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Abstract 15 

As terabytes of multi-omics data are being generated, there is an ever-increasing need for methods 16 
facilitating the integration and interpretation of such data. Current multi-omics integration 17 
methods typically output lists, clusters, or subnetworks of molecules related to an outcome. Even 18 
with expert domain knowledge, discerning the biological processes involved is a time-consuming 19 
activity. Here we propose PathIntegrate, a method for integrating multi-omics datasets based on 20 
pathways, designed to exploit knowledge of biological systems and thus provide interpretable 21 
models for such studies. PathIntegrate employs single-sample pathway analysis to transform multi-22 
omics datasets from the molecular to the pathway-level, and applies a predictive single-view or 23 
multi-view model to integrate the data. Model outputs include multi-omics pathways ranked by 24 
their contribution to the outcome prediction, the contribution of each omics layer, and the 25 
importance of each molecule in a pathway. Using semi-synthetic data we demonstrate the benefit of 26 
grouping molecules into pathways to detect signals in low signal-to-noise scenarios, as well as the 27 
ability of PathIntegrate to precisely identify important pathways at low effect sizes. Finally, using 28 
COPD and COVID-19 data we showcase how PathIntegrate enables convenient integration and 29 
interpretation of complex high-dimensional multi-omics datasets. The PathIntegrate Python 30 
package is available at https://github.com/cwieder/PathIntegrate.   31 

 32 

Author summary 33 

Omics data, which provides a readout of the levels of molecules such as genes, proteins, and 34 
metabolites in a sample, is frequently generated to study biological processes and perturbations 35 
within an organism. Combining multiple omics data types can provide a more comprehensive 36 
understanding of the underlying biology, making it possible to piece together how different 37 
molecules interact. There exist many software packages designed to integrate multi-omics data, but 38 
interpreting the resulting outputs remains a challenge. Placing molecules into the context of 39 
biological pathways enables us to better understand their collective functions and understand how 40 
they may contribute to the condition under study. We have developed PathIntegrate, a pathway-41 
based multi-omics integration tool which helps integrate and interpret multi-omics data in a single 42 
step using machine learning. By integrating data at the pathway rather than the molecular level, the 43 
relationships between molecules in pathways can be strengthened and more readily identified. 44 
PathIntegrate is demonstrated on Chronic Obstructive Pulmonary Disease and COVID-19 45 
metabolomics, proteomics, and transcriptomics datasets, showcasing its ability to efficiently extract 46 
perturbed multi-omics pathways from large-scale datasets.  47 

  48 
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Introduction 49 

Multi-omics data integration is rapidly becoming a mainstream strategy used to elucidate 50 
complex molecular mechanisms in biological systems. Data profiled using diverse 51 
modalities, including genomics, epigenomics, transcriptomics, proteomics, and 52 
metabolomics provides complementary insights into the regulation of diverse biomolecules 53 
and their cellular functions1. Multi-omics data integration can delineate the transition from 54 
genotype to phenotype, while providing a more holistic view of a biological system. Despite 55 
the promise that multi-omics integration holds, the field itself is relatively young and faces 56 
numerous challenges1–6. Among these is the question of which method to use, and how to 57 
interpret the results. Several review papers categorise multi-omics integration methods 58 
according to underlying concepts, models, or intended purposes7. The choice of method used 59 
will depend highly on the desired outcome, which can be broadly split into outcome 60 
prediction (e.g. sample stratification) or elucidating molecular mechanisms (but often a 61 
combination of these). Studies focused on outcome prediction may leverage integration 62 
methods based on kernels or deep learning to optimise predictive performance8–10, whereas 63 
those where the goal is hypothesis generation may opt for more explainable models using 64 
classical supervised11,12 or unsupervised learning approaches12–15, joint pathway analysis16–65 
19, network models12,20, or Bayesian statistics 7. The latter ‘hypothesis generation’-based 66 
analysis, regardless of the method used, will often output results in the form of lists of 67 
molecules (i.e. genes, proteins, metabolites), typically ranked by their contribution to the 68 
model. Depending on the parameters and outputs of the model, the end-user may have 69 
multiple latent variables 13, clusters21,22, or networks23 composed of many molecules (genes, 70 
proteins, and metabolites) to analyse. Doing so is not only be time consuming but requires 71 
expert domain knowledge to place biomolecules into a functional context.  72 

Pathway analysis (PA) refers to computational methods that have been specifically 73 
developed to alleviate the task of analysing long lists of molecules by placing them into a 74 
functional context based on curated pathway collections 24. Generally, conventional PA 75 
methods such as over-representation analysis or gene set enrichment analysis use statistical 76 
tests to determine which pathways are associated with a phenotype of interest 25,26. The 77 
output is typically a list of significantly enriched pathways and their associated test statistics 78 
and p-values. PA methods are frequently used due to their convenient representation of 79 
omics data in the form of pathway descriptors, providing a straightforward interpretation of 80 
the biological processes that may contribute to disease phenotypes. Multi-omics pathway 81 
analysis is a relatively new but promising area of research 27. Tools such as MultiGSEA 19, 82 
ActivePathways 17, PaintOmics28, and IMPaLA 16 all leverage multiple layers of biological 83 
information to compute enrichment of multi-omics pathways, associated statistical 84 
significance levels, and visualisations as an end-result. While highly useful, these methods 85 
lack certain desirable features, including the ability to predict outcomes, enabling model 86 
performance evaluation, or obtaining a representation of the data in a lower-dimensional 87 
space. These goals can be achieved by using pathway-based predictive models, which use 88 
pathway rather than molecular-level features to model and predict new data, and infer 89 
pathway enrichment through feature importance 29–32. We provide a detailed overview of 90 
related methods in supplementary information, but to the best of our knowledge, we are 91 
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unaware of any one method which provides predictive, integrative modelling of multi-omics 92 
data at the pathway-level.   93 

In this work we introduce PathIntegrate, a modelling framework and corresponding Python 94 
toolkit to facilitate pathway-based multi-omics integration. PathIntegrate employs single-95 
sample pathway analysis approaches (ssPA), which transform molecular-level abundance 96 
data matrices into pathway-level matrices, by using summarisation approaches (e.g. 97 
principal component analysis (PCA)) to condense molecular-level measurements into 98 
pathway scores for each individual sample in a dataset 33–37. By using pathway-transformed 99 
multi-omics datasets as input to multivariate supervised models, multi-omics data can be 100 
integrated at the pathway-level, providing the user with a range of outputs including i)  101 
interpretation of multi-omics pathways associated with the outcome, ii)  prediction of 102 
outcomes, iii)  contribution of each omics view to the model and prediction (in the case of 103 
multi-view models), iv)  projection of the multi-omics data to a lower dimensional space (in 104 
the case of latent variable models). An inherent challenge in multi-omics integration is the 105 
heterogeneity between omics datatypes, both in terms of the number of features profiled 106 
and the range of numerical values. PathIntegrate addresses these within the pathway-107 
transformation step, where disparate omics datasets are brought to a common scale, i.e. in 108 
terms of pathway ‘activity’. Compared to their molecular-level counterparts, pathway-based 109 
multi-omics integration models can provide a more parsimonious model when there are 110 
fewer input pathways than molecules, while also enabling the detection of multiple small, 111 
correlated signals that may not be detected in the molecular-level data. Moreover, pathway-112 
based modelling could increase robustness to data noise by maximising biological variation 113 
and simultaneously reducing technical variation 29.  114 

PathIntegrate consists of two supervised learning frameworks for pathway-based multi-115 
omics integration: PathIntegrate Single-View, which produces a multi-omics pathway-116 
transformed dataset and applies a classification or regression model to the data, and 117 
PathIntegrate Multi-View, which uses a multi-block partial least regression (MB-PLS) model 118 
to model interactions between pathway-transformed omics datasets. Note that both 119 
PathIntegrate Multi-View and Single-View are multi-omics integration methods, and here we 120 
use the terms ‘Multi’ and ‘Single’ to refer to the type of predictive model applied (multi-view 121 
or single-view38). As both these frameworks rely on pathway transformation (ssPA) of the 122 
input omics data, we first demonstrate the ability of univariate methods to detect pathway 123 
signals at higher power than molecular-level signals in low signal-to-noise scenarios. We 124 
then show that PathIntegrate models can precisely detect enriched pathways even at low 125 
effect sizes, as well as use this information to accurately classify samples. PathIntegrate was 126 
benchmarked against DIABLO11, a popular multi-omics integration tool with a similar 127 
predictive framework, but which does not use pathway transformation. Finally, we showcase 128 
the benefits of using PathIntegrate to interpret complex data using case studies on Chronic 129 
Obstructive Pulmonary Disease (COPD) and COVID-19 multi-omics datasets, illustrating the 130 
ability of the method to identify important and relevant pathway signatures. The 131 
PathIntegrate Python package is freely available at 132 
https://github.com/cwieder/PathIntegrate, and is designed to be compatible with many 133 
SciKitLearn39 functions, enabling fast and efficient model optimisation and evaluation. 134 
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PathIntegrate models are fitted in minutes and can run on a laptop with standard hardware 135 
(e.g. 8GB RAM, 1.4 GHz processor). 136 

Results 137 

Pathway transformation increases sensitivity to coordinated, low signal-to-noise 138 

biological signals 139 

Aside from improvements in interpretability, we hypothesized that pathway-based 140 
modelling or transformation of data can also provide increased sensitivity in detection of 141 
pathway signals in the data, particularly in low signal-to-noise scenarios. By combining 142 
abundance levels of correlated individual molecules within a pathway, we anticipate that 143 
statistical methods will be able to detect the pathway signal with higher power than 144 
individual molecular signals alone. Throughout this work, we refer to ‘molecular-level’ 145 
models as those with individual molecular entities (such as genes, proteins, and metabolites) 146 
as input features, as opposed to ‘pathway-level’ models, which take ssPA pathway-147 
transformed data as input and hence features represent a combination of molecules in each 148 
pathway.  Briefly, ssPA methods require an 𝑋𝑁×𝑀 matrix of molecules as input and combine 149 
the abundance values of molecules in a set of predefined pathways to provide an 𝐴𝑁×𝑃 150 
pathway-level matrix, where features represent pathways and each sample has an ‘activity 151 
score’ for each pathway (see Methods).  152 

