongly to saccades (Fig. S2). Even173

when correcting for the number of saccades, the area was further activated when participants had to read174

text (Theory-of-Mind), watch a movie (animated movie), or search for visual stimuli (spatial map and175

visual search), likely due to the attentional demands of these tasks. Previous work has shown that this176

region also has a clear retinotopic organization [24]. M2 comprises a lateral and a vermal part. The lateral177

section showed strong responses to tongue movements in the somatotopic dataset. In contrast, the vermal178

component was activated by multiple different bodily movements, but otherwise was functionally most179

similar to the lateral M2. The M3 regions were selectively activated movement of the ipsilateral hand180

(Supplemental Fig.S2). Finally, M4 was most activated by movements of the lower body, including flexion181

and extension of the foot (Highres-MDTB), as well as contraction of the gluteal muscles (Somatotopic).182

Action regions183

Directly adjacent to the motor regions lie the action regions, which were activated during action observation184

and motor imagery tasks. A1 and A2 both comprised spatially separate superior and inferior sections. A1185

can be found medially to the hand region in lobule VI and at the border of VIIIa/VIIIb. A2 lies laterally186

adjacent to the superior hand region M3, and at the border of lobule VIIIa/VIIIb. In contrast, A3 primarily187

occupies the inferior cerebellum (Fig. S3), located at the border of lobules VIIIa/VIIIb.188

Although both motor and action regions activated during movement execution, only the action regions189

activated when observing actions without execution: In the MDTB dataset, they showed strong responses190

to an action observation task (video actions in Fig. S2). A1 appeared to be particularly involved where191
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spatial simulation is required (strong responses during spatial map and mental rotation tasks). Meanwhile,192

A2 seems to be a classic action observation region, with little response to tasks that do not involve action193

observation or execution. In contrast, A3 was also activated during imagined movements (motor imagery).194

Multiple-demand regions195

Tasks involving executive control, including updating, shifting and inhibition, consistently activated196

regions in lobules VI and VII. Based on work by Duncan et al. [25], we labelled these regions the197

multi-demand domain (D for short). D1 occupied the most medial portion of Crus I and II. Further out in198

the hemispheres, the demand region formed a ”shell” around the more central social-linguistic-spatial199

domain (Fig. S4b and Fig. S5). Here, D3 formed the outermost layer and D2 the innermost, with D1200

being interspersed between. The regions (especially D2) also had a repeated representation in lobule IX201

(Fig. S3). This is consistent with a 3-fold representation [7]. Intriguingly, we found also a vermal section202

of D3, both in lobule IV and IX. D4 was the smallest identified region. Functionally most similar to D1, it203

occupied the most lateral portion of the demand regions.204

Consistent with the characteristics of the cortical multi-demand system [26], all regions showed205

significant activation during executive tasks (n-back, switch and stop tasks), and increased activity206

especially with high difficulty. Nonetheless, there was some functional specialization across the regions.207

In the MDTB dataset, D1 appeared to be involved strongly in spatial tasks, such as the mental rotation,208

and spatial map task. D1 and D4 were strongly engaged in the n-back task. In contrast, D2 and D3 were209

specifically activated by the digit span task tested in the WMFS data set - with D2 more active during210

backwards recall and D3 showing strong increases with working memory load.211

Social-linguistic-spatial regions212

The regions in hemispheric lobules Crus I and Crus II, located laterally to the D1 region, were activated by213

tasks involving social and linguistic processes. They also showed high activity during rest, consistent with214

the description of this area as the cerebellar node of the default network [7]. We identified four regions,215

each spanning both sides of the horizontal fissure, with S1 being the most medial and S4 most lateral216

(Fig. 2). S3 overlapped substantially with S2 and S4 and therefore could only be reliably differentiated217

from these two regions at the level of the individual (see 5a). In the volume (Supplementary Fig. S4)218

S1 occupies the depth of the horizontal fissure, and S4 the most lateral tips of Crus I and II. A third219

representation of S2 and S4 can be found in lobules IX. S1 and S2 also occupy sections in the inferior220

vermis (VIIIb and IX, Supplementary Fig. S4). While all regions shared some overall similarity in their221

response profile, there were clear inter-regional and inter-hemispheric differences. The mean evoked222

responses for the MDTB dataset (Supplementary Fig. S2) showed right S1 to be primarily involved in223

linguistic processing, with highest activation during verb generation. S2 was strongly engaged in social224

processing, with highest activity during a theory-of-mind task on the right and during an animated movie225

on the left. S2, S3, and S4 showed high levels of activity during rest. S4 and S5 appeared to be particularly226

involved in imagination and specific forms of self-projection (Supplementary Fig. S6a,b), showing the227

highest activation during the spatial and the motor imagery tasks, which require the participant to imagine228

themselves walking through their childhood home and playing a game of tennis, respectively. In contrast229

to S4, S5 was also active during a spatial working memory task (Spatial Map) and did not appear to230

be engaged in linguistic processes (Verb generation)(Supplementary Fig. S6c,d). S5 was also activated231

by the action observation task, such that it functionally takes up an intermediate position between the232

social-linguistic-spatial and action domain. When comparing these regions to the recently described233

subdivision of the default network [27], S4 and S5 appear more similar to default network A (associated234

with remembering and scene construction), and S2-S3 to default network B (theory of mind) .235

Cerebral connectivity patterns characterize distinct regions236

The cerebellum does not work in isolation - indeed, given the uniform cyto-architecture of the cerebellum,237

functional specialization arises from the different patterns of connectivity (REF?). We therefore character-238

ized each cerebellar region by determining the areas of the cerebral cortex that most likely provide input239

to this area. To do so, we estimated an effective connectivity model, aiming to explain the data in each240

cerebellar voxel as a linear combination of cortical regions [28]. For the task-based dataset, we used the241

condition-averaged profiles, for the resting-state data, the preprocessed time-series. We fitted the models242

individually per subject and dataset. To validate these connectivity models, we tested them in how well243

they could predict the cerebellar activity patterns for each other dataset, using only the corresponding244
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cortical activity patterns (see methods: Cortical connectivity).245

The average correlation between the predicted and the observed activity patterns (Fig. 3a) were246

significantly higher than zero for all training / test combinations. One notable exception was the model247

estimated on the Somatotopic dataset, which generally performed more poorly in predicting the other248

data sets. Connectivity models generally showed the highest predictive accuracy on the dataset they were249

trained on, even though this evaluation was cross-validated across subjects.250

Averaged over all evaluation datasets (Fig. 3b), the model trained on the MDTB dataset performed best251

