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Abstract
Alternative splicing (AS) contributes to the biological heterogeneity between species, sexes, tissues, and cell
types. Many diseases are either caused by alterations in AS or by alterations to AS. Therefore, measuring AS
accurately and efficiently is critical for assessing molecular phenotypes, including those associated with
disease. Long-read sequencing enables more accurate quantification of differentially spliced isoform
expression than short-read sequencing approaches, and third-generation platforms facilitate high-throughput
experiments. To assess differences in AS across the cerebellum, cortex, hippocampus, and striatum by sex,
we generated and analyzed Oxford Nanopore Technologies (ONT) long-read RNA sequencing (lrRNA-Seq)
C57BL/6J mouse brain cDNA libraries. From >85 million reads that passed quality control metrics, we
calculated differential gene expression (DGE), differential transcript expression (DTE), and differential
transcript usage (DTU) across brain regions and by sex. We found significant DGE, DTE, and DTU across
brain regions and that the cerebellum had the most differences compared to the other three regions.
Additionally, we found region-specific differential splicing between sexes, with the most sex differences in DTU
in the cortex and no DTU in the hippocampus. We also report on two distinct patterns of sex DTU we observed,
sex-divergent and sex-specific, that could potentially help explain sex differences in the prevalence and
prognosis of various neurological and psychiatric disorders in future studies. Finally, we built a Shiny web
application for researchers to explore the data further. Our study provides a resource for the community; it
underscores the importance of AS in biological heterogeneity and the utility of long-read sequencing to better
understand AS in the brain.
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Introduction

Alternative splicing (AS) of preRNAs to mRNAs can result in multiple transcript isoforms and proteins from a
single gene. This process contributes to the biological heterogeneity between species (1), sexes (2), tissues
(3,4), and cell types (5). Notably, AS is more abundant in the brain, and the brain has more tissue-specific
transcript isoforms than other tissues (3). AS is associated with many psychiatric and neurological disorders
(e.g., Autism Spectrum Disorder (ASD), schizophrenia, and epilepsy (6,7)). Furthermore, many psychiatric and
neurological disorders differ in prevalence by sex (8,9). For example, ASD, more common in males, has been
linked to multiple genetic changes, including disordered splicing (10,11). However, as biomedical research has
historically failed to study sex as a biological variable (12), there is still a need to quantify AS in the brain by
sex accurately.

Recent advances in third-generation long-read sequencing technologies (i.e., Pacific Biosciences and Oxford
Nanopore Technologies - ONT) enable high-throughput sequencing of complete mRNA transcripts to more
rigorously determine the expressed transcript isoforms in a given sample compared to short-read (i.e., next- or
second-generation) sequencing approaches. The resulting “long reads” can measure novel transcripts missed
with prior studies and reveal extensive isoform-level diversity. For example, Clark et al. applied long-read
sequencing to the human psychiatric risk gene CACNA1C and discovered 38 novel exons and 241 novel
transcripts (13). While short-read gene expression AS data analysis can include calculating the percent
spliced-in of exons or the splice junctions for a given gene, long reads enable researchers to quantify splicing
across entire transcripts directly. Differential transcript usage (DTU), sometimes referred to as differential
isoform usage, quantifies changes in transcript expression as a fraction of the overall expression of a particular
gene, complementing differential gene expression (DGE) and differential transcript expression (DTE) analyses
(14). Recently, researchers identified six candidate genes with novel DTU events in a schizophrenia cohort and
developed a method to stratify patient populations using multi-gene DTU patterns (15), exemplifying that DTU
can identify biologically relevant information in heterogeneous patient populations. These studies underscore
how long-read sequencing approaches paired with novel analytical frameworks can identify and quantify AS
patterns in the brain.

Due to known sex biases in healthy brain gene expression (2) and brain-related disease phenotypes (8,9), we
studied AS across brain regions and sexes. Thus, we sequenced the cDNA from C57BL/6J mouse cerebellum,
cortex, hippocampus, and striatum RNA for each sex (n = 5 each) using ONT and calculated DGE, DTE, and
DTU between conditions. We generated over 85 million reads passing quality control metrics. We observed
that the brain region with the highest DGE, DTE, and DTU is the cerebellum and that the most sex differences
were in the cortex. We also built a web application hosting our data for use by the scientific community.