The use of ‘semi-synthetic’ data, in which artificial biological signals are inserted into 153 
experimental multi-omics data, provides us with a ground truth we can use to benchmark 154 
methods throughout this work33. We used semi-synthetic multi-omics (metabolomics and 155 
proteomics) data derived from COPD and COVID-19 studies (see Methods) to examine 156 
whether pathway transformation of multi-omics data allowed pathway signals to be 157 
detected by univariate analysis (Mann Whitney-U tests (MWU)) at higher power than 158 
individual molecular signals (Fig. 1 and Supplementary Fig. 3). Each omics dataset was 159 
transformed to the pathway level using ssPA, using the kPCA ssPA method33 (see Methods). 160 
At each realisation of the simulation, repeated for each Reactome pathway accessible in the 161 
datasets, we enriched all the molecules in the pathway (metabolites and/or proteins) in the 162 
simulated disease group for a range of effect sizes, corresponding to the range of log2 fold 163 
changes observed in the original datasets (Supplementary Fig. 1, Supplementary Fig. 2).  164 

We applied MWU tests to detect differences between the simulated phenotype groups based 165 
on the enrichment of each of the individual molecules in the molecular level data or ssPA 166 
scores of the target pathway itself. For the molecular level simulation, we applied Fisher’s 167 
method to combine p-values in the target pathway if at least 50% constituent molecules were 168 
significant (p ≤ 0.05), otherwise the combined p-value was set to 1. Encouragingly, at lower 169 
effect sizes (i.e. 0.25-0.55), we observed a higher proportion of significant p-values in the 170 
pathway-transformed data than in the molecular level data. The same trends were observed 171 
irrespective of the dataset used to create the simulation (Fig. 1 and Supplementary Fig. 3). 172 
This suggests that pathway-transformation approaches could improve the detection of low 173 
signal-to-noise, correlated signals in multi-omics datasets, and motivates the use of 174 
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PathIntegrate models in the remainder of this work, which use ssPA pathway transformation 175 
to enable pathway-based multi-omics integration.  176 

 

Figure 1: Pathway transformation enhances sensitivity to low signal-to-noise signals. y 177 
axis shows proportion of MWU tests significant at Bonferroni p ≤ 0.05, performed either on 178 
the pathway-level data or the molecular level data, at varying effect sizes shown on x-axis. 179 
Semi-synthetic data based on COVID-19 dataset. 180 

PathIntegrate: Supervised pathway-based multi-omics integration frameworks 181 

In this study we present and investigate the use of the PathIntegrate modelling frameworks 182 
for multi-omics pathway-based integration (Fig. 2). PathIntegrate provides two supervised 183 
models: Multi-View and Single-View. They are both designed to take two or more (k) 184 
𝑋𝑁×𝑀 sample-by-molecule omics abundance matrices as well as a labelled outcome vector 𝑦 185 
as input and apply a single-sample pathway analysis transformation (facilitated by our 186 
recently published ssPA Python package33) before a predictive model is applied to the data. 187 
PathIntegrate can model both continuous and binary outcomes using classification and 188 
regression models, but for simplicity we have demonstrated it using binary (e.g. case-189 
control) outcomes throughout this work. Both frameworks achieve the same key outcomes: 190 
i) using pathway scores to predict an outcome, and ii) ranking multi-omics pathways by 191 
importance in the prediction. PathIntegrate Multi-View uses a multi-table integration model 192 
and can therefore provide interpretable insights both within and between omics views, 193 
whereas PathIntegrate Single-View provides more flexibility on the high-level predictive 194 
model applied and can be better tuned towards prediction. Both models use a single set of 195 
multi-omics pathways P, where each pathway has a unique identifier and description, and 196 
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contains a set of molecular identifiers which can either belong to different omics (i.e. 197 
metabolites, proteins, and genes) or in some cases only one omics (i.e. only proteins). Using 198 
these pathways, PathIntegrate Multi-View computes pathway scores on each omics view 199 
separately, whereas Single-View computes them from multi-omics data. 200 

PathIntegrate Multi-View uses a multi-block partial least squares (MB-PLS) latent variable 201 
model to integrate ssPA-transformed multi-omics data. Each omics block is transformed to 202 
the pathway level individually and the resulting k 𝐴𝑁×𝑃𝑖

 blocks are used as input to the MB-203 

PLS model. This preserves the block structure of each omics view and importantly allows 204 
users to compute how much each view contributes to the prediction of the outcome variable 205 
𝑦, as well as extract within- and between-omics level results such as pathway importances 206 
and latent variable representations (scores and superscores40–42). Importantly, the latent 207 
variable model used by Multi-View enables extraction of orthogonal biological effects, 208 
similar to PCA, possibly capturing contrasting processes. Furthermore, such models are ideal 209 
for pathway-level data, where there is expected to be a high degree of overlap and co-210 
linearity which is accounted for by the PLS framework.  211 

PathIntegrate Single-View begins by computing multi-omics pathway scores by performing 212 
ssPA transformation on molecular abundance or expression profiles obtained across 213 
multiple omics data blocks (e.g. genes, proteins, and metabolites). A single 𝐴𝑁×𝑃 pathway-214 
level matrix is returned, in which each feature represents the ‘activity’ of each sample in a 215 
multi-omics pathway. The resulting multi-omics pathway scores are used as input to a 216 
predictive model (any SciKitLearn compatible model e.g., partial least squares discriminant 217 
analysis (PLS-DA), logistic regression, support vector machine, random forest, etc). Pathway 218 
importances can be obtained using variable selection approaches appropriate for the model 219 
used (e.g., Gini impurity for random forests or the 𝛽 coefficient for regression-based models). 220 

By describing and evaluating the two PathIntegrate modelling frameworks we aim to help 221 
users select the method best suited to their study design and research questions. 222 
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 223 

Figure 2: PathIntegrate Multi-View (left) and Single-View (right) modelling 224 
frameworks for multi-omics pathway-based integration. Frameworks are outlined in 225 
terms of their input data, pathway-transformation stage, statistical model, and outputs. Blue 226 
data blocks represent omics data which has been transformed from the molecular (𝑋𝑁×𝑀 ) 227 
space to the pathway (𝐴𝑁×𝑃) space using ssPA. Both Single-View and Multi-View make use of 228 
the same multi-omics pathway set.  229 

PathIntegrate performance evaluation 230 

PathIntegrate Multi-View and Single-View were evaluated in a classification setting by a) the 231 
ability to discriminate between sample classes based on important pathways, and b) the 232 
ability to rank important pathways highly. Using semi-synthetic simulated metabolomics 233 
and proteomics data (see Methods) we enriched one target Reactome pathway containing 234 
metabolites and/or proteins at a time, at varying effect sizes, and repeated this for each 235 
pathway accessible in the datasets. For simplicity and consistency between datasets we 236 
integrated two omics throughout the performance evaluation section. Results based on 237 
COPDgene semi-synthetic data are shown in Fig. 3, and results based on COVID-19 semi-238 
synthetic data are shown in Supplementary Fig. 8. Note that this simulation design is rather 239 
conservative, because only one pathway is enriched in each realisation (although its 240 
constituent molecules may overlap with other pathways), whereas in a real biological system 241 
we may expect multiple pathways to be enriched at once. PathIntegrate Multi-View used 242 
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multi-block PLS as the underlying predictive model, and for purposes of comparison, 243 
PathIntegrate Single-View used standard PLS-DA.  244 

We compared PathIntegrate to the state-of-the-art multi-omics integration method DIABLO 245 
from MixOmics 11,43 . To the best of our knowledge, DIABLO is the most similar multi-omics 246 
integration method developed to date which makes use of a multi-view framework. As 247 
DIABLO is flexible as to the input data matrices, we compared standard DIABLO (using 248 
molecular-level omics data, ‘DIABLO molecular-level’), as well as a pathway-based DIABLO 249 
(‘DIABLO pathway') using the same ssPA-transformed omics matrices as input to 250 
PathIntegrate Multi-View. Importantly, although we are comparing the performance of 251 
PathIntegrate to DIABLO, we do not expect significant increases in predictivity or ability to 252 
detect the target pathway, due to the similarity of the underlying generalised canonical 253 
correlation analysis model to MB-PLS. Instead, we aim to highlight the flexibility of using 254 
pathway scores as input to supervised integrative models, such as DIABLO, and that even 255 
using different multivariate algorithms can yield predictive models capable of identifying 256 
target pathways with high sensitivity and specificity, and thus generating more interpretable 257 
results.  258 

 259 

  260 
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 261 

Figure 3: Performance of PathIntegrate and DIABLO vs. effect size, based on semi-262 
synthetic data measured by AUROC. COPDgene metabolomics and proteomics data were 263 
integrated in each model. a. Ability to correctly predict sample outcomes (case vs. control). 264 
We compared PathIntegrate Multi-View and Single-View to DIABLO using both molecular and 265 
pathway-level multi-omics data. b. Ability to correctly recall target enriched pathway. We 266 
compared DIABLO RGCCA model loadings to the Multi-View MB-PLS VIP and Single-View PLS 267 
VIP statistics for pathway importance. c. Comparison of PathIntegrate Multi-View 268 
classification performance using KEGG and Reactome pathway databases as well as 269 
molecular-level model. d. Effect of sample size on PathIntegrate Multi-View classification 270 
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performance. For panels a-c error bars indicate 95% confidence intervals on the mean AUROC 271 
(in some cases they appear smaller than point sizes).  272 

A fundamental question is whether modelling data using pathways can yield improvements 273 
in predictive performance compared to using molecular level data. Fig. 3a shows the ability 274 
of PathIntegrate Multi-View, PathIntegrate Single-View, and DIABLO to predict samples in 275 
an unseen test set based on AUROC (Fig. 3a, Supplementary Fig. 8a). All methods began to 276 
discriminate sample classes even at low effect sizes (0.1 - 0.25), concordant with findings 277 
from the univariate simulation. The pathway-based models (PathIntegrate Multi-View, 278 
Single-View and ‘DIABLO pathway’) exhibited improved performance compared to the 279 
‘DIABLO molecular-level’ (standard) model across all effect sizes. As effect size increased 280 
from 0.25-1.0 the PathIntegrate methods performed similarly to ‘DIABLO pathway’. Overall, 281 
these results suggest that using pathway-level models may yield improved predictive 282 
performance compared to molecular-level models. 283 