- with the other models being nearly equivalent in their performance (with the exception of Somatotopic252

dataset). To fuse across datasets, we simply averaged the connectivity weights across models. We found253

that average prediction performance was slightly better if it did not include the HCP dataset (.396 vs. .394,254

t102 =−1.51, p = 0.1349). The final Fusion model (last bar in Fig. 3b) significantly outperformed the255

best individual connectivity model (MDTB, t102 =−7.340, p = 5.322×10−11). Taking into account the256

noise ceiling of this prediction given by the reliability of the cerebellar and the cortical data (see methods:257

Cortical connectivity), the model achieved a prediction accuracy of R = 0.6840, meaning that it predicted258

on average 47% of the explainable variance.259

The weights of these connectivity models for each individual region (Supplemental Figure S7, S8,260

S9) clearly showed connectivity with the expected cerebral regions in the contralateral hemisphere. For261

example, the left cerebellar hand region showed the highest connectivity with the hand region of the right262

primary motor cortex and somatosensory cortex, and vice versa for the right cerebellar hand region (Fig.263

S7c).264

To summarize these weight maps in terms of standard cortical networks, we averaged the weights265

within the 15 resting-state networks described in [29] (3c). This analysis showed the expected connectivity266

between M1 and visual and dorsal attention networks, between M2-M3 and the Somatomotor and premotor267

networks, D1-D4 to the dorsal Attention network A and control networks, and S1-S5 to language and268

default networks.269

Functional lateralization and boundary asymmetry270

The symmetric version of our atlas forced the boundaries between parcels to be the same across hemi-271

spheres. Nonetheless, the functional profiles for the left and right parcels were estimated separately272

(see methods: Symmetry constraint). Therefore, hemispheric differences in functional specialization273

were captured by the model. To investigate these differences, we correlated the functional profiles of274

corresponding left and right voxels (Fig. 4c). We observed low functional correlations between left and275

right hand regions (M3). This was mainly caused by task sets that isolated left- vs. right-hand movements.276

Such task-dependence can be clearly seen in the foot motor region (M4), which appear functionally277

symmetric in the MDTB-Highres dataset, which included bilateral foot movements, and functionally278

asymmetric in the somatotopic dataset included separate left and right movement conditions S10).279

In contrast, the multi-demand regions consistently show high functional correlations across left and280

right hemispheres for all datasets, even though the task sets included different executive functions and281

working memory tasks, using verbal and non-verbal material. While there might be some functional282

lateralization within this domain, our results suggest that their response profiles are largely symmetric and283

that it may be difficult to find strongly lateralized tasks in this functional domain. In contrast, the social-284

linguistic-spatial regions showed much lower functional correlations with substantial differences between285

left and right response profiles. Therefore, some functions are clearly lateralized in the cerebellum,286

reflected in different functional profiles for left and right regions.287

Additionally, it is also possible that boundaries between functional regions themselves are asymmetric.288

We therefore estimated an asymmetric version of the atlas with the same functional profiles per region, but289

without the constraint on symmetry. Overall, the asymmetric atlas was similar to the symmetric atlas (Fig.290

4a). However, closer inspection revealed some key differences between the left and right hemispheric291

parcels of the asymmetric atlas, with the biggest difference observed among the social-linguistic-spatial292

and multiple-demand regions. When we compared the region size between the left and right regions in293

the asymmetric atlas (supplementary Fig. S11), S3 and S4 had larger regions on the right, while S2, A2,294

and D1 were bigger on the left.295

Finally, we calculated an index of boundary symmetry (see methods: Boundary symmetry) by296

correlating the parcel probabilities from the asymmetric and symmetric atlas. We found high boundary297

symmetry in motor and demand regions and low boundary symmetry in social-linguistic-spatial regions.298
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Specifically, among the motor regions the oculomotor vermis M1 and the hand region M3 (Fig. 4c) showed299

high boundary symmetry. All demand regions showed high boundary symmetry with the exception of D2.300

In the social-linguistic-spatial regions, we observed generally low boundary symmetry, indicating that for301

these regions an asymmetric atlas may be most appropriate.302

Individual precision mapping through integration of localizer data303

The fusion atlas reveals several finely inter-digitated regions that have not been well described before304

and that have only been localized at the single-subject level using large quantities of individual data [15].305

However, with the probabilistic framework, the atlas can be used to identify these regions in individual306

participants even with more limited data. In this section, we will describe the approach of personalizing307

the atlas to individuals, i.e., using the atlas for precision mapping [10, 11, 12].308

We first characterized the spatial pattern of inter-individual variability to understand where in the309

cerebellum individual localization would offer the greatest utility. For each voxel, we calculated the310

Pearson’s correlation between the functional profiles of all possible pairs of subjects in the MDTB311

dataset (methods:Inter-Individual variability). While motor regions showed consistent functional profiles312

across subjects (e.g. hand regions M3 and eye regions M1 in Fig. 5b), the social-linguistic-spatial313

regions were more variable. Only voxels in the core of the S1 region were relatively consistent across314

individuals; the lateral regions, and especially the boundary to the multi-demand regions demonstrated315

large inter-individual variability. Consistent with the heightened inter-individual variability in the social-316

linguistic-spatial regions, our atlas shows considerable overlap in the group probability maps for region S1317

and S2 (Fig. 5c). Hence, the study of these regions in Crus I and II and their differentiation from demand318

regions will benefit most from precision mapping of individuals.319

For individual functional localization, a common approach is to acquire functional data from the320

individual to define individual regional boundaries [30, 31, 32]. However, a substantial amount of321

functional data is necessary for deriving a parcellation that performs convincingly better than a group map322

[8, 14, 3]. We quantified this problem here by using 10min-160min of imaging data from the first session323

of the MDTB data set to derive individual parcellations. We then evaluated these parcellations on how324

well they separated functional regions (DCBC, higher DCBC indicating better separation; Fig.5d) and325

predicted the functional profiles (prediction error, lower error indicating better prediction; Fig. 5e). We326

found that 20 min of individual data were necessary to be just as good as our new symmetric group atlas,327

and 40 min to significantly outperform the group map on both criteria (DCBC: t23 = 2.981, p = 0.0067,328

Prediction error: t23 =−2.869, p = 0.0087).329

The probabilistic framework, however, allowed us to optimally combine evidence from the individual330

data with the probabilistic group map (see methods: Individual precision mapping). The final estimate of331

the model using only 20 min of functional localization data outperformed both the individual data (DCBC:332

t23 = 11.468, p = 5.43× 10−11; Prediction error: t23 = −9.098, p = 4.414× 10−9) and the group map333

