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Abstract 
 
Alzheimer's disease (AD) and related demenPas (ADRD) is a complex disease with mulPple  
pathophysiological drivers that determine clinical symptomology and disease progression. These 
diseases develop insidiously over Pme, through many pathways and disease mechanisms and conPnue 
to have a huge societal impact for affected individuals and their families. While emerging blood-based 
biomarkers, such as plasma p-tau181 and p-tau217, accurately detect Alzheimer neuropthology and are 
associated with faster cogniPve decline, the full extension of plasma proteomic changes in ADRD 
remains unknown. Earlier detecPon and beAer classificaPon of the different subtypes may provide 
opportuniPes for earlier, more targeted intervenPons, and perhaps a higher likelihood of successful 
therapeuPc development. 
 
In this study, we aim to leverage unbiased mass spectrometry proteomics to idenPfy novel, blood-based 
biomarkers associated with cogniPve decline. 1,786 plasma samples from 1,005 paPents were collected 
over 12 years from partcipants in the MassachuseAs Alzheimer’s Disease Research Center Longitudinal 
Cohort Study. PaPent metadata includes demographics, final diagnoses, and clinical demenPa raPng 
(CDR) scores taken concurrently. The ProteographTM Product Suite (Seer, Inc.) and liquid-chromatography 
mass-spectrometry (LC-MS) analysis were used to process the plasma samples in this cohort and 
generate unbiased proteomics data. Data-independent acquisiPon (DIA) mass spectrometry results 
yielded 36,259 pepPdes and 4,007 protein groups. Linear mixed effects models revealed 138 
differenPally abundant proteins between AD and healthy controls. Machine learning classificaPon 
models for AD diagnosis idenPfied potenPal candidate biomarkers including MBP, BGLAP, and APoD. Cox 
regression models were created to determine the associaPon of proteins with disease progression and 
suggest CLNS1A, CRISPLD2, and GOLPH3 as targets of further invesPgaPon as potenPal biomarkers. The 
Proteograph workflow provided deep, unbiased coverage of the plasma proteome at a speed that 
enabled a cohort study of almost 1,800 samples, which is the largest, deep, unbiased proteomics study 
of ADRD conducted to date. 
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Introduc)on 
 

DemenPa affects over 55 million people worldwide, with Alzheimer’s Disease (AD) and Related 
DemenPas (ADRD) being the most common forms. However, heterogeneity in presentaPon and rates of 
cogniPve decline and disease progression, as well as the need for more informaPve and accessible 
biomarkers, contribute to challenges in diagnosis and prognosis. The current gold standard for diagnosis 
remains autopsy, but this, of course, is only of retrospecPve clinical and research value. Molecular 
positron emission tomography imaging (PET,  for amyloid-b and tau) approaches the diagnosPc accuracy 
of autopsy, but they are not widely available, accessible or easily repeatable and are expensive. Blood-
based biomarkers enable greater accessibility, easier repeatability, and paPent parPcipaPon, ulPmately 
resulPng in higher-quality research, disease management, and treatments.  Blood-based biomarkers of 
amyloid beta and phosphorylated tau are emerging with steadily improving accuracy to predict brain AD 
pathology, but their uPlity for disease staging or prognosis is sPll limited. Although AD and related 
diseases are pathologically defined by their signature proteinopathies, a host of other pathophysiological 
processes contribute to neurodegeneraPon and cogniPve decline. These include varying degrees of 
inflammaPon, vascular disease, metabolic dysfuncPon, oxidaPve stress, dysregulaPon in 
transcripPon/translaPon/post-translaPonal modificaPon, dysproteostasis and dyslipidoses. Much of the 
heterogeneity of ADRD's presentaPons, diagnosis, and prognosis may be related to these factors.  

 
Though liquid chromtagraphy mass spectrometry (LC-MS) remains the gold standard for deep, unbiased 
proteomics, conducPng these experiments in plasma at a scale necessary for biological insight has 
historically been challenging. Prior studies have been either deep and of limited scale11 or at scale but of 
limited depth.2 We previously introduced Proteograph, a planorm for deep, unbiased proteomics at 
scale. Here, we present an updated assay, termed Proteograph XT, to reduce the number of MS 
injecPons, enabling a 2.5x improvement in throughput, while preserving similar depth from the 
Proteograph presented in previous unbiased proteomic studies using nanoparPcle-based mass 
spectroscopy.3–5 
 

We therefore used Proteograph XT on 1,786 samples from 1,005 parPcipants, whose final diagnoses 
represented a spectrum of demenPas, with AD parPcipants (n=379) represenPng the plurality. With 
these data, our study addressed biological pathways that are implicated in AD using linear mixed 
modeling and differenPal expression, biomarker discovery for AD paPents with machine learning 
classificaPon, and potenPal biomarkers for cogniPve decline across demenPa paPents with Pme-to-event 
modeling. 
 