We also compared the predictive performance of PathIntegrate models using pathways from 284 
two different databases, Reactome and KEGG, as well as the performance of MB-PLS and PLS 285 
models using the molecular-level data (i.e. PathIntegrate without the pathway-286 
transformation step) (Fig. 3c/Supplementary Fig. 8c shows PathIntegrate Multi-View and 287 
Supplementary Fig. 5/Supplementary Fig. 9 show PathIntegrate Single-View and DIABLO). 288 
Results for the molecular level simulation can vary depending on the number of molecules 289 
enriched at each realisation, which correspond to the size of the pathway in the equivalent 290 
pathway-level simulation. Because Reactome and KEGG have differing distributions of 291 
pathway sizes44, we randomly sampled the number of molecules enriched in each realisation 292 
based on the combined distribution of Reactome and KEGG pathway sizes, in order to reduce 293 
dependence on database pathway size. At lower effect sizes (0.1 - 0.25), both the molecular 294 
and pathway-level models performed similarly, whereas at moderate-to-high effects the 295 
pathway-based models exhibited an increase in predictive performance concordant with 296 
trends observed in Fig. 3a. Models based on KEGG pathways appear to perform marginally 297 
better than Reactome pathways at larger effect sizes, which may be due to KEGG pathways 298 
being larger on average (see Supplementary Fig. 4 and Supplementary Table 1 for pathway 299 
database size statistics). 300 

We next evaluated the ability of PathIntegrate and ‘DIABLO pathway’ to accurately detect 301 
the target enriched pathway. (Fig. 3b, Supplementary Fig. 8b). For PathIntegrate Single-View 302 
and Multi-View methods, variable importance in projection (VIP and multi-block-VIP) were 303 
used to evaluate feature importances41. p-values for the significance of each pathway feature 304 
VIP or MB-VIP value were computed empirically based on 10,000 sample permutations with 305 
BH-FDR correction. For ‘DIABLO pathway’, the RGCCA loadings on component 1 were used 306 
to infer feature importance, and p-values were subsequently computed using the same 307 
permutation testing approach. A true positive enriched pathway was defined as being the 308 
target enriched pathway and having an adjusted p-value of ≤ 0.05 (see Methods for full 309 
description of the confusion matrix computation). Both PathIntegrate and DIABLO models 310 
performed well in terms of target pathway detection, even being able to detect the target 311 
pathway with high AUC (≥ 0.90) at low effect and high noise scenarios (effect size = 0.25). 312 
PathIntegrate Multi-View performed almost identically to ‘DIABLO pathway’. All methods 313 
experience a decrease in AUC at higher effect sizes (0.5-1), which is expected due to 314 
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pathways overlapping with the target pathway reaching significance, and in-built 315 
normalisation of the model weights/loadings causing the magnitude of the coefficient of the 316 
target pathway to shrink slightly in comparison to those of highly overlapping pathways. For 317 
simplicity, these overlapping pathways are treated as false positives, though they contain 318 
truly differentially abundant molecules. Thus, this decrease does not point to a lower 319 
performance of the method in identifying pathways relevant to prediction of the outcome. 320 
Furthermore, while the primary emphasis of this work is not on contrasting regularized and 321 
non-regularized models, it is worth noting that sparse models are widely used for feature 322 
selection. We also compared the ability of the models to select the target pathway with a 323 
sparse version of DIABLO (using the L1 norm, see Methods) (Supplementary Fig. 6, 324 
Supplementary Fig. 8b). At low to moderate effect sizes, the sparse model identified the 325 
target pathway at similar AUC to the PathIntegrate/non-regularised DIABLO model, but at 326 
high effect sizes it showed slight improvements in target pathway identification as the 327 
sparsity constraint prevented high numbers of overlapping pathways reaching significance.  328 

Finally, we investigated the effect of sample size, which is well known to influence model 329 
performance, on PathIntegrate models. We down-sampled each of the two classes in the 330 
data, keeping a 1:1 ratio between classes, and evaluated the predictive ability of the models 331 
at varying effect sizes (Fig. 3d/Supplementary Fig. 8d and Supplementary Fig. 7/ 332 
Supplementary Fig. 10 show results for Multi-View and Single-View respectively). As 333 
expected, the lower the number of samples in the model, the more variability observed in 334 
the predictions. Particularly at lower effect sizes, smaller sample numbers were more likely 335 
to result in false positives and spurious results. While it is not possible to state the minimum 336 
number of samples necessary to apply PathIntegrate models, it is important for users to test 337 
the performance of the model using appropriate cross-validation approaches to be confident 338 
that the conclusions are statistically robust. 339 

While these results demonstrate the predictive ability of PathIntegrate models, it is 340 
challenging to create a realistic simulation scenario which accurately reflects molecular 341 
activities and their participation in pathways in a biological system. Hence, we have applied 342 
PathIntegrate to the COPDgene and COVID-19 experimental datasets in the Application 343 
section to further illustrate model performance and interpretation.  344 

 345 

PathIntegrate Multi-View applied to COPDgene data 346 

The COPDgene cohort consists of 10,198 smokers at baseline with and without chronic 347 
obstructive pulmonary disease (COPD) 45. We integrated metabolomics, proteomics, and 348 
transcriptomics multi-omics data measured at Phase 2 (~5 years after baseline) profiled on 349 
a subset of individuals with all three omics data (n=522) using PathIntegrate to identify 350 
Reactome pathways associated with COPD pathology. The Multi-View model of 351 
PathIntegrate allows users to gain rich insights into the underlying data, from high-level 352 
interpretation of the global rankings of enriched pathways, to being able to investigate the 353 
importance of pathways in each omics block and latent component individually. We applied 354 
the kPCA ssPA method to produce pathway score matrices for each omics view and using 5-355 
fold cross validation, we found that four latent variables yielded an optimised MB-PLS model 356 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2024. ; https://doi.org/10.1101/2024.01.09.574780doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.09.574780
http://creativecommons.org/licenses/by/4.0/


13 
 

(mean cross-validated AUC: 0.70) (Supplementary Fig. 11). The MBPLS superscores for each 357 
of the four latent variables coloured by COPD status are shown in Fig. 4a, providing a visual 358 
representation of the ability of multi-omics pathways to identify differences between COPD 359 
and non-COPD groups, in which each of the four latent variables exhibit a visible difference 360 
between groups. 361 

One of the primary insights obtained from the Multi-View model is the contribution of each 362 
omics view to the variance explained in the outcome variable 𝑦 (Fig. 4b). In the first latent 363 
variable, all three omics accounted for a considerable proportion of the variance explained 364 
in y, suggesting the pathway scores correlate well in the latent space. In the further three 365 
latent variables, transcriptomics and proteomics views tend to contribute most to the 366 
outcome prediction. Although metabolomics describes less of the variance in 𝑦 than the 367 
other omics, based on 100 bootstrap samples the mean variance explained across all latent 368 
variables remained between 6 and 17 percent. The dominance of transcriptomics and 369 
proteomics views may suggest that the COPD vs non-COPD distinction is best captured by 370 
gene and protein-level signalling pathways as opposed to metabolic pathways, but it may 371 
also be due to the lower metabolite coverage, and smaller set of pathways accessible using 372 
these molecules (Table 3, Supplementary Table 1). 373 

We then investigated the pathways ranked highly by MB-VIP across all latent variables. 374 
Pathway importances can be queried at an individual omics level (Fig. 4c), or at a multi-omics 375 
level with VIP normalised across all views (Fig. 4d). The same is also possible at the 376 
individual latent variable level, and as superscores are orthogonal, each latent variable 377 
contains a different combination of pathways contributing to the prediction of 𝑦. p-values for 378 
the MB-VIP statistic were computed empirically using permutation testing (see Methods). In 379 
Fig. 4c we observe that the metabolic pathways implicated in COPD pathology relate broadly 380 
to fatty acid metabolism, including carnitine metabolism, as well as central carbon 381 
metabolism46. The transcriptomics layer also highlighted the importance of glycogenolysis 382 
(glycogen breakdown), which alongside alterations in lipid metabolism have been found to 383 
be implicated in severe COPD, where there is an increased dependence on glucose for energy 384 
production due to impaired lipolysis, and hence an increased rate of glycolysis 47. Carnitine 385 
metabolism was one of the top ranked (metabolic) pathways overall, with Fig. 4d showing 386 
its significance was driven by the Metabolomics layer (p=0.003). The ‘Carnitine metabolism’ 387 
pathway is composed of both metabolites and proteins, of which there was also sufficient 388 
coverage in the transcriptomics data to produce ssPA scores for this pathway. In the 389 
transcriptomics data however, this pathway was not significant (p=0.55); this demonstrates 390 
the benefit of multi-omics modelling to gain a broader perspective of the molecular basis of 391 
disease. Fatty acid metabolism has been shown to be part of a metabolic reprogramming that 392 
occurs in respiratory disease including COPD48,49. In COPD specifically, impairments in the 393 
carnitine shuttle system in the mitochondria (preventing long-chain fatty acids from being 394 
transported into the mitochondria) have been shown to result in lipotoxicity within the cell 395 
cytosol50–52. Conversely, ‘Surfactant metabolism’, which did not have sufficient coverage to 396 
be included in the model in the metabolomics view, but was found relevant in the proteomics 397 
data (p=0.002), is an important process by which phospholipid surfactants are produced by 398 
the alveoli to ensure optimal lung function53. The surfactant lipidome has been found to be 399 
significantly different in COPD patients compared to healthy controls and is a potential 400 
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therapeutic target53. Finally, several relevant proteomics and transcriptomics pathways 401 
involved focus on innate immune processes, highly important in the chronic inflammatory 402 
nature of COPD, such as inflammasome action (‘The AIM2 Inflammasome’) and the 403 
complement system (‘Terminal Pathway of Complement’). The AIM2 inflammasome has 404 
recently been implicated in COPD pathogenesis, correlating with COPD severity and cigarette 405 
smoke exposure54. The full list of significant pathways is available in Supplementary File 1.  406 