(t23 = 3.395, p = 0.0025). The integrated estimate even improved individual parcellations based on as334

much as 160 mins of data (DCBC: t23 = 5.838, p = 5.989×10−6, Prediction error: t23 =−3.798, p =335

9.288×10−4). Thus the new atlas offers both the advantage of a consistent group map, as well as the336

possibility to obtain precision individualized mapping of brain organization.337

DISCUSSION338

Summary339

In this study, we developed a comprehensive functional atlas of the human cerebellum featuring several340

important advances: First, using a Hierarchical Bayesian Model, we integrated data across seven large task-341

based datasets, thereby achieving a more complete coverage. The new group atlas outperforms existing342

task-based [3] and resting-state [7] atlases in predicting functional boundaries across functional domains.343

Second, by enforcing boundary symmetry but letting functional responses vary between hemispheres, our344

symmetric atlas version is particularly suited to study functional lateralization in the cerebellum. Third,345

the atlas is hierarchically organized, allowing for a consistent description of the cerebellum at different346

levels of granularity. Finally, the probabilistic group atlas can be combined with a short localizer scan to347

improve functional precision mapping of individuals. As compared to the existing winner-take-all group348

atlases, this new approach paves the way to a detailed analysis of small subregions in the future.349
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Three-fold organization of the human cerebellum350

Consistent with previous studies [7, 33, 15], we found overall a three-fold spatial organization of the351

cerebellum. For most regions, we found a primary representation located between lobule I and Crus I, a352

secondary representation between lobule Crus II and lobule VIIIb, and a tertiary representation in lobule353

IX or X. The ordering of the regions was mirrored around the horizontal fissure, such that the demand354

region formed a shell around the social-linguistic-spatial regions, and the action and motor regions a shell355

around the demand regions. While regions S2-S4 appeared on the flatmap [19] to be spatially contiguous,356

the volumetric view revealed S4 that these regions too have anatomically distinct primary and secondary357

representations, separated by the horizontal fissure. This observation exemplifies the importance of358

considering how regions are distributed on a fully unfolded cerebellar cortical sheet [34] instead of solely359

relying on the crude approximation that is offered by our flatmap visualization [19].360

The group atlas also shows a third representations of cognitive regions in lobule IX. No third motor361

representation was found in the cerebellar hemispheres. Instead, a third representation of the motor362

regions in the inferior vermis has recently been described at the individual level using deep phenotyping363

approaches [22]. Our atlas, which included these data within its training set, now clearly shows this364

representation both at the group and the individual level S3.365

Damage to the primary motor representations leads to more severe deficits than damage to the366

secondary motor representation [35]. Based on this observation, it has been speculated that there are367

functional differences between the three representations [33]. So far, however, a definite demonstration of368

distinct response profiles among the three representations has remained elusive. Two lines of evidence cast369

doubt on a strong functional dissociation between these representations. First, our analysis of functional370

regions generally grouped the three representations together, implying a significant degree of shared371

functional profiles across datasets. Second, tracing studies have shown that a single axon from the inferior372

olive can branch into multiple climbing fibers [36] and innervate different regions in non-contiguous373

lobules [37]. Similarly, most ponto-cerebellar mossy fibres project to multiple lobules [38]. This suggests374

that all three representations, despite their spatial separation, may receive very similar, or even shared,375

climbing fiber and mossy fiber inputs. Therefore, it is not clear whether the multiple representations of the376

same functional region can be functionally distinguished. To facilitate further investigations, we provide377

an atlas version, in which each region is subdivided into a superior (lobule I - Crus I), inferior (Crus II -378

VIIIb), tertiary (lobule IX - lobule X), and vermal sections (vermis VII - vermis X). With one exception379

(S5), this subdivision separates the spatially non-contiguous aspect of each region.380

New functional insights381

Although the spatial pattern of most regions adheres to a three-fold organization, our new atlas reveals that382

several regions deviate from this principle, suggesting a more complex cerebellar functional organization.383

First, not all functional regions have all three representations, for example A3 and S5 only have an inferior384

representation, whereas M1 only has a superior representation (supplementary Fig. S3a). Second, some385

regions with a primary and secondary representations are spatially connected in the volume (e.g., S1,386

supplementary Fig. S3a). Future neuroimaging studies might reveal a parsimonious organization or more387

spatial complexity, as has been suggested by intensive within-individual mapping [15].388

Furthermore, while our atlas confirms the well-known functional regions of the cerebellum, it also389

uncovers regions that have not been reported or only recently identified. We describe two new regions390

in lobules VIII and IX, notably A3 which is engaged during spatial simulation and S5 which activates391

when constructing an imagined scene or engaging in specific forms of self-projection . Furthermore, the392

atlas revealed 5 medial-to-lateral organized regions in Crus I and II. A similar detailed subdivision has393

only been achieved at the individual level using several hours of scan time [27, 15]. This work showed394

that the default network can be divided into two parts, one that is associated with remembering and scene395

construction (network A), the other that is associated with mentalizing (network B). Our atlas captures this396

distinction, with S4 showing some correspondence with default network A, and S2 and S3 with default397

network B.398

However, it is not clear a-priori that there should be 1:1 correspondence between the regions identified399

in this atlas and cerebral resting-state networks. Our atlas is based on data that is task-based and comes400

from the cerebellum only. It therefore offers a different and complementary approach to resting-state401

atlases, in which the networks are defined on the cerebrum, and the cerebellum subsequently labeled402

according to the best-matching network [7].403
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Individual precision mapping404

Studying finely inter-digitated regions is difficult when using group-level atlases. Inter-individual vari-405

ability is generally high in the cerebellum [39], and our analysis (Fig. 5d) shows that the location and406

arrangement of the multi-demand and social-linguistic-spatial regions are especially variable across indi-407

viduals. High inter-individual variability has been a long-standing finding for language regions. Despite408

this variability, the spatial pattern of the language network, its degree of lateralization and responsiveness409

are relatively stable within individuals over time [40, 41]. These results stress the importance of using an410

individualized approach when studying cognitive regions of the cerebellum [42, 43, 44].411

The classic approach to individual localization is to run a short localizer scan (often 10 minutes) [31],412

based on the assumption that these individual-level boundaries reflect the subject’s organization better413

than boundaries defined by a group map, or through localization using resting-state network estimates414