 
Methods 
Cohort 
The cohort consisted of 1030 parPcipants in the MassachuseAs Alzheimer’s Disease Research Center's 
Longitudinal Cohort Study (MADRC-LC) in whom at least one plasma had been collected between 2008 
and 2019. This is a longitudinal observaPonal study spanning the enPre conPnnum of nomal aging to 
ADRD. Annual standardized assessments included a general and neurological exam, a semi-structured 
interview with the parPcipant and/or informant to record cogniPve symptoms with a Clinical DemenPa 
RaPng scale (CDR DemenPa Staging Instrument), a baAery of neuropsychological tests, and other 
instruments of the NaPonal Alzheimer's CoordinaPng Center (NACC) Uniform Dataset (UDS)6,7. Blood was 
collected  from all consenPng parPcipants.  
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 CogniPve status and clinical syndromes were determined at each visit by a consensus team aqer 
a detailed examinaPon and review of all available informaPon according to the 2011 NIA-AA diagnosPc 
criteria for MCI and AD8,9. Many parPcipants had autopsy, imaging, CSF, and/or plasma biomarkers in 
affiliated protocols.  Disease diagnosis (AD or other diseases) was further informed by these data when 
available. ParPcipant clinical data used in the analyses here include age, sex, race, ethnicity, years of 
educaPon, and clinical demenPa raPng global (CDRg) scores taken concurrently with sample collecPon. 
AddiPonal biomarker data available on almost all cases included apolipoprotein e (APOE) genotype as 
well as plasma phospho-tau 181 (pTau181), glial fibrillary acidic protein (GFAP) and neurofilament -light 
(NfL).  Plasma biomarkers were measured using ultrasensiPve MSD S-PLEX electrochemiluminescence 
immunoassay kits (Meso Scale Discovery, Rockville, MD), as previously described1010. 
 
 
ParPcipant summary staPsPcs are shown in Table 1.  
 
 
Table 1. Study par0cipant summary sta0s0cs. 

Characteristics Alzheimer’s Disease No Neurodegenerative 
Disease 

Other Dementias 

Number of participants (N) 379 240 387 

Number of visits [median (min, max)] 1 (1, 6) 2 (1, 6) 1 (1, 6) 

Age at 1st visit [Mean (SD)] 74.5 (9.4) 66.7 (11.6) 71.4 (9.9) 

Female (%) 190 (50.1) 166 (69.2) 212 (54.8) 

College educated [N (%)] 264 (69.7) 165 (68.8) 253 (65.4) 

APOE ε4 carriers [N (%)] 185 (48.4) 55 (22.9) 82 (21.2) 

Last Draw CDR sum of boxes [Mean (SD)] 5.0 (4.5) 0.2 (0.5) 3.9 (4.6) 

Last Draw MMSE [Mean (SD)]1 18.0 (8.2) 26.6 (2.8) 21.5 (7.2) 

Last Draw pTau-181 (pg/mL) [Mean (SD)]1 4.7 (3.3) 2.5 (1.3) 2.5 (1.4) 

Last Draw NfL (pg/mL) [Mean (SD)]1 319.4 (213.0) 180.2 (106.7) 326.7 (322.9) 

Last Draw GFAP (pg/mL) [Mean (SD)]1 146.9 (125.5) 80.5 (44.2) 99.2 (66.1) 

 
 
 
Standard Protocol Approvals, RegistraPons, and PaPent Consents 
The study was approved by the Mass General Brigham InsPtuPonal Review Board (2006P002104) and all 
parPcipants or their assigned surrogate decision makers provided wriAen informed consent. 
 
 

 
1 Not available in all par.cipants, sta.s.cs based on non-null values. 
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Sample Prepara%on 
Plasma samples used in this study had been collected between 2008 and 2019 and were banked in the 
Harvard Biomarkers Study Biobank11. Samples were collected in K2EDTA tubes, centrifuged at 2000 g or 5 
min, frozen in low retenPon polypropylene cryovials within 4 hours of collecPon and stored at -80°C unPl 
use. 
Plasma from 1,786 individual samples (including subsequent plasma collecPon samples from the same 
individuals) and a plasma control sample (PC6), consisPng of pooled citrate phosphate dextrose 
anPcoagulant plasma from 15 healthy individuals, were processed with the Proteograph XT Assay Kit 
(Seer). Plasma tubes containing 240 µL of plasma were loaded onto the SP100 AutomaPon Instrument 
(Seer) for sample preparaPon to generate purified pepPdes for LC-MS analysis. The samples were 
incubated to form each of the two proprietary, physicochemically disPnct nanoparPcle (NP) suspensions 
for protein corona formaPon. Samples (40 samples/plate; 38-39 individual plasma samples and 1-2 PC6 
samples) were automaPcally plated, including process controls, digesPon control, and MPE pepPde clean-
up control. Aqer a one-hour incubaPon, leveraging the paramagnePc property of NPs, NP-bound proteins 
were captured using magnePc isolaPon. A series of gentle washes removed nonspecific and weakly bound 
proteins. This process results in a highly specific and reproducible protein corona. Protein coronas are 
denatured, reduced, alkylated, and digested with Trypsin/Lys-C to generate trypPc pepPdes for LC-MS 
analysis. All steps were performed in a one-pot reacPon directly on the NPs. The in-soluPon digesPon 
mixture was then desalted and all detergents were removed using a solid phase extracPon and posiPve 
pressure (Monitored MulP-Flow PosiPve Pressure EvaporaPve ExtracPon module [MPE]2 TM; Hamilton) 
system on SP100 AutomaPon Instrument. Clean pepPdes were eluted in a high-organic buffer within a 
deep-well collecPon plate and quanPfied. Equal volumes of pepPde eluPon were dried down in a SpeedVac 
(3 hours-overnight), and the resulPng dried pepPdes were either reconstuited for immediate analysis by 
liquid-chromatography mass-spectroscopy (LC-MS) or stored at -80 °C to be analyzed later. PepPdes were 
reconsPtuted to a final concentraPon of 0.06 µg/µL in Proteograph XT Assay Kit ReconsPtuPon Buffer.   