Results

Long-read RNA-Seq profiles across four mouse brain regions identified potentially novel genes and
transcripts

We sequenced cDNA synthesized from total mRNA from the cerebellum, cortex, hippocampus, and striatum of
20-week-old male and female (n = 5 each) C57BL/6J mice using an ONT GridION device (Figure 1A). We
obtained 85,909,493 reads passing quality control metrics (Methods), with each brain region receiving at least
16 million reads across the ten samples for that region (Figure 1C). The hippocampus had the lowest number
of total reads (n = 16,739,487), potentially due to our reduced starting material as it is smaller than the other
brain regions we assayed. We aligned and quantified our data using the nf-core (16) nanoseq pipeline and
Bambu (17), a tool for performing machine-learning-based transcript discovery and quantification of long-read
RNA-sequencing data with high precision and recall (18). When visualizing our samples based on
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variance-stabilization transformed (VST) gene counts by principal component analysis (PCA), samples are
separated by tissue (Figure 1B). The difference in cerebellum samples to all other brain region samples drove
the greatest gene expression variation in the data set (PC1, 33% of the total variance, Figure 1B).

Figure 1. Long-read Nanopore RNA sequencing across four mouse brain regions. (A) Overview of the
study design. (B) PCA plot (PCs 1 and 2) of VST gene counts. Here, we colored samples by brain region. (C)
Bar graph of the total number of long reads sequenced for each tissue. (D and E) Bar graphs of the number of
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novel and annotated genes and transcripts. (F) Histogram of the transcript counts per gene, truncated past 25
transcripts per gene. Supplementary File 2 includes the numbers of all transcripts measured for each gene.

We next determined any potentially novel genes and transcripts we captured with Bambu(17). We identified
285 genes and 382 transcripts not previously annotated in mouse GENCODE release M31 (Figures 1D and
1E) and considered them “novel.” These 382 potentially novel transcripts correspond to 354 unique genes. Of
the 382 novel transcripts, 309 (81%) transcripts belonged to novel genes, and 73 (19%) belonged to previously
annotated genes (Supplementary File 1). Interestingly, when we examined the expression distributions of
novel compared to annotated transcripts, novel transcripts were expressed significantly more than annotated
transcripts (Wilcoxon rank sum test, p = 1.570014e-113, 95% CI [2.80 4.15], Supplementary Figure 1),
potentially due to the stringent expression cutoffs Bambu has to identify novel transcripts. Of these novel
transcripts, 279 out of 382 (79%) had a mean counts per million (CPM) of at least one across all samples.
However, all genes had a mean of 3.2 transcripts, while novel genes had a mean of 1.1 transcripts, though a
subset of all genes (n = 76) had over 25 transcripts expressed (Figure 1F, Supplementary File 2). Two long
non-coding RNA (lncRNA) genes, Gas5 and Pvt1, had the most transcripts (149 and 129, respectively). In
short, we generated a lrRNA-seq dataset for four brain regions and both sexes of C57BL/6J mice, in which we
identified potentially novel genes, transcripts, and patterns of gene expression variance across mouse brain
regions.

Differential gene expression and differential transcript expression and usage identified across brain
regions

We calculated DGE and DTE using the R package DESeq2 (19). We found 8,055 (Wald test with
Benjamini-Hochberg (BH) correction p < 0.05) pairwise brain region DGE events involving 3,546 unique genes
(Figure 2A-D), where the cerebellum, compared to the striatum, had the most DGE (n = 2,229, Wald test with
BH correction p < 0.05), and the cortex, compared to the hippocampus, had the least DGE (n = 349, Wald test
with BH correction p < 0.05) (Figure 2B). Consistent with our PCA (Figure 1B), each brain region compared to
the cerebellum had the most DGE, with 920 genes consistently differentially expressed in the cerebellum
compared to the other regions (Figure 2B). We calculated DTE for each expressed transcript, and we
considered a gene to have DTE if it had at least one transcript with differential expression for that comparison
(Figure 2C-D). We identified 11,138 DTE events (Wald test with BH correction p < 0.05) associated with 4,126
unique DTE genes (Figure 2D). Unlike DGE, the greatest difference in DTE genes was between the
cerebellum and cortex (n = 2,620, Wald test with BH correction p < 0.05), and the least was between the cortex
and the hippocampus (n = 345, Wald test with BH correction p < 0.05) (Figure 2D).
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Figure 2. DGE, DTE, and DTU across pairwise brain region comparisons. Cartoon representation of a
gene with three isoforms (actual genes may have more or fewer isoforms) exemplifying (A) differential gene
expression (DGE - violet), (C) differential transcript expression (DTE - turquoise), (E) and differential transcript
usage (DTU - green). UpSet plots of the overlap of genes with (B) DGE (Wald test with BH correction p <
0.05), (D) DTE (Wald test with BH correction p < 0.05), and (F) DTU (t-test with BH correction p < 0.05)
between pairwise brain region comparisons. The bar plot above denotes intersection size, circles denote which
comparisons have overlap, and the set size reflects the total number of genes with DTU for that comparison.
For panels B and D, we omitted intersections of fewer than 40 genes from the chart for legibility. For panel F,
we omitted intersections of fewer than five for legibility. (G) Stacked bar chart representing pairwise brain
region comparison overlap across DGE, DTE, and DTU. Genes included in the chart must express at least two
transcripts.