To demonstrate alternative visualisation strategies possible with PathIntegrate, we 407 
extracted the top 15 pathways across all omics ranked by MB-VIP from the Multi-View model 408 
and used the ssPA scores for these pathways to cluster the samples (Fig. 4e). Hierarchical 409 
clustering showed two distinct clusters of pathways, one relating to metabolic processes 410 
such as central carbon and fatty acid metabolism, as well as hypoxia-associated signalling 411 
pathways (‘PTK6 expression’, ‘PTK6 promotes HIF1A stabilization’), and the other consisting 412 
of processes involved in the innate immune response (‘The AIM2 inflammasome’, ‘Terminal 413 
pathway of complement’).  414 

Further interpretation of the model can be gained by examining the correlation between the 415 
superscores for each latent variable and clinical metadata, enabling investigation of the 416 
relationship between clinical features and pathways (Fig. 4f). For example, we found 417 
pathways in latent variables 1, 3, and 4 to be significantly associated with age, whereas 418 
pathways in latent variable 3 were significantly associated with the race of subjects.  419 
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Figure 4: PathIntegrate Multi-View applied to COPDgene multi-omics data. A. 421 
Superscores plot based on multi-omics (metabolomics, proteomics, and transcriptomics 422 
pathways) across four latent variables. B. Omics view importances across latent variables. 423 
Values represent mean and SEM across 100 bootstrap samples. C. Top five pathways per 424 
omics block. D. Top 15 pathways across omics blocks categorised by Reactome parent 425 
pathway. E. kPCA ssPA scores from top 15 pathways used to cluster samples using Euclidean 426 
distance and Ward linkage. F. Heatmap showing Spearman correlation between superscores 427 
across four latent variables and clinical metadata. Asterisks indicate Bonferroni p-value ≤ 428 
0.05. Definitions of clinical variables are in Supplementary Table 2.  429 

 430 

Finally, to check that the pathway-based modelling approach does not appreciably degrade 431 
prediction performance, we examined the performance of PathIntegrate Multi-View versus 432 
a molecular-level MB-PLS model using the COPDgene dataset (Table 1). In the case of 433 
predicting COPD using plasma multi-omics data (metabolomics, proteomics, and 434 
transcriptomics), for example, the pathway level model achieved an average AUC of 0.70 435 
(±0.02), and the molecular level model also achieved an average AUC of 0.70 (±0.02) when 436 
using all molecules available (inc. those not mapping to pathways), but required more latent 437 
variables to do so (4 vs. 6), resulting in a more complex model (Table 1).  438 

Table 1: Performance comparison of PathIntegrate Multi-View using pathways versus 439 
using the molecular-level COPDgene dataset (mean AUC and 95% CI, as well as the number 440 
of latent variables (LV) used). In both pathway and molecular-level scenarios the model was 441 
used to predict binary COPD status. The molecular-level model was fit both with all molecules 442 
available in the datasets, as well as only those mapping to pathways. AUC values are averaged 443 
across 5-times repeated 5-fold cross validation. 444 
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AUC 

(pathway) 

0.70 (0.67, 

0.72) (4 LV) 

0.67 (0.66, 

0.69) (3 LV) 

0.69 (0.67, 

0.71) (3 LV) 

0.68 (0.66, 

0.70) (4 LV) 

0.63 (0.61, 

0.64) (1 LV) 

0.67 (0.66, 

0.68) (3 LV) 

0.65 (0.63, 

0.66) (3 LV) 

AUC 

(molecular) 

0.70 (0.69, 

0.72) (6 LV) 

0.71 (0.70, 

0.72) (2 LV) 

0.70 (0.68, 

0.71) (6 LV) 

0.71 (0.70, 

0.73) (7 LV) 

0.66 (0.65, 

0.69) (2 LV) 

0.72 (0.71, 

0.74) (3 LV) 

0.68 (0.66, 

0.69) (5 LV) 
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AUC 

(molecular – 

only those 

mapping to 

pathways) 

0.72 (0.70, 

0.74) (7 LV) 

0.72 (0.70, 

0.74) (2 LV) 

0.67 (0.66, 

0.69) (6 LV) 

0.70 (0.69, 

0.72) (6 LV) 

0.68 (0.67, 

0.7) (2 LV) 

0.71 (0.70, 

0.73) (3 LV) 

0.66 (0.64, 

0.68) (7 LV) 

 445 

Visualisation of high-dimensional omics data in the context of many hundreds of pathways 446 
remains a challenge. Alongside typical graphical outputs from the model, the PathIntegrate 447 
package provides an interactive network explorer app designed to visualise the results of 448 
PathIntegrate models on the Reactome pathway hierarchy graph (Supplementary Fig. 12). 449 
Nodes in the network represent pathways and edges represent parent-child relationships 450 
between them as part of a directed acyclic graph (DAG). Nodes can be coloured by feature 451 
importance in the PathIntegrate model, so that users can intuitively visualise important 452 
pathways and their relationships to other areas of the pathway network. Various 453 
hierarchical and force-directed layouts are available, and images can be exported for further 454 
annotation and customisation. Fig. 5a shows a global overview of the Reactome pathway 455 
network based on coverage of the COPDgene dataset (full pathway hierarchy legend shown 456 
in Supplementary Fig. 13). We coloured nodes by MB-VIP p-values in Fig. 5b to identify 457 
important pathways linked to COPD, as well as other pathways which may be affected by 458 
proximity in the network. Fig. 5b highlights the ‘Carnitine metabolism’ pathway (p≤0.05), as 459 
well as other pathways which may not have reached statistical significance but may be of 460 
interest such as ‘Arachidonic acid metabolism, or ‘Mitochondrial fatty acid beta 461 
oxidation’48,55.  Encouragingly, related pathways in the close neighbourhood of ‘Carnitine 462 
metabolism’ have lower p-values than those further from it.    463 
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 464 

Figure 5: Network visualisation with PathIntegrate interactive network explorer. 465 
PathIntegrate Multi-View was applied to COPDgene multi-omics data. A. Multi-omics network 466 
view of global Reactome hierarchy DAG. Only pathways with sufficient coverage (≥ 2 467 
molecules per pathway) are shown as nodes. Edges represent parent-child relationships 468 
between pathways as defined by Reactome. Nodes are coloured by Reactome superpathway 469 
membership. Node size corresponds to pathway coverage. B. Network view of ‘Carnitine 470 
metabolism’ pathway (zoomed-in susbset of (a)) and close neighbourhood within the 471 
Reactome pathway hierarchy. Nodes are coloured by p-values obtained from PathIntegrate 472 
Multi-View model.  473 

Taken together, these results demonstrate how PathIntegrate Multi-View can be used to 474 
investigate various aspects of pathway regulation associated with a specific phenotype. 475 
COPD-associated pathways can be explored both within omics (individual views) and across 476 
omics (global view), and superscores of the latent variables can be used to identify 477 
correlations between pathways and other data, e.g. clinical measurements. The contribution 478 
of each omics to the prediction can be easily obtained from the Multi-View model, which 479 
obtains a lower-dimensional representation of the data that maximises covariances between 480 
omics view blocks and the 𝑦 outcome, but also keeps data blocks separate in order to retain 481 
this level of granularity. 482 

A B 
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PathIntegrate Single-View applied to COVID-19 multi-omics data 483 

We applied PathIntegrate Single-View to data from a multi-omics study of COVID-19 severity 484 
56 to understand pathways driving the transition from mild to moderate/severe COVID-19 485 
pathogenesis. Proteomics and LC-MS metabolomics data were integrated using 486 
PathIntegrate Single-View, in which the concatenated omics data were transformed to multi-487 
omics ssPA scores using the SVD method 37 and a random forest model was applied to the 488 
resulting Reactome pathway score matrix. 489 

An advantage of the Single-View model is that it computes each pathway score based on 490 
multi-omics data, providing a broader coverage of pathways by doing so (Fig. 6a). Multi-491 
omics pathways had a greater mean pathway coverage (number of molecules in the data 492 
mapping to each pathway, mean: 6.39 versus 6.21 and 4.86 for proteomics and metabolomics 493 
separately). This enabled more pathways to be included as they contained enough molecules 494 
to meet the minimum filtering threshold (732 pathways versus a maximum of 599 and 169 495 
for proteomics and metabolomics separately, a total of 701 unique pathways); we used a 496 
liberal threshold of ≥ 2 molecules per pathway) (Fig. 6b). 497 

We found the PathIntegrate Single-View model to perform similarly in terms of classification 498 
AUC on the unseen test set (AUC 0.95) compared to the concatenated molecular level omics 499 
data (AUC: 0.98), suggesting that in this case pathway-level modelling can aid interpretation 500 
without substantial loss of prediction performance. We next inspected the important multi-501 
omics pathway features using random forest recursive feature elimination, which identified 502 
20 of the most informative pathways (Fig. 6c). Within this set, there are several immune-503 
related processes known to be implicated in COVID-19 severity such as ‘Interleukin-5 and 504 
interleukin-13 signalling’57,58 and ‘Caspase activation via death receptors in the presence of 505 
ligand’58.   506 

Finally, if certain ssPA methods are used (e.g. SVD37), it is possible to obtain information on 507 
how individual molecules contribute to the formation of the overall multi-omics pathway 508 
score. As we used SVD scores in this model, we can use the loadings on principal component 509 
1 as the importance of each molecule in the pathway score (Fig. 6d). In Fig. 6d, which shows 510 
the molecular-level importance for the ‘ADORA2B mediated anti-inflammatory cytokines 511 
production’ pathway as an example, we observe that metabolites deoxycholic acid and 512 
adenosine are correlated with four proteins, all with negative loadings on PC1, while three 513 
proteins: interleukin-6 (IL-6) and the hormones pro-adrenomedullin and calcitonin had 514 
positive loadings with greater magnitudes. In chronic COVID-19, elevated levels of both IL-6 515 
and adenosine have been observed, with IL-6 contributing to the proinflammatory ‘cytokine 516 
storm’ and adenosine being considered as a potential therapeutic for severe cases due to its 517 
anti-inflammatory effects59. Such investigations can help researchers pinpoint the specific 518 
molecules contributing most to pathway scores, reducing the number of molecules required 519 
in developing biomarker assays, as well as providing understanding of how molecules from 520 
different omics correlate in the latent space. 521 
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 522 