LC-MS Analysis 
8 µL of the reconsPtuted pepPdes were loaded on an Acclaim PepMap 100 C18 (0.3 mm ID x 5 mm) trap 
column and then separated on an UlPmate 3000 HPLC System and a 50 cm μPAC HPLC column (Thermo 
Fisher ScienPfic) at a flow rate of 1 μL/minute using a gradient of 5 – 25% solvent B (0.1% FA, 100 % ACN) 
in solvent A (0.1% FA, 100% water) over 22 minutes, resulPng in a 33-minute total run Pme. For the MS 
analysis on the Thermo Fisher ScienPfic Orbitrap Exploris 480 MS, 480 ng of material per NP was analyzed 
in DIA mode using 10 m/z isolaPon windows from 380-1000 m/z. MS1 scans were acquired at 60k 
resoluPon and MS2 at 30k resoluPon.  

Spectral Library Genera%on 
Gas Phase Frac+ona+on (GPF) 
We used an MS-only workflow that combines GPF and DIA LC-MS, saving significant experiment Pme while 
maintaining high data completeness and reproducibility1. This strategy generated a chromatogram 
spectral library with GPF deep scanning experiments, consisPng of staggered m/z window analysis of the 
pooled pepPdes leq over from Proteograph XT Assay plates by pooling up to 5 µL of trypPc pepPdes leq 
for each sample in the plate into separate pools for each NP suspension. Six DIA LC-MS injecPons of 10 µL 
each containing a pepPde concentraPon of 0.06 ug/µL from each NP pool were analyzed. The six injecPons 
covered mass over charge (m/z) ranges of 400-500 m/z, 500-600 m/z, 600-700 m/z, 700-800 m/z, 800-900 
m/z, and 900-1000 m/z, with each injecPon having 50 staggered windows covering 4 m/z.  MS1 was run 
in 60K resoluPon and MS2 was run in 30K resoluPon on another Orbitrap Exploris 480 MS with similar 
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chromatographic setup (LC, trap, and column). A library-free search of the DIA LC-MS data was performed 
using DIA-NN 1.8.112 to create the empirically corrected GPF library. 
 
Data Analysis and Protein Representa%on 
All MS files were developed to run DIA-NN 1.8.1 with a GPF library search.  All idenPficaPons are reported 
at 1% FDR. Panel protein representaPons integrated nanoparPcle:precursor representaPons with 
MaxLFQ13,14. 

Func%onal Annota%on Enrichment and Differen%al Expression Analysis 
To determine how the biological variables in this cohort correlate with protein abundances 
comparing profiles across the 4,007 protein groups and 1,786 plasma samples, we trained a 
linear mixed-effects model (LMM; lme4) with 
 
ProteinIntensity ~ Diagnosis + Diagnosis:(Age + Sex + Educa%on + globalCDR +  ApoE_score) + 
Educa%on + Sex + Age + SampleVaria%on + (1|Collec%onYear) + (1|NP:AssayPlate), where 
Diagnosis contains 3 levels of AD, other demen%a, and no neurodegenera%ve disease, and ApoE 
score is calculated as (-0.5 * n of e2 alleles + 1 * n of e4 alleles). SampleVariaPon is a technical variable 
that accounts for variabiliPes in the samples resulPng from differences in NP:protein interacPons that 
are due to variaPons in sample collecPon. We calculated this variable the median fold-change of proteins 
annotated as “Nucleolus” for each plasma sample and NP. We picked Nucleolus as the term describing 
the sample variaPon here because we observed the highest variaPon between samples with this term 
compared to other GOCC terms such as “extracellular”, “intracellular”, “cytoskeleton”, and “humoral 
immune response”. CollecPonYear is included as a random effect to account for sample variability based 
on the year of sample collecPon, and NP and assay plates associated with the NP is accounPng for 
sample preparaPon variabiliPes. The missing protein intensiPes are imputed for the NP that has the 
lowest number of missingness across all samples, and in the case of equal missingness the NP with 
higher protein intensity is picked for imputaPon. The imputaPon is done by sampling 3 Pmes from a 
shiqed normal distribuPon for that feature with mean shiq = -1.8 and width = 0.315.  
 
To determine funcPonal annotaPons associated with the LMM results, annotaPons were matched with 
UniProt idenPfiers and enrichments calculated based on the coefficient distribuPons using the R 
AnnoCrawler package and implementaPon of 1D annotaPon enrichment16. 
 