[45]. However, experience suggests that substantial amount of scan data are required to predict individual415

functional data better than the group map. We confirm this by showing that the probabilistic group416

map provided by our new atlas is as good as 20 min of individual data (Fig. 5d), rendering individual417

localization based on only 10 minutes of data suboptimal. Increasing the individual scan time [15] often418

is not feasible, especially in the clinical context.419

Similarly to the Bayesian model proposed by Kong et al. [16], our new atlas offers an alternative,420

by optimally integrating even limited individual data (10-20 minutes) with the probabilistic group map.421

This integration yields a probabilistic map of regions in the individual that is better than both group and422

individual map.423

To apply this approach to a new subject in a new study, one needs to acquire some independent424

individual localization data (see below). Our framework can then be used to train a new dataset-specific425

emission model that characterizes - for each cerebellar region - the average group response on the tasks426

contained in that localizer scan. The final individual parcellations are obtained by combining the data427

likelihood with the probabilistic group map (see methods: Group and individual parcellations). This428

method enables the use of individual functional localization in studies for which the time with each429

individual is restricted. Even for longer localizer scans, our approach leads to significant improvement430

than using the individual data alone. The code and documentation for individual precision mapping is431

available at github.com/DiedrichsenLab/HierarchBayesParcel.432

An important consideration for a precision mapping approach remains the decision of whether to use433

task-based or resting-state data, and - if using the former - which localizer tasks to include. For many434

purposes, it seems advisable to include a set of anchor tasks able to activate each region of interest. We435

observed that task-based datasets that focused on a narrow functional domain resulted in precise estimates436

of boundaries for regions of that domain at the expense of region boundaries for other domains (Fig. 1a).437

In addition to tasks that tap into the domain of interest, it is likely beneficial to include tasks that438

activate spatially neighboring regions. For example, when aiming to study the language regions of the439

cerebellum[31], adding tasks that activate the neighboring multi-demand regions may help to obtain a440

more precise estimate of the functional boundary between social-linguistic-spatial and multi-demand441

regions, which appear especially variable. The development of a principled approach to design optimal442

task-sets for functional localization remains an important question for future research.443

Overall, functional precision mapping will likely be increasingly important in the future to study the444

function of smaller, more variable subregions, study brain connectivity [46, 9], targeted neuromodulation445

[47, 48, 49], and individualized diagnostic and prognosis.446

Lateralization447

The cerebellum’s importance in lateralized higher-order functions, particularly language, has reignited448

interest in lateralization studies of the cerebellum [18]. Studies of hemispheric specialization are most449

easily performed using a functional atlas that has regions matched in size and location across hemispheres,450

while as closely as possible representing functional boundaries. Prior studies that examined hemispheric451

differences in cerebellar development [18] or neurochemistry [50] had to rely on anatomical parcellations,452

even though these are not good descriptions of functional subdivisions [3]. Our symmetric atlas addresses453

this gap, and we show that the symmetry constraint had only a relatively small impact on its ability to454

identify functional subdivisions.455
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Cerebro-cerebellar connectivity456

For each of the cerebellar regions, our framework also provides a cerebral connectivity pattern. We457

showed that a model that integrates data across diverse task-based dataset outperforms our previous model458

that was only trained on the MDTB dataset [28]. These patterns of cerebral connectivity not only provide459

an additional description of the identified regions but have two further practical applications.460

First, being able to identify a cerebellar region by its cerebral pattern of connectivity allows the use of461

resting-state data to localize these regions in single individuals [7, 15]. This enables the extension of the462

atlas to patient groups and young children and allows users to leverage the broadly available resting-state463

datasets.464

Secondly, the independent identification of the cerebral regions that communicate with each cerebellar465

region is an important prerequisite for further studies that investigates the functional differences between466

cerebral and cerebellar areas within the same functional module [51]. We therefore believe that the new467

atlas will provide an important resource for the study of the human cerebellum going forward.468

METHODS469

Datasets and data organization470

We used seven task-based and one resting-state fMRI datasets (see Supplemental Table 1). Each of the471

first four datasets comprised a broad battery of tasks tapping into cognitive, motor, perceptual, and social472

functions: (1) The Multi-Domain Task Battery dataset (MDTB, [3]), (2) a high-resolution version of the473

MDTB (High-res MDTB; not yet published), (3) the Nakai & Nishimoto dataset [52], and the (4) The474

Individual Brain Charting (IBC) dataset [53, 54]. We also included three further datasets to obtain a475

better description of the motor and executive functions: (5) the working memory (WM) dataset [51] which476

included finger movements and a forward / backwards digit span task; (6) the Multi-Demand dataset [26]477

which included a no-go, n-back, and task-switch task ; and (7) the Somatotopic dataset [22] which probed478

foot, hand, glutes, and tongue movements. Finally, we used the resting-state fMRI dataset Unrelated 100479

subjects, which is made publicly available in the Human Connectome Project (HCP) S1200 release [55].480

The task-based datasets were preprocessed as described in [8]. For each run and condition, we481

estimated one contrast image, and divided it by the root-mean-square-error from the first-level GLM482

to obtain a normalized activation estimate for each condition. These values served as the input data483

for all subsequent analyses. No smoothing or group normalization was applied at this stage. For the484

HCP resting-state data, we used minimally preprocessed time series [56]. The preprocessing pipeline485

included correction for spatial distortion and head motion, registration to the structural data, cortical486

surface mapping, and functional artifact removal [56, 57]. This resulted in 1200 time points of processed487

time series per imaging run per cerebellar voxel of the standard MNI152 template [58]. To obtain resting-488

state functional connectivity (rs-FC) fingerprints of the cerebellar voxels, we used a group Independent489

Component Analysis (ICA). We applied the group-ICA implemented in FSL’s MELODIC [59] with490

automatic dimensionality estimation to the temporally concatenated functional data of all subjects, sessions491

and runs, and selected the top 69 signal components. We then regressed the 69 group network spatial492

maps into each subject’s data, resulting in 69 subject-specific network time courses. The cerebellar rs-FC493

fingerprints were calculated as Pearson’s correlations of the cerebellar voxel time series with each cortical494

network time course.495

Using a unified code framework (available at github.com/diedrichsenlab/Functional_496

Fusion), the data were then extracted in two atlas spaces. For the cerebellum, we computed the non-497

linear morph into the Symmetric MNI152NLin2009aSym template (http://nist.mni.mcgill.498

ca/?p=904). The functional data were resampled to a group space of 18290 cerebellar gray-matter499

voxels with an isotropic resolution of 2mm. During this step, we only considered voxels within the500

individual cerebellar mask, taking care to exclude any signals from the directly abutting neocortical501

regions. For interpolation of functional signals within the cerebellum we used a Gaussian kernel of 2mm502

standard deviation. For the cortical-cerebellar connectivity models, the same data were projected onto503

individual surfaces, which are aligned to the symmetric freesurfer32LR template [60].504