Next, we calculated DTU for each pair of brain regions using the DTU method SatuRn (20) with the R package
IsoformSwitchAnalyzeR (21) (Figure 2E, F). Here, we considered a gene to be a DTU gene if it had a t-test
statistic (calculated from the log-odds ratio and variance of the quasi-binomial generalized linear model)
BH-corrected p-value < 0.05 for at least one of its transcripts where genes had at least two expressed
transcripts (Methods). We analyzed DTU across brain regions and found 1,051 DTU events in 648 unique
genes (Figure 2F). The most DTU genes were in the cerebellum compared to the striatum (n = 355, t-test with
BH correction p < 0.05), and the least were in the cortex compared to the hippocampus (n = 31, t-test with BH
correction p < 0.05) (Figure 2F). Consistent with our other analyses (65% for DGE and 71% for DTE), we
identified the majority of DTU genes (66%) from comparisons including the cerebellum (Figure 2B, D, F).
Interestingly, the number of DTU genes (n = 63, t-test with BH correction p < 0.05) shared across all three
comparisons including the cerebellum was a smaller percentage (10%) of the total unique DTU genes (Figure
2F) than DGE (26%) or DTE (25%) (Figure 2B, D), suggesting that DTU analysis is less driven by the
cerebellum. We also directly compared which genes were identified for each analysis (DGE, DTE, and DTU)
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that expressed at least 2 transcripts and qualified for DTU analysis. We found that DGE and DTE genes had
the most overlap across comparisons, with a small proportion of significant genes for each comparison
identified by all three methods (Figure 2G). We also performed functional enrichment analysis using gprofiler2
(22) of DGE, DTE, and DTU genes for all comparisons (Supplementary Files 3-5). For the cortex compared
to the cerebellum DGE, DTE, and DTU genes, we found enrichment (Fisher’s exact test with g:SCS correction,
p < 0.05) for 1742, 2431, and 54 terms. Strikingly, we found a much larger percentage of terms associated with
the neuronal synapse in DTU (24/54, 44%; e.g., synapse, glutamatergic synapse, post-synapse, synaptic
signaling, neuron-to-neuron synapse, and postsynaptic membrane) compared to DGE (50/1742, 2.9%) and
DTE (77/2431, 3.2%). Because a larger proportion of DTU genes were enriched for pathways required for
synaptic neurotransmission, this suggests that DTU potentially identifies biologically distinct molecular
signatures from DGE and DTE. Overall, a pairwise comparison of DGE, DTE, and DTU between brain regions
revealed marked heterogeneity for each analysis per comparison, with a greater overlap in DGE and DTE than
in either analysis with DTU. This underscores that isoform usage may be masked when only considering
differential expression, hiding biologically distinct molecular signatures.

DTU sex differences are brain region-specific

Due to known sex biases in healthy brain gene expression (2) and in brain-related disease phenotypes (8,9),
we asked if there were sex-biased DGE, DTE, or DTU events by brain region. First, we measured DTU across
sexes, combining brain regions, and identified four genes with DTU: Zfp862-ps, Gm10605, Shisa5, and Zfp324
(t-test with BH correction p < 0.05) (Supplementary Figure 2). Zfp862-ps and Zfp324 are a pseudogene and
gene, respectively, for zinc finger proteins that contain a DNA-binding domain. While pseudogenes have
traditionally been considered non-coding, they have been shown to regulate other genes and form viable
proteins (23,24). Notably, the human ortholog of Shisa5, SHISA5, has been previously identified as having
sex-biased splicing in human brain white matter (2), in line with our finding of sex-biased splicing in mouse
brain regions. Finally, Gm10605 is a predicted lncRNA gene. We did not identify any of these genes in our
within-brain region analyses, suggesting that for these genes, we were underpowered to identify DTU in each
region alone.

We next calculated DGE, DTE, and DTU across sexes within each brain region (Table 1, Figure 3). We
identified 23 region-specific genes with DTU by sex (analysis of deviance chi-squared test with BH correction p
< 0.05): 14 in the cortex, seven in the striatum, and two in the cerebellum (Table 1). Despite documentation of
phenotypic sex differences in the hippocampus (25), we did not find sex DTU in the hippocampus (Figure 2C).
None of the 23 genes overlapped between brain regions, suggesting these sex differences may be brain
region-specific. When we compared these DTU genes to DGE genes for each region, none overlapped
(Figure 3A-D), and only three of 23 overlapped with DTE. Therefore, by analyzing DTU, we identified 20
additional genes with differential sex effects.