To indicate how proteins are differenPally abundant in AD cases in contrast to the group without 
neurodegeneraPve disease, the LMM coefficients, where Diagnosis = AD, were ploAed against the 
negaPve log10 transformed p-values where the p-values are corrected for mulPple tesPng according to 
the Benjamini-Hochberg method (Figure 2B). 
 
Diagnos%c Cohort and Machine Learning Diagnos%c Model 
 
We established a DiagnosPc cohort using the final draw from each sample for the purpose of evaluaPng 
the use of protein biomarkers for determining AD status and idenPfying AD related proteins. We then 
further restricted these data to only those parPcipants which diagnosed as “AD” or “No 
NeurodegeneraPve Disease”. As we wished to evaluate pTau-181 as a biomarker and to avoid 
confounding of diagnosPc state, we also excluded cases where the diagnosis was made on the basis of 
pTau-181. Ideally, we would remove all cases which used a biomarker to determine AD status, but this 
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would yield too few healthy controls. The final set of samples included 141 AD parPcipants, and 217 
healthy controls. 
 
We developed a machine learning model to classify AD and Healthy controls based on their plasma 
proteomics features from LC-MS, in addiPon to pTau-181 concentraPon. Our logisPc regression model 
includes a preprocessing pipeline for the proteomics features that appropriately handles missing data, 
imputaPon, normalizaPon, and feature selecPon (Figure 3a). Protein intensiPes are first filtered by 
missingness, keeping only features that have a missing rate of less than or equal to 75% among the 
training samples. We then normalize the features by taking the logarithm and subtracPng each feature’s 
median. Any remaining missing values are imputed by sampling from a shiqed normal distribuPon for 
that feature with mean shiq = -1.8 and width = 0.31515. The top-K features are then idenPfied by 
compuPng the ANOVA F-score between the labels and features, and keeping the K highest scoring 
features. Finally, pTau-181 (pg/mL) is added as a feature and the whole set of features is mean centered 
and unit variance scaled, before passing to a penalized logisPc regression classifier. 
 
The model described above has hyperparameters (K for feature selecPon, and penalty kind and amount 
for logisPc regression) that must be tuned, and logisPc regression coefficients that must be fit to the 
data. To avoid overfi}ng, we adopt a nested cross-validaPon strategy. We create 10 outer folds. For each 
of these 10 folds, the other 9 are taken as the training set. This training set is then further split in an 
inner hyperparameter tuning stage, where 80% of it is used to fit a model for each possible 
hyperparameter se}ng, and the other 20% is a validaPon set used to evaluate the hyperparameter 
se}ng. The best hyperparameter se}ng (highest area under the receiver operator characterisPc curve 
(AUROC)) is then refit on the full 9-fold training set, and a test score is computed on the test fold. 
 
Time-to-Event Analysis 
 
Cox proporPonal hazards (CPH) and Cox Pme-varying (CTV) regression models were built to determine 
the associaPon of each protein group with the Pme to CDRg increase (the event) from either CDRg of 0.0 
or CDRg of 0.5. ParPcipants who showed an increase from baseline (0.0 to 0.5 or 0.5 to 1) aqer a 
minimum of 1 post-draw visit were labeled as E=1 while those that did not show an increase for their 
observaPon Pme and for at least 3 years were categorized as E=0 (censored). With these criteria, the 
original dataset was subset in the CDRg baseline 0.0 model with 300 parPcipants and 540 biosamples 
(n=145 parPcipants with mulPple draws) and the CDRg baseline of 0.5 model had 391 parPcipants and 
684 biosamples (n=209 parPcipants with mulPple draws). 70 parPcipants were in the models for both 
baselines. We describe three sets of Cox regression model types in this study: 
 
Table 2 

 Model type Pa,ent samples Uses Delayed 
Entry 

Timescale Purpose 

Model 1 CTV All before event Yes Age Represent mul,ple blood 
draws and ,me-varying 
protein levels 

Model 2 CPH Last before event Yes Age Comparison with CTV 
model 

Model 3 CPH Last before event No Follow-up ,me Check of PH assump,on 
and genera,on of 
survival curves 
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The equaPons for these models are shown below, with a detailed explanaPon of predictor variables to 
follow: 
 
Model 1:  ℎ"𝑎, 𝑋(𝑡)) = ℎ!(𝑎|𝑎!) 𝑒𝑥𝑝/Σβ"Xi + Σδ$Xj(𝑡)5     
 
Model 2:  ℎ(𝑎, 𝑋) = ℎ!(𝑎|𝑎!) 𝑒𝑥𝑝[Σβ"Xi] 
 
Model 3: ℎ(𝑡, 𝑋) = ℎ!(𝑡) 𝑒𝑥𝑝[Σβ"𝑋"] 
 
The variables common to all three models are ℎ represenPng the hazard rate,	β" , the regression 
coefficient corresponding to Xi, and 𝑋, a vector of Pme-independent covariates. In Model 1 only, δ$  
represents the coefficients of Xj and 𝑋(𝑡) is a vector of Pme-dependent covariates. In Models 1 and 2, 𝑎 
is the age at event or censorship, 𝑎! is the age of last blood draw before the event or censorship, 
indicaPng that both models adjust for delayed entry and use age as Pme-scale. In Model 3, the variable 𝑡 
represents the duraPon between the last blood draw and the event or censorship, does not account for 
delayed entry, and instead age of the last blood draw is used as a covariate. 
 