Hierarchical Bayesian parcellation framework505

To integrate different datasets into a unified probabilistic parcellation atlas, we utilized a newly developed506

Hierarchical Bayesian Framework [for full details 8]. In short, the framework integrates different fMRI507

datasets, Ys,n, recorded in different sessions (n) from different subjects (s). The model assigns each of the508
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possible brain locations in each individual to one of K functional parcels, with Us
k,i = 1 indicating that the509

ith voxel is part of the kth parcel. The model estimates the expected value of these parcel assignments,510

which provides a probabilistic parcellation for that individual.511

The model consists of two parts: First, a collection of dataset-specific emission models that specify512

the probability of each observed dataset given the individual brain parcellation, p(Ys,n|Us). Here, we513

used a van-Mises-Fisher mixture model, in which each parcel had a mean vector vn
k for each session, and514

a separate concentration parameter for each session [κn, Model Type 2, see 8]. Each emission model515

therefore had the parameters θ
n
E = {vn

1, ...,v
n
k ,κ

n}.516

The second component, the arrangement model, specifies the group probability of each brain location517

belonging to a specific parcel. Here we used a model that treated each voxel independently, with518

p(Us
k,i) = softmax(ηk,i). The KxP arrangement model parameters θ A = {η1,1, ...} could therefore be519

estimated by averaging across all the individual probability maps. During this integration step, the520

concentration parameter for each dataset effectively determines the weight by which an individual521

contributes to the overall group map.522

The parameters of the spatial arrangement models and the emission models were estimated together523

using an EM-algorithm. We used 5000 different random starting values to avoid local minima. For524

computational reasons, the initial fitting and evaluation was done using a 3mm isotropic voxel resolution -525

the final selected model was upsampled to 2mm and used as a starting value to refit to the higher resolution526

data.527

Symmetry constraint528

To achieve spatially symmetric parcellations, we developed a version of the arrangement model, where529

parcels 1...K/2 were restricted to the left hemisphere, and parcel K/2 + 1, ...,K to the right. The530

assignment of voxels to parcels was symmetric - that is if the left hemisphere voxel was assigned to531

parcel 1, the corresponding right hemispheric voxel was assigned to parcel K/2+1. As a consequence,532

symmetric brain locations were assigned to corresponding parcels. The mean functional profiles vn
k ,533

however, were estimated separately for the left and right hemispheric parcels. This allowed us to derive a534

spatially symmetric parcellation of the cerebellum, while still capturing the functional specialization of535

each hemisphere.536

To construct a corresponding asymmetric atlas, we removed the symmetry constraint, now allowing537

left and right-hemispheric voxels to be assigned to non-matching parcels. However, to retain the same538

number of regions, we retained the constraint that one half of the regions were in the left, the other half539

in the right hemisphere. To make the asymmetric atlas comparable to the symmetric version, we also540

used the fitted emission models (mean functional profiles) from the symmetric model, only refitting the541

arrangement model without the symmetry constraint. This resulted in an asymmetric version of the atlas542

in which the regions had the same functional profiles as in the symmetric version.543

Group and individual parcellations544

After fitting the parameters {θ A,θ
1
E , ...,θ

N
E}, the model can be used to derive both a group and individual545

parcellation maps. The probabilistic group parcellation is based only on the arrangement model, which546

directly specifies pgroup = p(U) for each voxel and parcel. Each individual parcellation is based on some547

individual training data, Yn
s . The data-only parcellation only depends on the corresponding emission548

model, with pdata,s ∝ p(Yn
s |Us). In contrast, the full individual parcellation integrates the probability from549

both emission and arrangement model pindiv,s ∝ p(Yn
s |Us)p(Us), using Bayes rule. For visualization and550

evaluation, both group and individual probabilistic parcellation were transformed into hard parcellations551

by assigning each voxel the parcel with the highest probability.552

Individual precision mapping553

Our model provides a probabilistic group map (spatial arrangement model) and a probabilistic estimate of554

parcel membership based on a specific individual data set (using a dataset-specific emission model). By555

integrating these using Bayes rule, an optimal estimate of brain organization for a new individual can556

be obtained [8]. For the analysis presented in Fig. 5, we used 1-16 runs of data from the first task set of557

the MDTB dataset as training. The individual maps were then evaluated on the second task set, which558

contained 8 overlapping and 9 novel tasks [3].559

To apply this approach to new subjects with individual localizing data that is different from the560

task sets included in our atlas, the user would first estimate a new emission model from the data of all561
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individuals in the study. This new dataset-specific emission model can be used to localize regions in new562

individuals, given their data.563

Single-dataset parcellations and similarity analysis of parcellations564

To compare the differences between parcellations derived from different datasets, we trained the model on565

each dataset separately, estimating parcellation maps with 10, 20, 34, 40 and 68 regions. As an index of566

parcellation similarity, we calculated the adjusted Rand Index (ARI) between the winner-take-all voxel567

assignments of the resulting parcellations. The ARI was calculated across all 5 levels of granularity,568

resulting in a 5x5 matrix of ARIs for each dataset pair. Different datasets are differently reliable which569

could affect the similarity of two datasets. We therefore estimated the reliability of the parcellation by570

averaging the ARIs between different levels of granularity within each dataset, with the idea that reliable571

datasets should result in parcellations that are consistent across granularities. We then divided the ARI572

(also average across levels of granularity) between two datasets by the geometric mean of the two average573

within-dataset ARIs. This index served as a reliability corrected measure of correspondence between574

parcellations.575

Statistical tests to compare the similarity of two data set pairs were performed using a paired t-test,576

using reliability-corrected ARIs for the unique 25 different granularity pairs as independent observations.577

Finally, we used classic multi-dimensional scaling to visualize the structure of similarities between578

different parcellations. We calculated the first two eigenvectors of the square matrix of adjusted between-579

dataset similarities. The space defined by these two vectors optimally reproduces the overall similarity580

structure, with the dissimilarity (1-ARI) between two datasets reflected in the Euclidean distance between581

the two.582

DCBC evaluation583

To assess how well a given parcellation can predict functional boundaries in the cerebellum, we utilized the584