Figure 6: PathIntegrate Single-View applied to COVID-19 multi-omics data. A. Kernel 523 
density distribution of log10 pathway sizes in the COVID dataset per omics view. Pathway size 524 
refers to the number of molecules annotated to each pathway present in the COVID datasets. 525 
B. Number of pathways with sufficient coverage in the COVID dataset in each omics view. C. 526 
Multi-omics pathway features identified using recursive feature elimination from the 527 
PathIntegrate Single-View random forest model, ranked by Gini importance. D. Molecular 528 
level importances derived from the ‘ADORA2B mediated anti-inflammatory cytokines 529 
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production’ (R-HSA-9660821) SVD pathway scores. Datapoints represent mean and standard 530 
deviation of loadings of each molecule on PC1 across 200 bootstrap samples.  531 

Discussion 532 

This study contributes a new approach to the rapidly growing body of multi-omics 533 
integration methods3,5,6,27, specifically by providing insights into the use of pathways as a 534 
basis for interpretable predictive modelling of multi-omics data, and by introducing the 535 
PathIntegrate framework for doing so. The use of pathways for modelling omics data is a 536 
promising avenue of research, with several studies highlighting its potential in recent years 537 
27,60. However, there is limited research available on the use of pathways for multi-omics 538 
integration, or evaluation of the performance of pathway-based versus molecular-level 539 
integration models. Here, we have introduced the PathIntegrate Multi-View and Single-View 540 
modelling frameworks for multi-omics pathway-based integration and evaluated their 541 
performance using semi-synthetic and experimental data.  542 

To demonstrate the ability of pathway transformation to increase statistical power by 543 
combining correlated molecular signals we applied a series of univariate tests to evaluate 544 
the ability to detect pathway or molecular level enrichment across various effect sizes. At 545 
lower effect sizes, we found that the univariate tests could recover more pathway-level 546 
signals than molecular signals, demonstrating the benefit of pathway transformation of 547 
multi-omics data, which often have low effect sizes, particularly in heterogeneous clinical 548 
studies, and especially those where a phenotype is not well defined. Additionally, pathway 549 
transformation naturally reduces the number of tests required, thereby reducing the 550 
multiple testing correction burden. This motivated our development of PathIntegrate, which 551 
uses ssPA pathway transformation as a basis for pathway-based multi-omics integration. 552 

We compared PathIntegrate to DIABLO11, a highly-cited multi-omics integration tool, which 553 
uses a similar underlying multi-view model as PathIntegrate Multi-View. We found 554 
PathIntegrate methods to perform similarly to DIABLO (when using pathway score matrices 555 
as input). Overall, however, we wish to emphasise the benefit of using pathway-transformed 556 
data as input to multivariate models and show that even using a different predictive model 557 
(DIABLO RGCCA vs PathIntegrate Multi-View MB-PLS) similar results can be obtained. We 558 
compared PathIntegrate Multi-View to a molecular level MB-PLS model and demonstrated 559 
the ability of the pathway-based model to classify samples with improved AUC across effect 560 
sizes. A full comparison of PathIntegrate, a pathway-based predictive model, to conventional 561 
pathway analysis approaches, such as ORA25, GSEA26, or integrated pathway analysis e.g. 562 
MultiGSEA19 and IMPaLA16 is beyond the scope of the present work. This is because pathway-563 
based predictive models leverage multivariate modelling to identify pathways most 564 
associated with an outcome, whereas conventional pathway analysis methods typically test 565 
pathways in a univariate and non-predictive manner. Although the question of ‘which 566 
pathways are perturbed in a phenotype?’ is similar in both approaches, the way results are 567 
derived and the differences in outputs would render a direct comparison challenging, yet an 568 
interesting avenue for future research.  569 
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We applied PathIntegrate to two datasets: COPDgene and COVID19 multi-omics. Both case 570 
studies highlighted the benefits of pathway-based modelling for integration, interpretation, 571 
and visualisation of multi-omics data. In terms of predictive performance, in both case 572 
studies, as expected, PathIntegrate performed similarly to the molecular level counterpart. 573 
Pathway coverage, the proportion of molecules in a pathway which can be observed in the 574 
data, or pathway annotation, the proportion of known documented biomolecules annotated 575 
to pathways in databases are both inherent bottlenecks of pathway-based analyses. These 576 
issues particularly affect certain datatypes such as metabolomics, where even multiple 577 
assays are not enough to provide high coverage of the metabolic pathway network 44. Despite 578 
this, in the COVID-19 case study where 314 metabolites were annotated to ChEBI identifiers, 579 
and 456 proteins to UniProt identifiers, the PathIntegrate Single-View model based on 732 580 
multi-omics pathway scores was still able to achieve an AUC of 0.95 in predicting COVID-19 581 
severity based on the pathway coverage provided by these molecules. Another important 582 
consideration is pathway database choice, as pathway definitions can differ greatly between 583 
databases, as well as the level of overlap between pathways and possible hierarchical 584 
structure 44,61–63. As expected, we found PathIntegrate to exhibit minor changes in predictive 585 
performance based on the database used.   586 

Although PathIntegrate Multi-View uses an MB-PLS model and Single-View uses any 587 
SciKitLearn-compatible predictive model (e.g., random forest), we endeavour to provide 588 
readers with a general framework for pathway-based multi-omics integration which they 589 
can build upon to complement their experimental design or analysis goals. For example, if 590 
prediction of a phenotype with high accuracy is a desired outcome, a deep feed forward 591 
neural network could be applied within the Single-View framework, to classify samples 592 
based on pathways. Model interpretability can also be further enhanced by customising the 593 
model inputs, such as using bespoke pathway sets or ontologies to generate the pathway 594 
score input layer. For example, in PathIntegrate Multi-View, an additional omics block could 595 
be added composed of lipidomics data, and pathway scores could be computed using the 596 
LipidMaps64 classification system to reflect enrichment patterns of lipid subclasses. Note 597 
that in this work we focused on supervised pathway-based integration models; however 598 
similar frameworks using unsupervised methods is also feasible and may be explored 599 
further. We decided to focus on supervised methods as firstly an outcome is directly 600 
modelled and there is less risk of confounding variation obscuring the interpretation, and 601 
secondly, users can evaluate model performance in a straightforward manner by examining 602 
prediction accuracy.  603 

Both PathIntegrate Single-View and Multi-View are designed to handle multiple omics views. 604 
In this work we have demonstrated the use of two or three omics views, however both 605 
models can accommodate further (3+) omics views as long as they contain continuous 606 
measurements (rather than binary e.g., genomics data) and the features can be mapped to 607 
pathway identifiers, enabling the pathway-transformation stage to be performed. Data 608 
blocks from the same omics type e.g. metabolomics but profiled on different biofluids or 609 
tissues can also be integrated using PathIntegrate, to understand how pathways in different 610 
biological matrices contribute to the phenotype. Although the focus of this work was on 611 
pathway-based models, both PathIntegrate models can be made hybrid in the sense that both 612 
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pathway-transformed omics data and other data e.g., clinical metadata, genomics data, 613 
metagenomic data, etc., can be integrated alongside one another.  614 

PathIntegrate is unique in its specific support for metabolomics in multi-omics studies, 615 
which is often omitted by other integration methods. Metabolomics is becoming frequently 616 
profiled alongside gene-based omics, providing researchers with an essential snapshot on 617 
the biochemical activities of small-molecules 1,65 . Metabolomics data differs considerably 618 
from gene-based omics in several ways including the molecular identifiers used, assay 619 
coverage of the metabolome, and annotation uncertainties. PathIntegrate users can 620 
download the latest release of Reactome pathways via the sspa Python package and obtain 621 
a merged multi-omics pathway database object composed of protein (UniProt), gene 622 
(ENSEMBL), and metabolite identifiers (ChEBI) to enable integration of these distinct omics 623 
in a straightforward manner. 624 

Our study shares several limitations with other pathway-analysis and multi-omics 625 
integration studies, a key drawback being the lack of appropriate benchmarking data. 626 
Ideally, a benchmarking dataset would contain two or more high-quality omics views, a large 627 
sample size (n ≥ 1000), and known biological signals at the molecular and pathway level 628 
validated by laboratory experiments. Without access to such data, we employed the semi-629 
synthetic simulation strategy to artificially introduce known molecular and pathway-level 630 
signals into a real experimental dataset. As described in our previous work 33, this approach 631 
allows the simulation to retain important characteristics of real data such as the underlying 632 
statistical distributions, correlations, and covariances between molecules and pathways. It 633 
also enabled us to vary the effect size of pathway signals, which we based on the effect sizes 634 
(𝑙𝑜𝑔2 fold changes) detected in the experimental datasets used. Despite these efforts, it 635 
remains a challenge to compare molecular vs. pathway-level models, as it is unknown how 636 
many molecules in a pathway are differentially abundant at any one time, and pathway 637 
definitions and sizes vary between databases 44,63,66,67. 638 

In common with many other statistical integration approaches, PathIntegrate requires all 639 
input omics to be measured on the same individuals. This means samples from individuals 640 
without data on all omics will have to be discarded, as PathIntegrate currently does not 641 
support entire rows of missing data. Some models such as MB-PLS can handle sparse data 642 
(using NIPALS algorithm) 68 , however future work is required to determine how robust this 643 
could be for high rates of missingness. Further work is needed to develop multi-omics 644 
integration methods that can handle missing samples 69 and using pathway-based models 645 
may aid in the robust imputation of data, by helping to capture biological rather than 646 
technical variation. 647 