The Pme-varying model (Model 1) maximizes the data available from parPcipants with mulPple blood 
draws and represents proteins as a Pme-varying covariate. Models 2 and 3 only used the last available 
blood draw before an event. The last draw model showed a greater correlaPon with the CTV model than 
the first draw model (Supp. Fig X) and therefore the last draw was the basis for assessing the 
proporPonal hazards assumpPon and survival curve generaPon in Model 3. Models 1 and 2 used age as 
Pme-scale given the importance of age in demenPa17. Both models also accounted for delayed entry, 
where entry Pme is the age of earliest draw at a subject’s baseline since the MADRC cohort is an 
observaPonal study with an open cohort18. Model 3 did not use age as Pme-scale and used age as a 
covariate instead. All models assessed the associaPon of each protein group while controlling for the 
subject-level covariates sex, educaPon, ApoEe4 risk score (-0.5 * n of e2 alleles + 1 * n of e4 alleles) and 
technical-level covariates that contributed to variaPon of the protein group itself (Supp. Figure X), 
including plate group idenPfier, collecPon year, and nucleolus score. Models were created for a protein 
group only if there was a minimum completeness of 25%; samples with missing values for a protein 
group were not considered in that model. The intensity values of each protein group were median 
normalized, log2 transformed and standardized. Since one model was built for each protein group, we 
accounted for mulPple hypothesis tesPng by applying Benjamini-Hochberg adjustment to nominal p-
values. In parPal regression coefficient plots, the levels of protein group features are shown as z-scores. 
The python package lifelines was used to create the Cox models19. 
 
Results & Discussion 
 
Study design and protein quan%fica%on metrics 
 
Samples were collected from an observaPonal study of a group of individuals with or without cogniPve 
impairment in a longitudinal fashion with data collected on a nearly annual basis. Data include cogniPve 
tests and blood collecPon (average 6.2 ± standard deviaPon 3.80 visits per subject), although proteomics 
was obtained for only a subset of blood draws (1.8 ± 1.04 blood draws per subject). Final primary disease 
diagnoses were also provided along with a method of determinaPon such as neuropathology, molecular 
neuroimaging, CSF and/or plasma biomarker. Plasma samples were processed for deep LC-MS 
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proteomics. In our analysis of 1,786 plasma samples, we idenPfied 4,007 protein groups (3,692 for those 
in at least 25% of samples) and 36,259 pepPdes using the GPF library. 
 
 

 
Figure 1. Study design, plasma proteomics quan0fica0ons, and cohort subse=ng for ques0ons of interest. 

 
Differen%al Expression of Proteins in Alzheimer’s Pa%ents 
 
To invesPgate the biological pathways involved in AD and the idenPficaPon of proteins that are 
differenPally abundant between AD and control samples, we analyzed all 1786 plasma samples, 
including 498 plasma samples from parPcipants without neurodegeneraPve disease, 653 plasma 
samples from parPcipants with AD, and 635 plasma samples from parPcipants with other types of 
demenPa. 
 
We use a linear mixed model describing the normalized intensiPes of all idenPfied proteins as a funcPon 
of diagnosis, age, sex, educaPon, global CDR score, APOE alleles, and technical variables such as NPs, 
assay plates, sample collecPon year, and plasma protein composiPon. The resulPng coefficients from this 
model were then used in a 1D annotaPon enrichment analysis to evaluate how these biological variables 
are differenPally associated with funcPonal annotaPons. Figure 2A shows the biological processes that 
are significantly dysregulated in AD. For example, oxidaPve phosphorylaPon is shown to be 
downregulated (Enrichment score = -0.34). In a recent study by Misrani et. al, mitochondrial dysfuncPon, 
associated with a decrease in neuronal ATP levels, has been shown to be a characterisPc feature of AD. 
This dysfuncPon is partly due to the overproducPon of reacPve oxygen species (ROS), leading to 
oxidaPve stress and damage to mitochondrial funcPon. In AD, this results in compromised oxidaPve 
phosphorylaPon, leading to neuronal cell death20. The extracellular matrix (ECM) is another biological 
processes that has been shown to be dysregulated in AD (Figure 2A). DysregulaPon of ECM plays a 
significant role in its pathogenesis, and it is involved in various aspects of AD, including synapPc 
transmission, amyloid-b plague generaPon and degeneraPon, tau-protein producPon, oxidaPve stress 
response, and inflammatory response. AlteraPons in ECM components can affect the stability of 
perineuronal nets, impacPng the clearance of amyloid-β and the producPon of neurofibrillary 
tangles21,22. Signaling pathways such as mTOR, ErbB, and Jak-STAT that are shown to be upregulated in 
AD parPcipants in this dataset, are known pathways related to the pathogenesis of AD23–25 (Figure 2A). 
In addiPon, pathways related to Parkinson’s disease (PD) and HunPngton’s disease (HD) are shown to be 
significantly dysregulated. Although each of these diseases has its unique pathophysiological 
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mechanisms, they do share some common mechanisms, including misfolding and aggregaPon of beta-
amyloid and a-synuclein, leading to neuronal apoptosis26,27.  
 