Table 1. Genes with brain-region-specific DTU across sexes.

Brain Region Genes with DTU across sexes

Cortex 6430548M08Rik, Anxa7, Plppr2, Sel1l, Zmiz2, Mtcl1, Kifap3, Leprot, Bcar1, Arhgap12,
Washc3, Fbxw2, Bmal1, Lmtk3

Striatum Fbxo25, Dhrs4, Rab28, Cacnb2, Cstpp1, Rsrc1, Celf2

Cerebellum Camk2d, Srgn

Legend: Bolded genes are highlighted in the results and Figures 3 and 4.
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Figure 3. DGE, DTE, and DTU across sex within brain regions. (A-D) Euler diagrams represent the overlap
of genes with significant DGE (Wald test with BH correction p < 0.05, purple), DTE (Wald test with BH
correction p < 0.05, cyan), and DTU (analysis of deviance chi-squared test with BH correction p < 0.05, green).
The brain regions represented are (A) cerebellum, (B) cortex, (C) hippocampus, and (D) striatum. (E)
Switchplot displaying a transcript summary, gene expression, isoform expression, and isoform usage of the
gene Anxa7 across male (M; dark color) and female (F; light color) cerebral cortex. In the indicated
comparison, ns denotes not significant, * denotes P < 0.05, ** denotes P < 0.01, and *** denotes P < 0.001.

We highlighted one of these sex-significant cortex DTU genes, Anxa7, for its many known connections to
sex-associated phenotypes in humans (Figure 3E). Human ANXA7 is a member of the annexin family, and
humans express this gene in all tissues (26). ANXA7 has multiple links to sex hormones; for example, ANXA7
promoter activity is affected by estrogen and progesterone nuclear receptors (27). In addition, patients with
schizophrenia express this gene lower than healthy controls (28). In our study, we measured three distinct
Anxa7 isoforms: ENMUST00000100844.6 (the Ensembl canonical transcript), ENMUST00000065504.7, and
ENMUST00000224975.2 (Figure 3E). When we aggregate transcript expression, Anxa7 does not have
differential gene expression between males and females in any region. However, there was DTU of
ENMUST00000065504.7 and ENMUST00000100844.6 across sex (Figure 3E). Males expressed
ENMUST00000100844.6 (the only transcript that included exon 5) higher than females. Humans have a
documented clinical variant of uncertain significance (gnomAD variant 10-75143086-T-A) in the conserved
male-biased exon (29). Strikingly, 11/16 reported cases with this variant were in XY males and only 5/16 in XX
females (29). In the alternatively spliced exon 5, multiple transcription factor binding sites exist, including for
FOXO1, which is strongly sex-associated and a key transcription factor associated with early pregnancy (30).
In summary, analysis of sex-significant DTU genes revealed differential isoform usage by sex within brain
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regions that would have otherwise been undetected by gene or transcript expression analyses, including genes
with known sex-associated phenotypes.

There are two main patterns of sexually dimorphic transcript usage: sex-divergent and sex-specific

In addition, we noticed distinct patterns in sex DTU genes expressing two transcripts (Figure 4A-B). First, we
identified sex-divergent switches, i.e., sexually dimorphic transcript expression, where a single dominant
transcript switch is in the opposite direction for both sexes (Figure 4A). We identified sex-divergent switches in
Mtcl1, Sel1l, 6430548M08Rik, Srgn, and Lmtk3. For example, the sex-divergent gene Mtcl1 has two
transcripts, ENMUST00000086693.12 and ENMUST00000097291.10, where ENMUST00000086693.12 is
dominant in males and ENMUST00000097291.10 in females (Figure 4C). Mtcl1 codes for Microtubule
Crosslinking Factor 1 and is expressed highly in the cerebellum in the literature and our dataset (26). Human
MTCL1 is known to be essential for the development of Purkinje neurons (31). Despite its connections to the
cerebellum, we only saw DTU in Mtcl1 by sex in the cortex. We also identified sex-specific isoform switches,
i.e., where one sex expresses one isoform, but the other sex had almost equal expression of both isoforms
(Figure 4B). We identified sex-specific isoform switches in Rab28, Fbxo25, Leprot, Kifap3, and Plppr2. Rab28
(Figure 4D) has a female-specific isoform, ENMUST000000201422.4, which had approximately equal
expression as the other isoform, ENMUST00000031011.12, in females, while ENMUST00000031011.12 was
the only isoform expressed in males. RAB28 is an essential gene for vision, and loss of function mutations in
RAB28 cause cone-rod dystrophy in humans (32,33). Thus, in addition to identifying significant differences in
isoform usage between sexes, we also found distinct patterns of sex DTU gene expression, with sex-significant
DTU genes showing either sex-divergent or sex-specific transcript expression.
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Figure 4. Sex-divergent and sex-specific DTU. (A-B) Representative cartoons exemplify two transcript
expression patterns of isoform switching: sex-divergent (A) and sex-specific (B). (C) Switchplot displaying a
transcript summary, DGE (Wald test with BH correction p < 0.05, purple), DTE (Wald test with BH correction p
< 0.05, cyan), and DTU (analysis of deviance chi-squared test with BH correction p < 0.05, green) of the
sex-divergent gene Mtcl1 in the cortex between males (M; dark color) and females (F; light color). (D)
Switchplot displaying a transcript summary, DGE (Wald test with BH correction p < 0.05, purple), DTE (Wald
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test with BH correction p < 0.05, cyan), and DTU (analysis of deviance chi-squared test with BH correction p <
0.05, green) of the sex-specific gene Rab28 in the striatum between males (M; dark color) and females (F; light
color). Please note that these plots do not display all possible transcript structures of this gene, only the ones
measured in our dataset. In the indicated comparison, ns denotes not significant, and * denotes P < 0.05.