Conclusion 648 

As knowledge of biological pathways continues to evolve and pathway databases develop 649 
alongside this, we anticipate that pathway-based models such as PathIntegrate will become 650 
a valuable way of interpreting complex multi-omics datasets. This work contributes to our 651 
understanding of such models, by evaluating the effectiveness of using pathways for multi-652 
omics integration, as well as introducing the PathIntegrate modelling framework. 653 
PathIntegrate provides a novel solution to the challenge of integrating heterogeneous omics 654 
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datasets, by using pathway-transformation to bring omics to a common basis, followed by 655 
state-of-the-art supervised modelling. The PathIntegrate framework presented here and 656 
accompanying Python package will provide a useful resource to the research community, 657 
streamlining the analysis of multi-omics data with the aim of providing an interpretable, 658 
integrated set of results at the pathway level. 659 

  660 
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Methods 661 

Datasets 662 

COPDgene data 663 

We integrated COPDgene Phase 2 (~5 years after baseline) plasma metabolomics 664 
(Metabolon UHPLC-MS/MS), plasma proteomics (SOMAscan 1.3k assay), and bulk whole 665 
blood transcriptomics data (Illumina HiSeq2000) from 522 samples which had data for all 666 
three omics. As detailed in Regan et al., 2010 45: COPD was defined using spirometric 667 
evidence of airflow obstruction [post-bronchodilator forced expiratory volume at one 668 
second (FEV1)/forced vital capacity (FVC) ≥0.70], as well as a GOLD score of 1-4. The sub-669 
cohort comprised 273 COPD samples (GOLD 1-4) and 249 non-COPD samples (GOLD 0) from 670 
smokers. Full details of the multi-omics datasets and pre-processing are available in the 671 
original article 21. We also obtained clinical data for samples, including COPD phenotypes and 672 
demographic variables. Clinical data was filtered to include 260 variables measured in all 673 
522 samples of the sub-cohort. 674 

COVID-19 data 675 

The publicly available COVID-19 multi-omics dataset was obtained from Su et al. 2020 56. Full 676 
details of the multi-omics datasets and pre-processing are available in the original article 56. 677 
We integrated plasma metabolomics (Metabolon UHPLC-MS/MS) and proteomics (Olink) 678 
datasets with matched samples, of which 45 samples had ‘mild’ COVID (WHO status 1-2), and 679 
82 had ‘moderate-severe’ COVID19 (WHO status 3-7), totalling 127 samples. 680 

Multi-omics data pre-processing and quality control 681 

All multi-omics datasets were subject to quality control and pre-processing as detailed in the 682 
original articles45,56. Metabolomics, proteomics, and transcriptomics abundances were 𝑙𝑜𝑔2 683 
transformed followed by unit-variance scaling. Missing values were imputed using the 684 
singular-value decomposition approach implemented in the fancyimpute Python package. 685 
In the transcriptomics data, low-variance genes (below 25th percentile) were filtered out. 686 
Table 2 shows the number of molecules in each omics remaining after identifier mapping 687 
and quality control which were used in all analyses. 688 

Identifier mapping 689 

Identifier harmonisation of both the COPDgene and COVID metabolite datasets was 690 
performed via the sspa package identifier conversion utility via the MetoboAnalyst70 API 691 
(https://www.metaboanalyst.ca/docs/APIs.xhtml.) HMDB metabolite identifiers provided 692 
with the dataset were converted to ChEBI (for Reactome)/KEGG compound (for KEGG) 693 
identifiers.  694 

COPDgene and COVID-19 proteomic data was provided with UniProt identifiers which 695 
directly map to Reactome pathways. KEGG gene IDs were obtained using the UniProt ID 696 
matching tool (https://www.uniprot.org/id-mapping). COPDgene transcriptomics data was 697 
provided with ENSEMBL IDs which directly map to Reactome pathways.  698 
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 699 

Table 2: Number of molecules in each omics in COPDgene and COVID-19 datasets after 700 
processing and identifier mapping.  701 

Dataset Total number of 
samples 

Number of metabolite 
features (mapping to 
ChEBI) 

Number of protein 
features (mapping to 
UniProt) 

Number of transcript 
features (mapping to 
ENSEMBL) 

COPDgene 522 513 1305 14441 

COVID-19 127 314 456 NA 

Pathways 702 

PathIntegrate Single-View and Multi-View models both make use of a single, merged set of 703 
multi-omics pathways as input. Each pathway contains either a set of molecules from 704 
different omics (metabolites (ChEBI), proteins (Uniprot), and genes (ENSEMBL)), or only 705 
molecules from a single omics, depending on the pathway definition. The PathIntegrate 706 
package enables download of multi-omics pathway sets (via ssPA) from Reactome, providing 707 
a text file of the latest version for various supported organisms in standard GMT file format. 708 
PathIntegrate is also flexible to the input pathway set and is not restricted to those provided 709 
via the package. Any pathway set in GMT file format can be used as input, where each row 710 
represents a pathway, and each pathway set is described by a name, a description, and its 711 
constituent molecules (see Broad Institute website for further details on GMT format:  712 
https://software.broadinstitute.org/cancer/software/gsea/wiki/index.php/Data_formats713 
#GMT:_Gene_Matrix_Transposed_file_format_.28.2A.gmt.29).  714 

In this work, Reactome human version 83 and KEGG human version 105 were used. Table 3 715 
shows the number of pathways from each omics in the COPDgene/COVID-19 datasets 716 
accessible using the molecules profiled in each dataset (≥2 per pathway). 717 

Table 3: Number of Reactome/KEGG pathways accessible in COPDgene and COVID-19 multi-718 
omics datasets 719 

Dataset Number of Reactome pathways accessible (≥ 2 
molecules mapping) 

Number of KEGG pathways accessible (≥ 2 
molecules mapping) 

COPDgene metabolomics 202 125 

COPDgene proteomics 1396 291 

COPDgene transcriptomics 1902 341 

COVID-19 metabolomics 169 122 

COVID-19 proteomics 599 217 
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Semi-synthetic multi-omics data generation 720 

To benchmark our methods, we applied the semi-synthetic simulation approach detailed in 721 
Wieder et al., 2022 33 to insert artificial biological signals into existing multi-omics data. This 722 
approach involves creating simulated datasets based on experimental data, with the 723 
assumption that doing so will preserve the complex biological signals and statistical 724 
distributions within the data, and more accurately reflect a real scenario as opposed to 725 
approaches based on sampling from parametric distributions. Various experimental designs 726 
can be simulated using this approach, but here we opt for a simple case-control design in 727 
which we add the artificial signal only to molecules in the ‘case’ group. By adding the same 728 
effect size to the abundances of all molecules within a pathway (detailed below), this 729 
approach emphasises realism (by preserving the covariance structure of the original omics 730 
data) without being overly complex.  731 

The input data is a series of log2 transformed abundance matrices for the k omics types 𝑋𝑘 =732 

[𝑥1, 𝑥2, … , 𝑥𝑀𝑘
], each of size (N x Mk), and a set of N outcome labels 𝑦𝑖 , 𝑖 = 1, … , 𝑁. The 733 

approach is as follows for each realisation of the semi-synthetic data: 734 

1. Randomly shuffle outcome labels yi. This results in a new ‘control’ group C and a new 735 
‘case’ group D of the same class sizes as the original dataset. The shuffling ensures any 736 
biological effects correlated to the outcome are removed but preserves existing 737 
covariances between molecules. 738 

2. Add a constant 𝛼 corresponding to desired effect size (e.g. log2 FC=0.5) to specified 739 
target molecules only in samples in the new ‘case’ group 𝑖 ∈ 𝐷, simulating increased 740 
abundance of those molecules associated with the outcome (Equation 1). 741 

𝑋𝑖,𝑗 → 𝑋𝑖,𝑗 ,  𝑖 ∈ 𝐶    742 

𝑋𝑖,𝑗 → 𝑋𝑖,𝑗 + 𝛼,  𝑖 ∈ 𝐷 743 

Equation 1 744 

In this work we increase the abundance of all molecules in a single target pathway at 745 
each realisation, at the same effect size. By adding a constant to log2 scale data this 746 
simulates a multiplicative fold change in the original data.  747 

In this work, we enriched all molecules in one randomly selected (Reactome/KEGG) ‘target’ 748 
pathway 𝑝𝑖 at a time, at varying effect sizes. Here, effect size refers to the 𝑙𝑜𝑔2 fold change of 749 
a molecule. We enriched the known target pathway by effect sizes of 0-1 in the COPDgene 750 
dataset and 0-3 in the COVID-19 dataset, based on fold changes observed in the original data 751 
(Fig S1, S2). For performance evaluation purposes, we performed the semi-synthetic 752 
simulation approach using COPDgene and COVID-19 metabolomics and proteomics datasets. 753 
We performed the semi-synthetic simulation once for each target pathway in the 754 
Reactome/KEGG database that contained at least 3 molecules mapping to the input data 755 
(1290 and 298 realisations for Reactome and KEGG respectively for COPDgene data; 456 and 756 
256 for COVID-19 data).  For each target pathway we used a different random shuffling of 757 
outcome labels.  758 
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Single-sample pathway analysis 759 

Reactome human pathways (R83) and KEGG human pathways (R105) were downloaded 760 
using the sspa Python package v0.2.4 (https://github.com/cwieder/py-ssPA). The sspa 761 
package creates multi-omics pathways by merging proteins/genes and metabolites 762 
participating in the same pathway into a single multi-omics pathway. 763 

Single-sample pathway analysis (ssPA) is an unsupervised method used to transform omics 764 
data matrices into pathway score matrices, where columns represent pathways rather than 765 
individual molecules. Importantly, all omics data input to ssPA must be standardised. 766 
Throughout this work and in the ssPA Python package, unit variance scaling is used, where 767 
the mean of each feature is set to 0 and the standard deviation is set to 1. ssPA begins by 768 
using the P pathways 𝑃 = {𝑝1, 𝑝2, … , 𝑝P} passing minimum coverage criteria for the dataset 769 
(an integer defined by the user, default 2 molecules per pathway). The i'th pathway pi is 770 

composed of Li molecules (e.g. proteins), 𝑝𝑖 = {𝑚1, 𝑚2, … , 𝑚𝐿𝑖
}. ssPA is performed to provide 771 

pathway ‘activity scores’ for each sample, reflecting an estimate of the enrichment of each 772 
pathway in each individual sample.  773 