Distance-Controlled Boundary Coefficient (DCBC) [23]. This metric compares the correlation between585

voxel-pairs within a parcel to the correlation between voxel-pairs across a boundary, while accounting586

for spatial distance. Our evaluation included both the group parcellation (DCBC group) and individual587

parcellations (DCBC individual) obtained from this group atlas.588

Both group and individual DCBC were calculated in a cross-validated fashion, leaving out the test589

dataset during training of the overall model. The group DCBC was calculated by deriving a winner-take-all590

parcellation from the group probability map and evaluating the ability of these group-based boundaries to591

predict functional boundaries in each individual.592

To calculate the DCBC for individual parcellations, we used a localizer-like approach for individual593

precision mapping (see methods: individual precision mapping): One half of the test dataset served594

as the localizer data. First, we estimated a dataset-specific emission model for the localizer dataset595

across all subjects. Then, we used the localizer data from one specific subject to estimate the individual596

boundaries (see methods: group and individual parcellations). Hard-parcellated individual boundaries597

were derived using a winner-take-all approach on the subject’s resultant individual probability map. These598

were then tested for their ability to predict functional boundaries in the second half of the subject’s data.599

We then reversed the role of the two halves of the test set averaged performance across the two within-600

subject cross-validation folds. To make the evaluation of group-based and individual-based boundaries601

comparable, we also calculated the group DCBC by splitting each subject’s data in half and then averaging602

the performance across the two halves after individual DCBC calculation. A higher DCBC value indicates603

better performance of the parcellation.604

Prediction error evaluation605

To assess the ability of a given parcellation to predict functional responses in individual held-out data,606

we calculated a prediction error. Using the same localizer-like approach as for the individual DCBC, we607

first derived the individual parcellations from one half of each dataset, and converted these to winner-take608

all maps. We then used the data from N −1 subjects of the second half to estimate the mean functional609

profiles (vk) for each region. For each voxel in the Nth subject, we then used the profile of the assigned610

region as a prediction and calculated the prediction error as one minus the cosine similarity of prediction611

and data vector. When averaging these results across voxels, we weighted each cosine error by the length612

of the data vector to ensure that voxels with high signal strength would influence our evaluation more613

than noisy voxels [8].614
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Parcel similarity and clustering615

To develop a hierarchically organized system of maps, we started with the symmetric map with 68 parcels616

(34 per hemisphere) as our base. For clustering we derived a functional similarity index between parcels.617

We first averaged the estimated mean response vectors for each parcel and session vn
k across the left and618

right hemisphere, and then calculated the cosine similarity between each pair of parcels. We then took the619

weighted average of these cosine-similarities across sessions and datasets, with the weight of each session620

set to product if the dispersion parameter κn and number of subjects for that session Nn.621

We then iteratively merged the smallest parcels into the functionally most similar parcel, until622

all parcels had at least one voxel win the winner-take-all assignment, resulting in 32 parcels (16 per623

hemisphere). When merging parcels, we summed their probability maps to obtain the probability of a624

voxel to belong to the combined parcel. The emission models for the combined model were then refit625

to the data, keeping the probabilities in the arrangement model fixed. In a last step, we grouped the 32626

parcels (again, based on their functional profiles) into 4 domains. The labels for each parcel then followed627

the organization of Domain-Region-Hemisphere-Subregion.628

The colormap for our functional atlas was based on the weighted cosine similarity of the functional629

profiles (see above). We used classical multi-dimensional-scaling to represent these similarities in a630

3-dimensional space. This arrangement was then projected into RGB space. We used 3 spatial anchor631

points (motor region = green, demand = red, social linguistic = yellow) to achieve a consistent color632

scheme across parcellations (i.e. Figure 1a). As a result, the similarity of color of different parcels can be633

directly interpreted as an approximation of their functional similarity.634

Functional lateralization and Boundary symmetry635

To study lateralization, we assessed the symmetry of the functional profiles of left-right voxel pairs. For636

this, we calculated the cosine similarity of the functional profiles of each voxel pair. Functional profiles637

were obtained by averaging the estimated mean response vectors for each voxel in each session. The638

cosine similarities were then weighted by the session weight κn and the number of subjects Nn, for session639

n.640

To investigate left-right boundary symmetry in the cerebellum, an asymmetric version of the atlas641

was estimated (see methods: Symmetry constraint). An index of boundary symmetry was calculated642

as the correlation between the parcel probability vectors of the asymmetric and the symmetric atlas for643

each voxel, either for the group map, or for the individual parcellations. For visualization, the correlation644

values within all datasets, excluding the Nishimoto and IBC dataset due to the relatively low reliabilities,645

were averaged across individuals.646

Cerebral cortical connectivity647

Connectivity models were fitted for each individual (and dataset) separately. As described in King et al.648

[28], we parcellated the cerebral cortex into 1876 parcels using a regular icosahedron. For task-based649

data we used the normalized activity estimates, for the resting-state data, the preprocessed time series650

(see methods: Datasets and data organization). These data were averaged across all voxels in each651

cerebral ROI, forming the NxQ matrix X. The same data was extracted for each cerebellar voxel in atlas652

space. The connectivity weights were then estimated to form the best predictive model Y = XW using653

Ridge-regression. The ridge coefficient was tuned for each dataset separately to yield the best prediction654

performance on all the other datasets.655

For evaluation, we averaged the connectivity weight across all subjects in each training dataset. For656

each individual in the evaluation dataset, we used the cerebral cortical activity measures and the average657

connectivity weights to predict the individual cerebellar activity patterns. We then calculated the cosine658

similarity between the predicted and observed cerebellar activity [28].659

When evaluating a connectivity model on the same dataset it was trained on, we adopted a leave-660

one-subject out approach. For each individual, the connectivity weights were averaged across all other661

individuals in that dataset, and then applied to make the prediction for that single subject.662

Finally, we investigated if an integration across all datasets would increase the predictive power of663

the connectivity model. For this we simply averaged connectivity models across all task-based datasets,664

always taking care to leave the particular evaluation subject out of the averaging of the connectivity665

weights.666
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Functional profiles for the MDTB dataset667

To characterize the functional profile of each cerebellar region, we calculated the mean task response668

of all parcels in the MDTB dataset. These functional profiles were the normalized activation estimates669