A web application for visualizing DGE, DTE, and DTU in mouse brain lrRNA-seq data

Finally, we built an R Shiny application for our data set. Users may create custom gene expression heatmaps
(Figure 5A) or examine switch plots for individual genes using the IsoformSwitchAnalyzeR package (Figure
5B). We also provide the option for users to download the intermediate gene expression and isoform switch
test result data and plots directly. Our Shiny application has been made publicly available at
https://lasseignelab.shinyapps.io/mouse_brain_iso_div/.

Figure 5. Shiny app presents a user-friendly interface for exploring our mouse brain dataset.
Screenshots of our web application (A) The “Custom Gene Expression Heatmap” lets users examine and
download the gene-level expression of any gene(s) of interest in our dataset. Users can also download the
expression and isoform switch test result data to analyze further or download the plots as-is. (B) In the
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“Pairwise Brain Region Comparison” tab, users can visualize their gene of interest in pairwise brain region
comparisons in real-time and download expression and isoform switch test result data and plots.

Discussion

In summary, we produced a high-quality, publicly-available ONT lrRNA-Seq dataset across four brain regions
from C57BL/6J mice, balanced for sex. We processed this data and identified 285 potentially novel genes and
382 novel transcripts, mostly (81%) associated with novel genes. We then calculated DGE, DTE, and DTU
across brain regions and by sex. As expected, we identified DGE, DTE, and DTU between the four brain
regions. The cerebellum had the most differences, potentially driven by cell type composition compared to the
other three regions. Additionally, we found region-specific DTU between sexes, with the most differences in
DTU in the cortex. We also report two distinct patterns of sex DTU in our data: sex-divergent and sex-specific.
Finally, we built a Shiny web application for researchers to explore our lrRNA-Seq results.

Our study aligns with multiple prior studies identifying changes in isoform regulation across brain regions in
mice (34–36) and humans (13,37–39). Additionally, we found the most differences in bulk DGE in the
cerebellum, which agrees with other studies examining AS across multiple brain areas (40). For example, the
gene with the highest DGE for all pairwise comparisons including the cerebellum is Pcp2, Purkinje cell protein
2. We suspect this reflects brain region-specific differences in cell type composition, as Purkinje neurons are
unique to the cerebellum. However, confirmation of this hypothesis requires future studies at the single-cell
level. Additionally, we found that some of these significant DTU genes across brain regions are known
psychiatric risk genes (Supplementary File 6), potentially linking to region-specific differences in disease
manifestation (41). We were not surprised by the low amount of DTU we observed across sexes when we
grouped all brain regions because of the variability between different brain regions’ cell type compositions.
Therefore, we also investigated AS across sexes within brain regions and found differences in the gene and
transcript expression and usage of multiple brain-region-specific genes. Interestingly, we found the brain region
with the most DTU by sex was the cortex, which is involved in high-level cognition. Many psychiatric
phenotypes are associated with the cortex, and several of these are sex-biased in prevalence (e.g., ASD (8),
schizophrenia (9), and major depressive disorder (42)). We also noticed that these DTU genes had two
separate patterns of sex-significant transcript usage, either sex-divergent or sex-specific. These patterns
demonstrate that while some transcripts are specific to one sex, others may shift in abundance between sexes,
exemplifying nuanced sex differences.