One of the most popular categories of ssPA methods is that based on dimensionality 774 
reduction, specifically PCA. In the original PLAGE (referred throughout this work as ‘SVD’) 775 
method by Tomfohr et al.37, singular value decomposition is performed on the omics 776 
abundance matrix retaining only the Li columns (molecules) present in the i’th pathway. For 777 
each pathway, column vectors of abundance profiles belonging to molecules in pathway 𝑝𝑖 778 
are concatenated to form a matrix 𝑍𝑖  (Equation 2).  779 

𝑍𝑖 = [𝑥𝑚1 ,𝑥𝑚2 ,
… , 𝑥𝐿𝑖

] 780 

Equation 2 781 

Then, the first right singular vector (first principal component score) is used to represent the 782 
pathway ‘activity’ scores ai (size N x 1) for the i’th pathway. Pathway score vectors for each 783 
pathway are combined to produce a sample-by-pathway matrix 𝐴 = [𝑎1, 𝑎2, … , 𝑎𝑃]. The 784 
kPCA method we proposed in 33 uses a very similar approach, instead applying kernel PCA 785 
with a radial basis function kernel and using the scores for principal component 1 to reflect 786 
pathway activities. Full details of how ssPA is performed are available in 33,36,37. In this work 787 
we used the kPCA method33 in the benchmarking section and COPDgene application, and the 788 
SVD method (PLAGE)37 in the COVID-19 application section. The sspa package functions 789 
sspa_KPCA and sspa_SVD were used to generate pathway score matrices used in both 790 
PathIntegrate Multi-View and Single-View. 791 

Supervised modelling frameworks 792 

PathIntegrate Single-View 793 

PathIntegrate Single-View is a predictive model applied to a single data matrix of multi-794 
omics ssPA scores (Fig. 2). Conceptually it is simpler than PathIntegrate Multi-View due to 795 
the input being a single pathway-level matrix rather than multiple pathway-level matrices. 796 
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Note that both models integrate multi-omics data; the “Single-View” and “Multi-View” refer 797 
to the machine learning framework used to effect this integration. 798 

The first step of PathIntegrate Single-View involves computing ssPA scores at the multi-799 

omics level, using multi-omics pathway sets (i.e. pathways 𝑝𝑖 = {𝑚1, 𝑚2, … , 𝑚𝑀𝑖
} where the 800 

mi represent genes, metabolites, and proteins present in the omics data). All input omics data 801 
matrices are unit-variance scaled. ssPA is performed on the multi-omics abundance matrices 802 
Zi using any sspa algorithm implemented in the sspa Python package to form the pathway 803 
scores matrix A of size (N x P). 33 804 

The second step of PathIntegrate Single-View applies a predictive model to the multi-omics 805 
ssPA score matrix A to predict an outcome variable 𝑦̂ (Equation 3). 806 

𝑦̂ = 𝑓(𝐴; 𝜃) 807 

Equation 3 808 

where 𝜃 represents the parameters of the predictive model f. There is a single predictor 809 
matrix, hence the term ‘Single-View’. The user can apply a variety of models (any of those 810 
available in SciKitLearn are compatible with the PathIntegrate python package), including 811 
random forest, PLS regression, support vector machine, etc. Important pathways are 812 
determined using feature importance metrics specific to the predictive model used (e.g. Gini 813 
impurity for random forests or VIP for PLS regression). In this work to demonstrate 814 
PathIntegrate Single-View, we applied a PLS-DA model in the performance evaluation 815 
section, and a Random Forest model in the COVID-19 case study.  816 

PathIntegrate Multi-View 817 

PathIntegrate Multi-View leverages multi-table integration approaches to build a predictive 818 
model based on multiple, separate ssPA score matrices from each omics view (Fig. 2). There 819 
are several (k>1) predictor matrices here, hence the term ‘Multi-View’. In this work we used 820 
a multi-block partial least squares (MB-PLS) model due to its ability to model multiple data 821 
blocks (omics views) in relation to a response variable y. However, any multi-view 822 
supervised machine learning technique could be used within the same framework. The MB-823 
PLS model was implemented using the mbpls Python package 40 using the NIPALS algorithm. 824 
Again, all input omics data matrices are unit-variance scaled. As with PathIntegrate Single-825 
View, users can apply any ssPA algorithm implemented in the sspa package to perform the 826 
first step of Multi-View, transforming each omics abundance matrix 𝑋𝑘 of size (NxMk) into a 827 
pathway score matrix 𝐴𝑘 of size (NxPk). Then each pathway score matrix Ak is modelled by 828 
MB-PLS, to predict an outcome variable. Important pathways are identified using the multi-829 
block variable importance in projection (MB-VIP) statistic, detailed below (Equation 14). In 830 
this section we follow standard practice in describing how MB-PLS models an outcome Y 831 
(which can be univariate or multivariate) using a several predictor matrices Xk, that, for 832 
PathIntegrate, correspond to the pathway scores matrices Ak . 833 

(Single block) partial least squares (PLS) regression71 is a supervised regression method 834 
designed to work well on high-dimensional and highly co-linear datasets due to its latent 835 
variable decomposition of both the predictor and response variables 41. PLS performs a 836 
simultaneous projection of the unit variance scaled predictor matrix 𝑋, of size (NxJ), and a 𝑌 837 
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response matrix, of size (NxH), into a lower dimensional space (defined by latent variables, 838 
LVs) to maximise the covariance between the two projections (X scores, T and Y scores, U) 839 
(Equation 4). The low dimensional representation of the X data can be used to predict Y 840 
(Equation 6). 841 

The PLS model as defined by Wold et al, 200171 is as follows:  842 

The 𝑋 and 𝑌 matrices are decomposed into scores and loadings such that: 843 

𝑋 = T𝑉𝑇 + E 844 

𝑌 = U𝐶𝑇 + 𝐹 845 

Equation 4 846 

Here, T and U represent X and Y scores respectively, each of size (N x R), for a model with R 847 
latent variables. V, size (J x R), represents X loadings, C, size (HxR) represents Y weights, and 848 
E and F refer to residual matrices, sizes (NxJ) and (NxH) respectively, of independent and 849 
identically distributed (iid) noise. Matrix transpose is denoted by T. 850 

The X scores, T are linear combinations of the original X variables multiplied by the X weights 851 
(coefficients): 852 

𝑇 = 𝑋𝑊∗ 853 

Equation 5 854 

Where W*, size (JxR) denotes the weights matrix relating to the original variables, as opposed 855 
to W, size (JxR), which denotes the weights matrix computed from the deflated matrices (see 856 
Eqn. 8 below).  857 

The X scores and Y weights are used to predict Y: 858 

𝑌̂ = T𝐶𝑇 + 𝐺 859 

Equation 6, where G is a further residual matrix. 860 

PLS is performed sequentially, obtaining scores, loadings, and weights for each of R latent 861 
variables. Importantly, the first pair of latent vectors 𝑡 and u are selected such that the 862 
covariance between them is maximal:  863 

(𝑡, 𝑢) =  
𝑎𝑟𝑔𝑚𝑎𝑥

(𝑡, 𝑢) (𝑐𝑜𝑣(𝑡, 𝑢)) 864 

Equation 7 865 

At each step, the model estimates, corresponding to the product of scores and loadings are 866 
subtracted from the current 𝑋 and 𝑌 matrices (this step is termed deflation) so that the next 867 
set of latent vectors 𝑟 + 1 can be computed from a new Xr+1 and Yr+1: 868 

𝑋𝑟+1 = 𝑋𝑟 − 𝑡𝑟𝑣𝑟
𝑇 869 
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𝑌𝑟+1 = 𝑌𝑟 − 𝑡𝑟𝑐𝑟
𝑇 870 

Equation 8, with X1 = X and Y1 = Y. 871 

The optimal number of latent vectors is typically chosen using cross-validation approaches.  872 

Using Equation 5, the prediction of Y can be re-written as: 873 

𝑌̂ = 𝑋𝑊∗𝐶𝑇 + 𝐺 874 

Equation 9 875 

(note the * does not denote multiplication) and thus the regression coefficients for each X 876 
variable are obtained using: 877 

𝛽 = 𝑊∗𝐶𝑇 878 

Equation 10 879 

The prediction of Y can finally be expressed in the form of a regression equation: 880 

𝑌̂ = 𝑋𝛽 + 𝐺 881 

Equation 11 882 

Once the model is fit the scores, loadings, and weight matrices can be interpreted. Variable 883 
selection approaches for PLS methods include inspection of 𝛽 coefficients, as well as variable 884 
importance in projection (VIP) 72. VIP is based on the PLS weights 𝑊 weighted by the 885 
proportion of Y explained in each latent variable (sum of squares) normalised by the total 886 
sum of squares across all LVs, and explains the influence of each 𝑋 feature on the model.  887 

VIP for the jth variable is given by73: 888 

VIP𝑗 = √
𝐽 ⋅ ∑ (𝑤𝑟𝑗

2𝑅
𝑟=1 ⋅ 𝑆𝑆𝑌𝑟)

𝑆𝑆Y𝑐𝑢𝑚
 889 

Equation 12 890 

Here 𝐽 represents the number of features in 𝑋, 𝑅 is the number of latent variables (LVs), 𝑤𝑟𝑗 891 

is the weight of the 𝑗𝑡ℎ feature in the 𝑟𝑡ℎ LV, 𝑆𝑆𝑌𝑟 is the sum of squares of Y explained by the 892 
𝑟𝑡ℎ LV, and 𝑆𝑆Y𝑐𝑢𝑚 is the cumulative sum of squares.  893 

Often, variables with VIP < 1 are discarded, as the average of sum of squares of VIP scores is 894 
equal to 1. However, a more reliable approach is to compute significance of the VIP values 895 
using empirical p-value computation, described below in section ‘Feature importance’.  896 

Multi-block PLS is an extension of PLS that allows multiple data blocks {𝑋1, . . . , 𝑋𝐾} as 897 
predictors 41. The k’th 𝑋 predictor block and 𝑌 response matrix can be decomposed as: 898 

𝑋𝑘 = 𝑇𝑘𝑉𝑘
𝑇 + 𝐸𝑘 899 
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𝑌 = 𝑇𝑆𝐶𝑇 + F 900 

