Table 1: Performance comparison of PathIntegrate Multi-View using pathways versus using the molecular-level COPDgene dataset (mean AUC and 95% CI, as well as the number of latent variables (LV) used).
All omics | Metabolomics and proteomics |
Metabolomics and transcriptomics |
Transcriptomics and proteomics |
Metabolomics | Proteomics | Transcriptomics | |
---|---|---|---|---|---|---|---|
AUC (pathway) | 0.70 (0.67, 0.72) (4 LV) | 0.67 (0.66, 0.69) (3 LV) | 0.69 (0.67, 0.71) (3 LV) | 0.68 (0.66, 0.70) (4 LV) | 0.63 (0.61, 0.64) (1 LV) | 0.67 (0.66, 0.68) (3 LV) | 0.65 (0.63, 0.66) (3 LV) |
AUC (molecular) | 0.70 (0.69, 0.72) (6 LV) | 0.71 (0.70, 0.72) (2 LV) | 0.70 (0.68, 0.71) (6 LV) | 0.71 (0.70, 0.73) (7 LV) | 0.66 (0.65, 0.69) (2 LV) | 0.72 (0.71, 0.74) (3 LV) | 0.68 (0.66, 0.69) (5 LV) |
AUC (molecular – only those mapping to pathways) | 0.72 (0.70, 0.74) (7 LV) | 0.72 (0.70, 0.74) (2 LV) | 0.67 (0.66, 0.69) (6 LV) | 0.70 (0.69, 0.72) (6 LV) | 0.68 (0.67, 0.7) (2 LV) | 0.71 (0.70, 0.73) (3 LV) | 0.66 (0.64, 0.68) (7 LV) |