We analyzed differences in gene expression on three fronts: DGE, DTE, and DTU, which together reveal more
information on gene expression patterns by region and sex. While our work had many strengths, some
limitations include using a bulk RNA-seq approach, read depth as a general limitation for transcript discovery,
and sample number constraints, as well as using mice instead of human tissues for translation to human
disease. Future work would benefit from single-cell resolution to determine the extent to which brain region
differences stem from cell-type composition differences. Researchers could investigate this effect of cell-type
composition through computational cell-type deconvolution, fluorescence-activated cell sorting (FACS), or new
single-cell lrRNA-Seq methods, such as scISOr-Seq and scISO-Seq (43,44). While we sequenced an average
of two million reads per sample and found 285 potentially novel genes and 382 novel transcripts, deeper
sequencing depth may allow for greater novel isoform detection, as demonstrated by recently published AD
data with extremely high-depth long-read sequencing (averaged 35.5 million reads per sample, discovered
3,394 new isoforms and 1,676 new gene bodies) (45). We reported on novel genes with any level of
expression, and additional work is needed for our study and others to confirm these ORFs are actually novel
genes and not sequencing bias or some other artifact. We attempted to reduce the number of false positives by
using the stringent transcript quantification tool Bambu, which is specially designed for long-read sequencing
data.
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Furthermore, more samples may allow greater statistical power to detect smaller expression differences
approaching significance with our current sample size. Intuitively,   we would expect most DTU genes to have
DTE, but not all DTE genes to have DTU. In our data, this assumption was not correct. Although SatuRn and
DEXSeq use transcript expression information as the basis for their DTU analyses, these inconsistencies in
significance between DESeq2 and SatuRn/DEXSeq may stem from using different models to calculate
statistical significance (Methods). Therefore, it is possible that larger sample sizes and thus increased
statistical power to detect significant differences in transcript expression and usage may result in the two
methods agreeing more often for genes with DTU. Additionally, while mice and humans share many genetic
similarities, our findings may not be directly translatable to humans. Surprisingly, we could not detect sex
differences in alternatively spliced transcripts in the hippocampus, despite known sex differences in humans
with hippocampal diseases (e.g., Alzheimer’s disease (46)). This may have been due to the sample input
amount, sample numbers, species, or sequencing depth.

We aimed to examine and quantify differences across sexes and brain regions in C57BL/6J mouse brain tissue
to better understand AS regulation. To our knowledge, this work is the first paper to use lrRNA-Seq to focus on
brain-region-specific AS sex differences in the mammalian brain. We harnessed the power of lrRNA-Seq to
investigate differences in AS with higher confidence than short-read and compared the results from three
separate differential analyses. Here, we used novel sequencing technology to study sex as a biological
variable, which is a necessary effort to resolve the long-standing practices of single-sex studies in preclinical
biomedical research (12). In addition to publicly making all of our data and code available, we created an easily
accessible web application for researchers to interact with the data. This research also serves as a launchpad
for future directions involving additional time points, species, and disease contexts. Specifically, long-read
spatial transcriptomics (47) and long-read ATAC (48) present opportunities for discerning patterns of AS and
could be used to examine transcriptomic sex differences in isoform regulation at the spatial and epigenetic
levels. Another future direction includes investigating classes of transcript diversity and structure (i.e., promoter
usage and 3′ end choice) as done in ENCODE4 (49), but with an emphasis on studying differences across
sexes in the brain. There is also a need to investigate sex differences in splicing across the lifespan, including
early development (50,51) and aging (38). Finally, future research could combine long-read transcriptomics
with measures of neuronal activity to discern the effects of AS on signal transmission across sexes (52). Our
findings provide insight into sex differences in the mammalian brain, and the data produced by this research
can serve as a useful resource for the scientific community.

Materials and Methods:

Mouse sample collection and RNA isolation:
We obtained flash-frozen hippocampus, striatum, cerebellum, and cortex C57BL/6J mouse brain tissues from
The Jackson Laboratory (JAX #000664, age = 20 weeks) from five male and five female mice. The samples
arrived on dry ice, and we stored them at -70°C upon arrival. For each sample, we transferred ~30 mg of each
brain region (or the entire brain region, in the case of hippocampus and striatum tissue) into an MP Biomedical
Lysis D Matrix, 2ml tube (#6913500) containing 500μl of TRIzol reagent (Invitrogen #15596018) and lysed cells
from each tissue on the FastPrep-24 5G bead beating grinder and lysis system (MP Biomedical #116005500).
After lysis, we added 100μl of chloroform to the tube, centrifuged at 12,000×g for 15 minutes, and then
transferred the clear top layer of the supernatant into a fresh tube. We next added an equivolume amount of
isopropanol and centrifuged at 12,000×g for 10 minutes. We decanted the supernatant, washed the pellet twice
with 75% ethanol, and resuspended the air-dried pellet in RNAse-free water. We incubated the final RNA
product with TURBO DNase (Invitrogen #AM1907) for 30 minutes and assessed for RNA quality using a Qubit
fluorometer and Agilent Fragment Analyzer. All RNA samples had an RNA quality number (RQN) score >7.
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Oxford Nanopore Technologies lrRNA-Seq library preparation:
We processed RNA samples for nanopore sequencing using the PCR-cDNA Barcoding Kit (SQK-PCB111.24)
according to manufacturer instructions and prepared libraries in equimolar amounts based on fragment length
and concentration to make 15 fmol of cDNA library per flow cell. Because the barcoding kit only included 24
barcodes and we had 40 samples, we prepped and pooled two batches with 20 samples each. We loaded 11
μl of each pooled library with 1 μl Rapid Adapter T (12 μl total) onto 12 R9.4 flow cells (FLO-MIN106D).
Because the Oxford Nanopore Technologies GRIDion (GRD-MK1) sequencing device can sequence five flow
cells simultaneously, we sequenced these libraries in three separate sequencing runs for 72 hours each.