Equation 13 901 

where 𝑇𝑆 represents the X superscores. 902 

In the multi-block PLS case, block scores for each 𝑋 block are combined to form superscores 903 
𝑇𝑠 = [𝑇1, 𝑇2, … , 𝑇𝐾]. The superscores are used to predict the response scores 𝑈, and also to 904 
deflate the 𝑋𝑘 blocks (if using the method proposed by Westerhuis and Coenegracht 1997), 905 
rendering the superscores orthogonal. 906 

VIP can be computed for MB-PLS models by using the superscores 𝑇𝑠 across all blocks. In 907 
Equation 14, 𝑆𝑆𝑌 represents the proportion of 𝑌 explained across all 𝑋 blocks, using the 908 
superscores 𝑇𝑠 rather than the scores 𝑇 as in Eqn. 12 for single-block VIP. 909 

MB-VIP for the jth variable present in the kth block is given by: 910 

 911 

MB-VIP𝑗 = √
𝑓 ⋅ ∑ (𝑤𝑘𝑟𝑗

2𝑅
𝑟=1 ⋅ 𝑆𝑆Y𝑟)

𝑆𝑆Y𝑐𝑢𝑚
 912 

Equation 14 913 

where 𝑓 is the number of features across all blocks. 914 

Similar to the original VIP definition, this MB-VIP metric satisfies the condition that the mean 915 
of the sum of squares of VIP scores per 𝑋 block equals 1. 916 

𝑆𝑆(MB-VIP)

𝑓 ⋅ k
= 1 917 

Equation 15 918 

where SS(MB-VIP) represents the total sum of squares of the multi-block VIP values. 919 

Univariate detection of pathway versus molecular-level signals 920 

Applying the semi-synthetic data generation approach detailed above, we generated semi-921 
synthetic data for each pathway accessible in the COPDgene and COVID-19 metabolomics 922 
and proteomics datasets (1290 and 298 realisations for Reactome and KEGG respectively for 923 
COPDgene data; 456 and 256 for COVID-19 data) at a range of different effect sizes.  924 

For the pathway-level simulation, we used the ssPA kPCA method to generate ssPA scores 925 
for each simulation. We then performed Mann Whitney U (WMU) tests to determine whether 926 
there was a significant difference in the pathway scores of the target enriched pathway in 927 
the simulated control and case groups. Bonferroni correction was used to obtain adjusted p-928 
values. 929 

For the molecular-level simulation, we performed MWU tests to determine whether there 930 
was a significant difference in each of the molecules in the target enriched pathway in the 931 
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simulated control and case groups. Bonferroni correction was used to obtain adjusted p-932 
values. To facilitate comparison with the pathway-level simulation, we used the Fisher 933 
method to combine p-values from each molecule in the target pathway. If at least 50% of 934 
molecules in the target pathway had a significant MWU test adjusted p-value (≤ 0.05), we 935 
combined them using Fisher’s method to obtain the final p-value. If less than 50% of the 936 
molecules in the target pathway had an adjusted p-value of ≤ 0.05, the combined p-value was 937 
set to 1.  938 

Performance evaluation 939 

Unit-variance scaling, imputation, and ssPA transformation were performed separately on 940 
the test-train splits in order to avoid data leakage when evaluating the results of multivariate 941 
methods. Specifically, for ssPA, for each pathway the ssPA (PCA/kPCA) model is fit on the 942 
training data only and ssPA scores for the test data are derived from the fitted model. 943 
Hyperparameter tuning for the number of latent variables in the MBPLS/PLS models was 944 
performed using 5-fold nested cross-validation, and for all semi-synthetic datasets the 945 
optimal number of latent variables was 1 (as expected). Predictive performance was 946 
computed using 5 times repeated 5-fold cross-validation, and evaluated using the area under 947 
the Receiver Operator Characteristic (ROC) curve (AUC).  948 

DIABLO 949 

DIABLO requires tuning of a hyperparameter representing the design matrix, which 950 
regulates the strength of correlation maximised between each omics block. In this work we 951 
used DIABLO with a ‘null’ design (no correlation constraint) as in the original DIABLO 952 
paper11, as our simulation setup was not designed to incorporate correlations between 953 
omics blocks.  954 

Detection of target pathway simulation 955 

For the target pathway simulation, we also used AUC to determine how well each method 956 
was able to detect the artificially enriched target pathway in each simulation realisation. To 957 
compute the AUC, the confusion matrix of true positives (TP), false positives (FP), true 958 
negatives (TN) and false negatives (FN) was defined as follows: 959 

• TP: The target enriched pathway with 𝑝𝑎𝑑𝑗 ≤ 0.05 960 

• FP: A non-target pathway with 𝑝𝑎𝑑𝑗 ≤ 0.05 961 

• TN: A non-target pathway with 𝑝𝑎𝑑𝑗 > 0.05 962 

• FN: The target enriched pathway with 𝑝𝑎𝑑𝑗 > 0.05 963 

p-values for each pathway’s feature importance (e.g. VIP/MB-VIP/DIABLO loading) were 964 
computed using permutation testing, see ‘Feature importance’ below.  965 

When evaluating the ability of DIABLO to detect the enriched target pathway, we used two 966 
methods referred to as ‘DIABLO pathway (loading)’ and ‘DIABLO pathway (sparse 967 
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loading)’. ‘DIABLO pathway (loading)’ involved using the loadings in a non-penalised single 968 
component GCCA DIABLO model as the feature importances and calculating empirical p-969 
values for these loadings as described below. ‘DIABLO pathway (sparse loading)’ involves 970 
using a sparse DIABLO rGCCA model with L1 penalty, where 5-fold, 5-times repeated cross-971 
validation is used to select the number of important features. Then, 25 bootstrap subsets of 972 
the data are obtained (each containing 400 samples in the COPDgene data or 60 in the 973 
COVID-19 data per class) and a sparse DIABLO model is fitted on each of these subsets. The 974 
test statistic for feature importance is defined as the proportion of the 25 bootstraps in 975 
which the pathway has a non-zero (sparse) loading. Intuitively, the target enriched 976 
pathway should be of high importance to the sparse model and therefore often appear in 977 
the significant features with a non-zero loading. Empirical p-values are also computed from 978 
the ‘DIABLO pathway (sparse loading)’ test statistic as described below.  979 

Feature importance 980 

p-values for the significance of each feature (pathway) in the PathIntegrate models were 981 
computed empirically using a standard permutation test. We permuted class labels (Y) 982 
10,000 times to obtain p-values with a resolution of 0.0001. p-values for each feature were 983 
calculated by counting the number of trials with test statistic (in this case VIP, MB-VIP, 984 
DIABLO loading, or non-zero proportion for DIABLO sparse) greater than or equal to the 985 
observed test statistic, and dividing this by 10,000. Multiple testing correction using the 986 
Benjamini Hochberg FDR method was then applied. 987 

PathIntegrate network explorer app 988 

Plotly Dash Cytoscape v0.3.0 (https://github.com/plotly/dash-cytoscape) was used to 989 
create the PathIntegrate network explorer app within the PathIntegrate python package. The 990 
app can be launched from within the Python package and runs on a local host. NetworkX was 991 
used to create the base network based on the Reactome pathway hierarchy, which was 992 
downloaded from https://reactome.org/download/ (ReactomePathwaysRelation.txt). 993 
Nodes represent pathways and edges represent a parent-child relationship between them. 994 
The app takes as input a PathIntegrate Multi-View or Single-View model object and uses 995 
attributes such as feature importance to colour nodes. 996 

COPDgene case study 997 

A PathIntegrate Multi-View model was fitted to COPDgene metabolomics, proteomics, and 998 
transcriptomics data, using multi-omics ssPA scores generated using the kPCA31 method. 999 
The optimal number of latent variables (4) used in the MBPLS model was identified using 1000 
nested 5-fold cross-validation.  1001 

The superscores were correlated to 260 clinical metadata variables using Spearman 1002 
correlation, and p-values were corrected for using Bonferroni correction. Absolute 1003 
correlations ≥ 0.3 and adjusted p-values ≤ 0.05 were used to filter for significantly correlated 1004 
metadata variables.  1005 
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COVID-19 case study 1006 

A PathIntegrate Single-View model was fitted to COVID-19 metabolomics and proteomics 1007 
data, using multi-omics ssPA scores generated using the SVD (PLAGE35) method, and 1008 
employing a random forest for outcome prediction. The optimal hyperparameters for the 1009 
SciKit-Learn RandomForestClassifier model selected via 5-fold cross-validatation were: 1010 
n_estimators=200, min_samples_split=2, min_samples_leaf=4, max_features='sqrt', 1011 
max_depth=10, bootstrap=True, oob_score=True. 1012 

Identifying important pathways using PathIntegrate Single-View 1013 

Random forest recursive feature elimination with 5-fold cross validation was used to identify 1014 
the optimal number of pathway features (20) for the Single-View model, implemented using 1015 
the sklearn RFECV function.  1016 

Identifying important molecules within a pathway 1017 

For a pathway of interest, loadings on principal component 1 were used to represent the 1018 
contribution of each molecule to the pathway scores across samples.  1019 

  1020 
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Data and code availability 1021 

The COVID dataset is publicly available from Mendeley data 1022 
(https://data.mendeley.com/datasets/tzydswhhb5/5) 56.  1023 

The COPDgene multi-omics data can be found at the following sources: Clinical Data and 1024 
SOMAScan data are available through COPDGene (https://www.ncbi.nlm.nih.gov/gap/, ID: 1025 
phs000179.v6.p2). RNA-Seq data is available through dbGaP 1026 
(https://www.ncbi.nlm.nih.gov/gap/, ID: phs000765.v3.p2). Metabolon data is available at 1027 
Metabolomics Workbench (https://www.metabolomicsworkbench.org/ ID: PR000907).  1028 

PathIntegrate is available via the open-source PathIntegrate Python package 1029 
(www.github.com/cwieder/PathIntegrate). Tutorials and documentation for PathIntegrate 1030 
can be found at https://cwieder.github.io/pathintegrate. Source code for benchmarking and 1031 
applications can be found at https://github.com/cwieder/PathIntegrate_scripts.  1032 

  1033 
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