To gain insights into which proteins are differenPally abundant in the plasma of AD paPents compared 
the control group, we performed a differenPal expression analysis using the same linear mixed model as 
that above. This analysis resulted in 138 differenPally abundant proteins of which 38 are down-regulated 
proteins and 100 up-regulated proteins (Figure 2B). For instance, MAPK3, one of the up-regulated 
proteins in AD parPcipants in this dataset, is known to play a crucial role in AD28. The MAPK pathways, 
including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 pathways, 
are acPvated in neurons vulnerable to AD. The MAPK pathways are linked to significant pathological 
processes in AD, such as tau phosphorylaPon, amyloid-beta deposiPon, and amyloid-beta protein 
precursor funcPoning29. ACLS4 is another upregulated protein in AD parPcipants. ACLS4 is involved in the 
regulaPon of synapPc funcPon and neuronal signaling and previous studies have shown that its level is 
significantly increased in AD paPents30. DKK2 which is the most up-regulated amongst AD parPcipants in 
this dataset, is an inhibitor of the Wnt signaling pathway, which is known to be crucial for cogniPve 
funcPon, and its upregulaPon may contribute to reduced WnT signaling in AD31–33(Figure 2B).  
 
MGST3 which is one of the downregulated proteins in AD parPcipants (Figure 2B), is known to be 
significantly associated with hippocampus size and found to be linked to neurodegeneraPve disorders 
associated with reduced hippocampus volume such as AD, PD, and HD34. ADH1B which we found to have 
a protecPve associaPon in our data, has also been found to suppress Aβ-induced neuron apoptosis35, 
and mutaPons in its gene have been found to be associated with the development of AD36. 
 
To invesPgate how abundant these signature proteins are in blood plasma, we mapped the idenPfied 
proteins in our cohort to the Human Plasma proteome (HPPP) Database37. Figure 2C shows that the 
dysregulated proteins are distributed across the dynamic range of the plasma proteome with some of 
the highlighted proteins such as MAPK3, MGST3, and ACSL4 being at the lower abundance range. In this 
regard,  our finding of their differenPal expression in AD is noteworthy because these proteins would 
have been assayed in a unbiased proteomics assay in a large cohort without the use of Proteograph XT. 
 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 8, 2024. ; https://doi.org/10.1101/2024.01.05.574446doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.05.574446
http://creativecommons.org/licenses/by-nc/4.0/


 
Figure 2. Pathway enrichment analysis and differen0al expression analysis in Alzheimer's disease. A) 1D annota0on enrichment 
analysis for AD. 1D score was calculated for KEGG and GOBP terms as described in Method. The p-values are adjusted based on 
Benjamini-Hochberg (BH) mul0ple tes0ng correc0on and filtered at 5% FDR. Enrichment (score > 0) is depicted in red; Deple0on 
(score < 0) is depicted in blue. B) Differen0al expression analysis for AD vs. healthy controls. Volcano plot showing log2 fold 
change of proteins (x axis) and -log10 p-values a\er BH mul0ple tes0ng correc0on (y axis). The upregulated proteins are 
depicted in red; the downregulated proteins are depicted in blue. C) Dynamic range of iden0fied proteins matched with HPPP 
database37. All proteins iden0fied in the cohort that could match to the HPPP database shown in grey; upregulated protein in AD 
shown in red; downregulated proteins in AD shown in blue. 

Biomarker-Based Classifica%on of Alzheimer’s Pa%ents 
 
Next, we invesPgated if there is a mulPmarker signature of AD that can be idenPfied from the 
proteomics data. While pTau measurement has been established as the best marker for determining AD 
status, we were curious to see if protein features could provide addiPonal evidence of an AD signature 
beyond known autopsy, PET, CSF and plasma biomarkers. We also aimed to use this approach to 
determine AD related proteins. To this end, we focused on a subset of samples using the last draw from 
each subject that has at least two clinical visits. We then further restricted these data to only those 
parPcipants which diagnosed as “AD” or “No NeurodegeneraPve Disease” and took care to ensure that 
there was no confounding informaPon through inclusion of cases where the diagnosPc status is based on 
biomarkers we intended to evaluate.  The final set of samples included 141 AD parPcipants, and 217 
healthy controls. 
 