(see methods: Dataset and Data Organization), averaged across the individualized regions within each670

individual. To account for activation that can be explained by the motor aspects of each task, we used the671

number of movements in each condition (left hand presses, right hand presses and saccades per second) as672

a covariate alongside regressors that coded for each condition separately [3]. The columns of the design673

matrix and the average functional profiles were z-normalized across conditions. We estimated a linear674

model using ridge regression (L2 regularization) to arrive at a final estimate for the motor features and675

task-activations.676

Inter-individual variability677

To quantify inter-individual variability in the cerebellum, we calculated Pearson’s correlation coefficient678

of each voxel’s response profile pairwise between all subjects within the MDTB dataset. To account for679

the measurement noise, we derived two independent estimates for each subject and voxel: one from the680

first half, the other from the second half of the data. Correlations were computed on the concatenated two681

profiles and the reliability was calculated by correlating the two independent estimates of the response682

profile within each subject. The inter-subject correlation was normalized by dividing each value by the683

square root of the product of the two subject’s reliabilities. For purposes of visualization of each voxel’s684

inter-individual variability, we averaged the inter-subject correlation values across subjects and divided it685

by the reliability averaged across subjects, obtaining a single value per voxel. These voxel values were686

projected to the flatmap.687
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1 DATA AVAILABILITY862

The raw data for the fMRI studies used in this project are publicly available on https://openneuro.863

org/ for the MDTB dataset, the Nishimoto dataset and the IBC dataset. For the HCP dataset, raw and pre-864

processed data is available at https://www.humanconnectome.org/study/hcp-young-adult/865

data-releases. The MDTB-Highres, WMFS and Somatotopic dataset has not yet been openly re-866

leased.867

2 CODE AVAILABILITY868

For a practical example on how to generate individual cerebellar parcellations using a new dataset, see869

https://hierarchbayesparcel.readthedocs.io/en/latest/indiv_parcel.html870

The code for the hierarchical Bayesian parcellation framework is available at https://github.871

com/DiedrichsenLab/HierarchBayesParcel. The organization, file system, and code for872

managing the diverse set of datasets is available at https://github.com/DiedrichsenLab/873

Functional_Fusion. The code for building the atlas and generating the results and figures in this pa-874

per is publicly available as the GitHub repository https://github.com/DiedrichsenLab/875

ProbabilisticParcellation. The code for connectivity modelling is available at https:876

//github.com/DiedrichsenLab/cortico_cereb_connectivity. For a tutorial on how877

to apply the connectivity model to new data to make predictions, see https://github.com/878

DiedrichsenLab/cortico_cereb_connectivity/blob/main/notebooks/0.Application_879

example.ipynb880
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SUPPLEMENTARY MATERIALS AND FIGURES891

Name Subjects No. conditions min/subject Voxel size (mm) Description

MDTB 24 62 320 3T, 3mm Cognitive, motor, perceptual, social

Highres-MDTB 8 9 120 7T, 1.5mm Cognitive, motor, perceptual, social

Nishimoto 6 103 162 3T, 2mm Cognitive, motor, perceptual, social

IBC 12 208 822 3T, 1.5mm Cognitive, motor, perceptual, social

WM 16 17 65 3T, 3mm Motor and working memory task

Multi-demand 37 12 100 3T, 2mm Executive Tasks

Somatotopic 8 6 96 1.8/2.4 Motor

HCP-Unrelated 100 100 none 60 3T, 2mm Resting-state

Table 1. FMRI datasets used for the functional fusion. All datasets but the last are task-based. The
last one refers to resting-state data from a subset of the HCP dataset.
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Figure 1. Building a functional atlas of the cerebellum across datasets. a, Parcellations (K=68)
derived from each single dataset. The probabilistic parcellation is shown as a winner-take-all projection
onto a flattened representation of the cerebellum [19]. Functionally similar regions are colored similarly
within a parcellation (see methods: parcel similarity) and spatially similar parcels are assigned similar
colors across parcellations. Dotted lines indicate lobular boundaries. b, Projection of the between-dataset
adjusted Rand Index (ARI) of single-dataset parcellations into a 2d-space through multi-dimensional
scaling (see methods: Single-dataset parcellations and similarity analysis of parcellations). c,
Within-dataset reliability of parcellation, calculated as the mean ARI across the 5 levels of granularity (10,
20, 34, 40 and 68 regions). Errobars indicate SE of the mean across granularity pairs). d,
Reliability-adjusted ARI between each single-dataset parcellations and the MDTB (task-based) and HCP
(resting parcellation) parcellation. Errorbars indicate standard error of the mean across levels of
granularity, ** p < 0.01, *** p < 0.0001. e, DCBC evaluation of the symmetric and asymmetric atlas
averaged across granularities evaluated on the group map (left) or on individual maps derived with that
atlas (right). f, DCBC evaluation of the symmetric group map and of individual maps derived from the
model with 10, 20, 34, 40, and 68 regions. 20/33
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Figure 2. Cerebellar functional atlas at three levels of granularity. a, Medium granularity with 32
regions; 16 per hemisphere. The colormap represents the functional similarity of different regions (see
methods: parcel similarity and clustering). b, Fine granularity with 68 regions; 34 per hemisphere. c,
Coarse granularity with 4 functional domains. The symmetric version of the atlas is shown, for the
asymmetric version, see Fig. 4. d, Hierarchical organization based on the functional similarity of regions,
depicted as a dendrogram. The label of each region indicates the functional domain (M,A,D,S), followed
by a region number (1-4), and a lower-case letter for the subregion (a-d).

21/33

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 1, 2024. ; https://doi.org/10.1101/2023.09.14.557689doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.14.557689
http://creativecommons.org/licenses/by-nc-nd/4.0/