Nanopore settings and software versions:
We ran our nanopore with active channel selection turned on, a 1.5-hour pore scan frequency, a -170 mV initial
bias voltage, and a -185 mV final bias voltage. We selected to have reserved pores off with high-accuracy base
calling turned on. We used the following GridION software versions: MinKNOW 22.05.7, Bream 7.1.3,
Configuration 5.1.5, Guppy 6.1.5, and MinKNOW Core 5.1.0.

Raw sequencing data processing:
We transferred demultiplexed FASTQ files to UAB’s supercomputer cluster, Cheaha, merged FASTQs passing
a minimum Phred quality score of 9 for each sample and processed using the nf-core (16) nanoseq pipeline
(https://doi.org/10.5281/zenodo.1400710) with the following options: version 2.0.1, protocol cDNA, flow cell
FLO-MIN106, kit SQK-PCB109, skip_basecalling, skip_demultiplexing, skip_differential_analysis, profile
cheaha, and a custom configuration file specifying nanoplot version 1.32.1. The packages we used for
alignment and transcript quantification in this pipeline framework were Minimap2 version 2.17(53), samtools
version 1.13 (54), and Bambu version 1.0.2 (17). We mapped reads using the GENCODE mm39 release M31
(available at: https://www.gencodegenes.org/mouse/) primary assembly genome and annotation. We retrieved
transcript counts from the Bambu outputs of the nextflow results for further analysis.

Data normalization:
We processed and normalized data in R version 4.3.0 and RStudio version 2023.06.2+561. Because nanopore
read lengths vary depending on the input cDNA length, we normalized by counts per million (CPM) instead of
transcripts per million (TPM) since Bambu already accounts for length in its expression abundances. We
calculated CPM by multiplying the number of read counts by 1 million and dividing by the sum of the total read
counts for that sample. We found no outliers or batch effects by visual inspection when we performed principal
component analysis (PCA).

Differential gene and transcript expression analysis:
For DGE and DTE analysis, we used the R package DESeq2 version 1.40.0 (19) using the negative binomial
Wald test function. We considered a differentially expressed gene or transcript significance with a BH-adjusted
p-value of less than 0.05 and an absolute log2 fold change >1.5 value. Therefore, we used three models:

1. Region compared to another region (e.g., the cerebellum directly compared to the cortex)
2. Sex within a region (e.g., female compared to male in the cerebellum)
3. Sex across all regions (e.g., female compared to male)

We performed this analysis with gene-level counts for differential gene expression (DGE) and again with
transcript-level counts for differential transcript expression (DTE). We then incorporated these results into the
IsofrmSwitchAnalyseR switchList format for downstream plotting.

Differential transcript usage analysis:
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We performed Differential Transcript Usage (DTU) analysis with the R package IsoformSwitchAnalyzeR
package version 1.99.17 (21), using the satuRn version 1.8.0 (20) algorithm, and within brain regions, the
DEXSeq version 1.46.0 (55) algorithm. Therefore, we used three models:

1. Region compared to another region (e.g., cerebellum compared to cortex) (satuRn)
2. Sex within a region (e.g., female compared to male in cerebellum) (DEXSeq)
3. Sex across all regions (e.g., female compared to male) (satuRn)

First, we created a switchAnalyzeRlist object with the importRdata function. We used the raw counts from
Bambu (56) for the count matrix. For normalized isoform abundance values, we calculated CPM as described
above. We used the IsoformSwitchAnalyzeR (21) package to remove genes that do not have more than one
transcript and no gene expression minimum and proceeded with the satuRn (20) or DEXSeq (55) isoform
switch tests. The satuRn isoform switch test uses a quasi-binomial generalized linear model to model transcript
usage and calculates the posterior variance using an empirical Bayes procedure (20). Using this model,
satuRn runs a t-test based on the model’s log-odds ratio estimates with the posterior variance and uses BH
correction to reduce FDR (20). The DEXSeq isoform switch test uses a binomial generalized linear model and
analyzes deviance for each “counting bin” based on a chi-squared likelihood ratio test (55). The
IsoformSwitchAnalyzeR implementation of DEXSeq differs from other implementations of DEXSeq in that it
uses full transcripts as the “counting bins” instead of exons so that it can detect DTU instead of only differential
exon usage (21). Our significance filtering thresholds were an isoform switch q value < 0.05 and a differential
isoform fraction (dIF) with an absolute value of at least 0.1, reflecting at least 10% change in isoform fraction
across conditions. We calculated IF values as the isoform expression divided by total gene expression.