We developed a logisPc regression-based machine learning model to classify AD versus healthy controls 
using both pTau-181 concentraPon and our LC-MS proteomics features and evaluate it using nested cross 
validaPon (Methods, DiagnosPc Cohort and Machine Learning Diagnos%c Model). Since our dataset is 
imbalanced (AD is the minority class), we report the average precision (average posiPve predicPve value) 
in addiPon to AUROC (Figure 3b). We compared our model to a rule-of-thumb classifier that would just 
report the prior class distribuPon as the predicted probability of AD, in addiPon to comparing to the 
value of pTau-181 concentraPon alone. 
 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 8, 2024. ; https://doi.org/10.1101/2024.01.05.574446doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.05.574446
http://creativecommons.org/licenses/by-nc/4.0/


We can see in Figure 3b that the model using proteomics features (“pTau+Prot”) does not have a 
significant increase in diagnosPc performance over pTau-181 on its own. Furthermore, we plan to 
measure plasma pTau-217 levels in these samples which we anPcipate will provide beAer discriminaPon 
of AD status compared to our general protein model. We hypothesize that this is because pTau markers 
have been developed highly studies in relaPonship to AD leaving liAle room for improvement and we do 
not measure phosphorylaPon state in the unbiased proteomics assay. Nevertheless, we can use these 
models to give us potenPal insight into biomarkers driving the various pathophysiological processes that 
contribute to neurodegeneraPon and cogniPve decline.  
 
To that end, we can interrogate the fiAed models to determine which input features were most 
influenPal in classifying AD and healthy controls. The average of the logisPc regression coefficients across 
the 10 models (from the 10 folds) was computed, and the top 20 (based on absolute value) are reported 
in Figure 3c. While pTau-181 concentraPon was the most influenPal feature, other noteworthy 
proteomics features also had large coefficients. Myeloid basic protein (MBP) was associated with Healthy 
controls (negaPve coefficient, protecPve), and prior studies have shown that MBP acts as an amyloid β-
protein (Aβ) chaperone and can be an inhibitor of accumulaPon of Aβ fibrils38–44. Other studies have 
found the opposite associaPon as well, and the relaPon of MBP to AD pathology is sPll an open area of 
research45. In addiPon45 to osteocalcin (OSTCN), a marker of processes involved in osteoporosis such as 
bone remodeling and anabolism, and prior studies have shown some comorbidity of AD and 
osteoporosis46. Apolipoprotein D (APOD) also had a large posiPve coefficient and is known to have 
increased levels in AD where it plays a neuroprotecPve role against	oxidative	stress47,48. 
 

 
Figure 3. Classifica0on of AD vs Healthy controls. A) Flowchart of our machine learning pipeline for our “pTau+Prot” model. Blue 
nodes are steps that fit parameters based on training data and apply them to valida0on and test data (e.g. a list of features that 
pass missingness filters, the median value for a feature, or the coefficients of the logis0c regression classifier. Grey nodes are 
parameterless. Some nodes have hyperparameters listed, which we tune using nested cross valida0on. B) Results of 10 fold cross 
valida0on comparing the AUROC and Average Precision of the Rule-of-thumb baseline classifier, pTau-181 concentra0on alone, 
and our model shown in panel (A). C) The top 20 average coefficient values for the pTau+Prot model (when sorted by absolute 
values) across the 10 folds. Error bars indicate 95% confidence internal es0mated using 1000 bootstraps with replacement. 

Cox regression models iden%fy mul%ple biomarkers associated with demen%a progression 
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To determine the associaPon of protein groups to demenPa progression, we employed mulPple Cox 
regression models where we assessed the Pme to CDRg increase. The primary model (Model 1) is a Cox 
Pme-varying model that represents delayed entry, due to open cohort enrollment, right-censored 
events, and age as Pmescale. The Pme-varying component of this model allows the protein expression to 
be represented over Pme when mulPple draws are available for a subject (Fig. 4a, b) and for the 
proporPonal hazard assumpPon to be relaxed. We reasoned that cogniPvely healthy controls (CDRg of 
0.0 ) would have different rates of demenPa progression than those already showing mild cogniPve 
impairment (MCI, CDRg of 0.5). We therefore built one model for parPcipants with a baseline CDRg=0 
and another for baseline CDRg = 0.5. The distribuPon in parPcipants’ final diagnoses for non-
neurodegeneraPve, AD, and other demenPas was 179, 43, and 78 parPcipants respecPvely in the CDRg 
0.0 cohort and  40, 164, and 188 parPcipants, respecPvely, in the CDRg 0.5 cohort. 
 
We found that the CTV models for events greater than 0.0 model had no protein groups significantly 
associated with Pme-to-CDRg increase. However, the CTV models for events greater than 0.5 idenPfied 
eight protein groups with coefficients that were significantly associated (p-adj < 0.05 aqer BH correcPon) 
(Fig. 4b). Seven protein groups had posiPve coefficients indicaPng that elevated levels would implicate a 
shorter Pme-to-CDRg increase: CRISPLD2 (Q9H0B8), CLNS1A (P54105), BLVRB (P30043), SMYD5 
(Q6GMV2), PRPS1 (P60891), SELENBP1 (Q13228_Q13228.4), and OXSR1 (O95747). One significantly 
associated protein group GOLPH3 (Q9H4A6) had a negaPve coefficient, implying that higher levels are 
associated with delays in CDRg increase. AddiPonally, VGF (O15240), idenPfied as a significant biomarker 
of AD in brain Pssue, CSF and mouse model proteomics studies49–51, but not previously in plasma,  was 
just outside significance (p-adj < 0.1 aqer BH correcPon) and was also negaPvely associated with the 
Pme-to-CDRg increase. 
 