a
Correlation

Connectivity
Weight

0.00

0.10

0.20

0.30

0.40

0.50

c

So
m
at
om

ot
or
-A

So
m
at
om

ot
or
-B

Vi
su
al
-C
en
tr
al

Vi
su
al
-P
er
ip
he
ra
l

Pr
em

ot
or
-P
os
te
rio
rP
ar
ie
ta
l

do
rs
al
A
tt
en
tio
n-
A

do
rs
al
A
tt
en
tio
n-
B

Ci
ng
ul
ar
-O
pe
rc
ul
ar

Fr
on
to
pa
rie
ta
l-A

Fr
on
to
pa
rie
ta
l-B

Sa
lie
nc
e/
Pa
rie
ta
lM

em
or
y

D
ef
au
lt-
A

D
ef
au
lt-
B

La
ng
ua
ge

Au
di
to
ry

S5

D2

D3

S3

S2

S1

D4

M3

M2

D1

A3

A2

A1

M4

S4

M1

b

Fu
si
onH
CP

M
D
TB

N
is
hi
m
ot
o

IB
C

W
M

D
em

an
d

So
m
at
ot
op
ic

0.0

0.2

0.4

0.6

0.8

Co
rr
el
at
io
n

Predictive correlation

Predictive correlation

Average connectivity weight

Training dataset

0.0005

0.0000

0.0005

0.0010

0.0010

MDTB

H
CP

Fu
si
on

Nishimoto

IBC

WMFS

Demand

Somatotopic

M
D
TB

N
is
hi
m
ot
o

IB
C

W
M

D
em

an
d

So
m
at
ot
op
i c

Training dataset

Te
st
da
ta
se
t

Figure 3. Cerebro-cerebellar connectivity models. a, Matrix shows the correlation between observed
and predicted cerebellar activity patterns for each test dataset (rows). Connectivity models were trained
on each training datasets (columns) separately. Evaluation was cross-validated across subjects when
training- and test-dataset were identical. b, Correlation between observed and predicted activity patterns,
averaged across test-datasets. The Fusion model used the average connectivity weights across all
task-based datasets (excluding the HCP resting-state data). c, Average connectivity weights between each
cerebellar region (row), and each of the 15 resting-state networks as described in [29].
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Figure 4. Functional lateralization and Boundary asymmetry in the cerebellum. a, Symmetric atlas
winner-take-all map; b, Asymmetric atlas winner-take-all map; c, Functional lateralization quantified as
the correlations of the functional responses of anatomically corresponding voxel of the left and right
hemisphere, averaged across subjects and within each functional region. d, Boundary symmetry
calculated as the correlations of the probabilistic voxel assignments between the symmetric and
asymmetric version of the atlas.
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Figure 5. The functional atlas improves individual precision mapping. a, Individual parcellations
from three participants, using 320min of individual data. The region colors correspond to the atlas at
medium granularity (32 regions). b, Map of the average inter-subject correlations of functional profiles.
Correlations are calculated between any pair of subjects in the MDTB dataset, corrected for the reliability
of the data (see methods: Inter-individual variability). c, Group probability map for regions S1 and S2
(left and right combined) show the overlap of regions. d, DCBC evaluation (higher values indicate better
performance) on individual parcellations (blue line) derived on 10-160min of individual functional
localizing data, compared to group parcellation (dashed line) or the combination of group map and
individual data (orange line). e, Equivalent analysis using prediction error (see methods, lower is better).
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Figure S1. Fused atlas performance compared to existing atlases. DCBC evaluation of existing
anatomical parcellation (Lobular: [5]), task-based parcellation (MDTB: [3], and resting-state
parcellations (7 and 17 regions: [7]; 10 regions: [6]) averaged across all datasets.
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Figure S2. Functional profiles of regions in MDTB dataset. Average activity relative to the mean
activity in all tasks in MDTB dataset corrected for motor features. Responses were estimated from
subject-specific regions and averaged across subjects for visualization. To account for activation that can
be explained by the motor aspects of each task, number of movements were used as covariates alongside
regressors that coded for each condition separately. Movements were left hand presses, right hand presses
and saccades per second.
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Figure S3. Probability maps and region size. a, Probability maps for each region displayed on the flat
representation. b, Size estimate for each region in terms of the number of voxels (2mm3) using
winner-take-all assignment. c, Size estimate for each region in terms of the number of voxels (2mm3)
using probabilistic assignments.
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Figure S4. Atlas in volumetric space. Atlas shown at medium granularity (32 regions; 16 per
hemisphere). Top row shows motor and action regions, middle row shows multi-demand regions and
bottom row shows social-linguistic-spatial regions. Horizontal fissure is marked in white.
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Figure S5. Atlas in 3D view. Atlas shown at medium granularity (32 regions; 16 per hemisphere)
projected onto the pial surface. The central view is showing the posterior side of the cerebellum. The
vertically arranged views show the superior side of the cerebellum at the top and the inferior side at the
bottom. The horizontally arranged views show the left and right side of the cerebellum.
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Figure S6. Regional differences in functional responses for selected tasks. a-b, Spatial imagery,
theory-of-mind, motor imagery and rest separate social-linguistic-spatial (S1-5) regions. c-d, Verb
generation, spatial map, and animated movie tasks seperate social-linguistic-spatial regions from other
domains. For c, only the right regions are shown and for d only the left regions are shown. For the other
panels the responses are shown averaged across hemispheres.
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Figure S7. Cortico-cerebellar connectivity weights and probability maps. Parcel probability maps
for motor (a-d) and action (e-h) regions are shown in the middle of each figure inset, surrounded by the
cortical input weights for the left and right cerebellar parcel. Weights for the left cerebellar parcel are
shown to the left of the probability map and for the right cerebellar parcel to the right of each probability
map on the cortical flatmap. Motor regions include oculomotor vermis M1 (a), tongue and vermal region
M2 (b), hand M3 (c)) and lower body M4 (d)) region. Action regions include spatial simulation regions
A1 (e), classical action observation A2 (f) and motor imagery region A3 (g).
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Figure S8. Cortico-cerebellar connectivity weights and probability maps for demand. Parcel
probability maps for multiple demand (a-d) and social-linguistic-spatial (e-h) regions are shown in the
middle of each figure inset, surrounded by the cortical input weights for the left and right cerebellar
parcel. Weights for the left cerebellar parcel are shown to the left of the probability map and for the right
cerebellar parcel to the right of each probability map on the cortical flatmap. Demand regions include
spatial working memory region (a), recall regions (b), difficulty-related (c)) and n-back region (d)) region.
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Figure S9. Cortico-cerebellar connectivity weights and probability maps for
social-linguistic-spatial regions. Parcel probability maps for multiple demand (a-d) and
social-linguistic-spatial (e-h) regions are shown in the middle of each figure inset, surrounded by the
cortical input weights for the left and right cerebellar parcel. Weights for the left cerebellar parcel are
shown to the left of the probability map and for the right cerebellar parcel to the right of each probability
map on the cortical flatmap.social-linguistic-spatial regions include linguistic region S1 (a), social region
S2 (b), rest region S3 (c), self-projection region S4 (d) and scene construction region S5
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Figure S10. Individual functional lateralization for each dataset. Functional lateralization calculated
as the correlations of the functional responses of anatomically corresponding voxel of the left and right
hemisphere. Functional lateralization was averaged across subjects within each dataset.

100 0 100

M1

M2

M3

M4

A1

A2

A3

D1

D2

D3

D4

S1

S2

S3

S4

S5

Left Bigger Right Bigger

Figure S11. Size difference between left and right region pairs of the asymmetric atlas. Regions
were estimated in individual subjects using the asymmetric atlas version. The size difference was
calculated as number of voxels (2mm3) in right parcel minus number of voxels in left parcel for each
individual. Bars show average size difference across individuals and error bars indicate standard error of
the mean.
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