Functional enrichment analysis:
To infer pathways and diseases associated with the identified lists of significant genes with DGE/DTE/DTU, we
performed a statistical enrichment analysis using gprofiler2 version 0.2.1 (22) with a custom set of background
genes that passed filtering criteria (genes must have more than one transcript and be present in both
conditions). We used the g:GOSt function, which uses a one-tailed Fisher’s exact test to obtain statistical
probabilities for each term, and the g:SCS method for multiple testing correction. The default data sources for
the gprofiler2 g:GOSt function include Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes
(KEGG), Reactome, Transfac, mirTarBase, CORUM, Human Protein Atlas (HPA), and Human Phenotype
Ontology (HPO). We then saved the results in Supplementary Files 3-5 and plotted these results, which
passed our p-value threshold of < 0.05 for each comparison. When we compared the proportions of synaptic
enrichment terms across analyses, we returned the number of terms that included the character string “synap”.
We divided it by the total terms overall for that analysis.

Comparison of DGE, DTE, and DTU:
After determining which genes had DGE, DTE, and DTU for each condition tested, we created Euler diagrams
and UpSet plots using the eulerr version 7.0.0 and ComplexHeatmap version 2.16.0 (57) packages,
respectively, to visualize the overlap between these conditions. We identified genes with DTE by taking the
unique list of gene IDs paired with transcripts identified as differentially expressed (adj p < 0.05) from DESeq2,
where we only counted a gene with DTE in multiple transcripts once.

Neurological disease phenotype gene sets:
We compared three main gene lists to our significant DTU gene lists to known neurological disease risk genes.
First, we compared against a recent set of Alzheimer’s Disease risk genes (58). Next, we compared against
multi-disorder psychiatric risk genes from the Cross-Disorder Group of the Psychiatric Genomics Consortium
(41). We listed psychiatric disorders if they have a posterior probability of association of above 0.9. Finally, we
also compared active cases in UAB’s Center for Precision Animal Modeling (C-PAM).
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To facilitate conversion between mouse and human genes, we converted the human neurological gene lists
into mouse genes using the biomaRt Bioconductor package (59) in R. We then identified genes that were
present in both DTU lists and neurological gene lists and reported them in Supplementary File 6.

Protein domain family analysis:
Following the package framework from the IsoformSwitchAnalyzeR package version 1.99.17, we extracted
nucleotide and amino acid sequences from each gene's open reading frame (ORF). Using those amino acid
sequences as input, we ran the pfamscan.pl perl script with Perl 5 version 34 obtained from
ftp://ftp.ebi.ac.uk/pub/databases/Pfam/ to identify known protein domains from the Protein family database
(Pfam) (60). We incorporated these outputs into our R objects, and users can visualize select genes using our
Shiny app.

List of Abbreviations

AS - Alternative splicing
ASD - Autism spectrum disorder
BH - Benjamini-Hochberg
CPM - Counts per million
dIF - Differential isoform fraction
DGE - Differential gene expression
DTE - Differential transcript expression
DTU - Differential transcript usage
lncRNA - Long non-coding RNA
lrRNA-Seq - Long-read RNA sequencing
ONT - Oxford Nanopore Technologies
ORF - Open reading frame
PCA - Principal component analysis
RQN - RNA quality number
TPM - Transcripts per million

Availability of Data and Materials

The raw dataset supporting the conclusions of this article is available in the Gene Expression Omnibus (GEO)
repository, with accession number GSE246705,
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?&acc=GSE246705

The docker images, intermediate datasets, and code to reproduce all analyses and results in this article are
available in the following Zenodo repositories: Docker images - https://zenodo.org/records/10480924,
intermediate data -https://zenodo.org/records/10381745, GitHub code - https://zenodo.org/records/10481313.

The code supporting the conclusions and for reproducing analyses of this article is available in the GitHub
repository, https://github.com/lasseignelab/230227_EJ_MouseBrainIsoDiv.

The interactive web browser application associated with this manuscript is available at
https://lasseignelab.shinyapps.io/mouse_brain_iso_div/.
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