To further assess our Pme-to-event approach, we evaluated a CPH model using the latest draw available 
(nearest to but before the event) with delayed entry and age as Pmescale (Model 2). We found that the 
CPH models did not show any significantly associated proteins aqer BH correcPon, demonstraPng that 
the CTV model provided greater staPsPcal power than the CPH models (Supp. Fig X.) However, amongst 
those in the top 20 of lowest nominal p-values of Model 2 were six proteins (CLNS1A, CRISPLD2, 
GOLPH3, OXSR1, PRPS1, SELENBP1) that were also significantly associated in the CTV model. A different 
CPH model, one without delayed entry and age of the blood draw as a covariate (Model 3), was used to 
assess the proporPonal hazard assumpPon and generate survival curves, with posiPve and negaPve 
associaPon examples with Pme-to-CDRg increase shown in (Fig 4 d,e). 
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Figure 4. Time-to-CDRg increase assessments with Cox regression models. (a, b) Two examples of parAcipants’ CDR 
history. All periods represented in a Cox Ame-varying model between obtained blood samples and before an event 
are characterized as E=0 and the period between last blood draw and an observed event (CDRg increase) is 
characterized as E=1. A subject must have at least three visits without a CDRg increase for the final period to be 
labeled as censored (E=0). (c) CTV volcano plot where the y-axis is -log10 adjusted p-value (BH-corrected) and the 
dashed line represents adjusted p-value of 0.05. Proteins with posiAve coefficients are indicaAve of proteins 
associated with increased risk of Ame-to-CDRg increase while those with negaAve coefficients are associated with 
decreased risk. (d) CRISPLD2 survival curve generated from a CPH model between last draw and event as an 
example of a posiAve coefficient. (e) GOLPH3 survival curve generated from a CPH model between last draw and 
event, as an example of a negaAve coefficient.  
 
Several proteins idenPfied in the CTV and CPH models showed relevance to demenPa and/or Alzheimer’s 
disease in prior studies. CRISPLD2 was idenPfied as one of 89 genes regulated in an AD blood 
transcriptome study that accounted for white maAer hyperintensiPes52. CLNS1A was one of the 
significant variably methylated probes associated with amyloid-β in postmortem dorsolateral prefrontal 
cortex53. GOLPH3, which promotes vesicle exit for trafficking to the plasma membrane, has not been 
implicated directly in demenPa or AD, but it was cited as a potenPal mechanism for Golgi fragmentaPon 
in AD54. Studies on OXSR155, PRPS156, and SELENBP157 also show indirect evidence for these proteins in 
demenPa. In addiPon, a number of proteins just above the BH cutoff of 0.05 have greater support for a 
role in demenPa/AD, including VGF, MMP9, and CCN2. 
 
 
Discussion 
 
The goal of this study were to leverage deep, unbiased plasma proteomics to idenPfy biomarkers 
associated with demenPa progression and Alzheimer’s disease. We employed a variety of approaches 
using different subsets of the proteomics data to discover biological pathways relevant to Alzheimer’s 
disease, uncover biomarkers of disease classificaPon, and reveal proteomic signatures of demenPa 
progression. While some of the pathways and proteins idenPfied are known to be involved with ADRD, 
many are not and may point to novel biology. The proteins associated with demenPa progression are of 
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parPcular interest. They may enable development of a model to predict individuals that are at risk of 
rapid cogniPve decline. Such a model could be used to aid treatment decisions in paPents.  
 
Some strengths of the study include the large sample sizes, the standardized clinical characterizaPon of 
cogniPon and funcPon over Pme, the depth of the plasma proteome covered that is enabled by Seer's 
Proteograph workflow and GPF and DIA LC-MS workflow, and the Cox regression models to idenPfy 
those proteins most associated with clinical prognosis.  
 
The open cohort and volunteer enrollment of the study implicates a bias in observed Pme for 
parPcipants compared to a randomized controlled trial. In addiPon, parPcipants may preferenPally enroll 
if they or their caregivers noPce signs of demenPa, as observed in the final diagnoses of the CDRg 0.5 
cohort. Nevertheless, we aimed to minimize these sources of bias by using Cox models with appropriate 
modeling parameters including delayed entry, age as Pme-scale, right censorship, and Pme-varying 
protein covariates. Our cohort was predominantly composed of people of white race, European 
ethniciPes and high educaPon, thus limiPng our ability to generalize findings to people of non-European 
ancestry and less educaPon who are under-represented in AD research. 
 
A major advance of this work is the use of the next iteraPon of the Proteograph planorm for deep, 
unbiased proteomics. This planorm allowed us to run a large study of almost 1,800 samples while 
assaying over 4,000 proteins and 36,000 pepPdes. This depth at this scale was not previously possible for 
an unbiased workflow. As reported elsewhere, with newer MS analyzers this workflow can achieve 6,000 
proteins and more. Unbiased discovery provides an opportunity to learn new biology and develop a 
deeper understanding of disease. It also provides an opportunity for pepPde and hence isoform level 
analysis. Future work could invesPgate those aspects of the data in more detail as well as aAempPng to 
dissect the similariPes and differences in the pathophysiological pathways associated among ADRD, as 
well as heterogeneiPes among AD stage and subtypes. 
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