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5

Abstract Root causal gene expression levels – or root causal genes for short – correspond to the6

initial changes to gene expression that generate patient symptoms as a downstream effect.7

Identifying root causal genes is critical towards developing treatments that modify disease near8

its onset, but no existing algorithms attempt to identify root causal genes from data.9

RNA-sequencing (RNA-seq) data introduces challenges such as measurement error, high10

dimensionality and non-linearity that compromise accurate estimation of root causal effects even11

with state-of-the-art approaches. We therefore instead leverage Perturb-seq, or high throughput12

perturbations with single cell RNA-seq readout, to learn the causal order between the genes. We13

then transfer the causal order to bulk RNA-seq and identify root causal genes specific to a given14

patient for the first time using a novel statistic. Experiments demonstrate large improvements in15

performance. Applications to macular degeneration and multiple sclerosis also reveal root causal16

genes that lie on known pathogenic pathways, delineate patient subgroups and implicate a newly17

defined omnigenic root causal model.18

19

Introduction20

Root causes of disease correspond to the most upstream causes of a diagnosis with strong causal21

effects on the diagnosis. Pathogenesis refers to the causal cascade from root causes to the diag-22

nosis. Genetic and non-genetic factors may act as root causes and affect gene expression as an23

intermediate step during pathogenesis. We introduce root causal gene expression levels – or root24

causal genes for short – that correspond to the initial changes to gene expression induced by genetic25

and non-genetic root causes that have large causal effects on a downstream diagnosis (Figure 126

(a)). Root causal genes differ from core genes that directly cause the diagnosis and thus lie at the27

end, rather than at the beginning, of pathogenesis (Boyle et al., 2017). Root causal genes also gen-28

eralize (the expression levels of) driver genes that only account for the effects of somaticmutations29

primarily in cancer (Martínez-Jiménez et al., 2020).30

Treating root causal genes can modify disease pathogenesis in its entirety, whereas targeting31

other causes may only provide symptomatic relief. For example, mutations in Gaucher disease32

cause decreased expression of wild type beta-glucocerebrosidase, or the root causal gene (Nagral,33

2014). We can give a patient blood transfusions to alleviate the fatigue and anemia associated34

with the disease, but we seekmore definitive treatments like recombinant glucocerebrosidase that35

replaces the deficient enzyme. Enzyme replacement therapy alleviates the associated liver, bone36

and neurological abnormalities of Gaucher disease as a downstream effect. Identifying root causal37

genes is therefore critical for developing treatments that eliminate disease near its pathogenic38

onset.39

The problem is further complicated by the existence of complex disease, where a patient may40

have multiple root causal genes that differ from other patients even within the same diagnostic41

category (Cano-Gamez and Trynka, 2020). Complex diseases often have an overwhelming number42
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Figure 1. (a) Toy example where a variable 𝐸2 simultaneously models genetic and non-genetic root causes
that jointly have a large causal effect on a diagnose 𝑌 through gene expression 𝑿. 𝐸2 first affects the gene
expression level 𝑋2, or the root causal gene. The root causal gene then affects other downstream levels
during pathogenesis, including the core (or direct causal) gene 𝑋4, to ultimately induce a diagnosis 𝑌 . (b) We
hypothesize that the causal effects of most root causes are small, but a few are large (red ellipse), in each
patient with disease. As a result, the distribution of these root causal effects tends to be right skewed in
disease.

of causes but, just like amachine usually breaks downdue to one or a few root causal problems, the43

root causal genesmay only represent a small subset of the genes because the causal effects of only44

a few root causes are large (Figure 1 (b)). We thus also seek to identify patient-specific root causal45

genes in order to classify patients into meaningful biological subgroups each hopefully dictated by46

only a small group of genes.47

No existing method identifies root causal genes from data. Many algorithms focus on discov-48

ering associational or predictive relations, sometimes visually represented as gene regulatory net-49

works (Costa-Silva et al., 2017; Ellington et al., 2023). Other methods even identify causal rela-50

tions (Friedman et al., 2000; Wang et al., 2023; Wen et al., 2023; Buschur et al., 2020), but none51

pinpoint the first gene expression levels that ultimately generate the vast majority of pathogen-52

esis. Simply learning a causal graph does not resolve the issue because causal graphs do not53

summarize the effects of unobserved root causes, such as unmeasured environmental changes or54

variants, that are needed to identify all root causal genes. We therefore define the Root Causal55

Strength (RCS) score to identify all root causal genes unique to each patient. We then design the56

Root Causal Strength using Perturbations (RCSP) algorithm that estimates RCS from bulk RNA-seq57

under minimal assumptions by integrating Perturb-seq, or high throughput perturbation experi-58

ments using CRISPR-based technologies coupled with single cell RNA-sequencing (Dixit et al., 2016;59

Adamson et al., 2016; Datlinger et al., 2017). Experiments demonstrate marked improvements60

in performance, when investigators have access to a large bulk RNA-seq dataset and a genome-61

wide Perturb-seq dataset from a cell line of a disease-relevant tissue. Finally, application of the62

algorithm to two complex diseases with disparate pathogeneses recovers an omnigenic root causal63

model, where a small set of root causal genes drive pathogenesis but impact many downstream64

genes within each patient. As a result, nearly all gene expression levels are correlated with the65

diagnosis at the population level.66

Results67

We briefly summarize the Methods in the first two subsections.68

Definitions69

Differential expression analysis identifies differences in gene expression levels between groups 𝑌70

(Costa-Silva et al., 2017). A gene 𝑋𝑖 may be differentially expressed due to multiple reasons. For71

example, 𝑋𝑖 may cause 𝑌 , or a confounder 𝐶 may explain the relation between 𝑋𝑖 and 𝑌 such72

that 𝑋𝑖 ← 𝐶 → 𝑌 . In this paper, we take expression analysis a step further by pinpointing causal73

relations from expression levels regardless of the variable type of 𝑌 (discrete or continuous). We74
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in particular seek to discover patient-specific root causal genes from bulk RNA-seq data, which we75

carefully define below.76

We represent a biological system in bulk RNA-seq as a causal graph 𝔾 – such as in Figure 2 (a)77

– where 𝑝 vertices 𝑿 represent true gene expression levels in a bulk sample and 𝑌 denotes the78

patient symptoms or diagnosis. The set𝑿 contains thousands of genes in practice. Directed edges79

between the vertices in 𝔾 refer to direct causal relations. We assume that gene expression causes80

patient symptoms but not vice versa so that no edge from 𝑌 is directed towards 𝑿. The set Pa(𝑋𝑖)81

refers to the parents of 𝑋𝑖 ∈ 𝑿, or those variables with an edge directed into 𝑋𝑖. For example,82

Pa(𝑋2) = {𝑋1, 𝑋3} in Figure 2 (a). A root vertex corresponds to a vertex with no parents.83

We can associate 𝔾 with the structural equation 𝑋𝑖 = 𝑓𝑖(Pa(𝑋𝑖), 𝐸𝑖) for each 𝑋𝑖 ∈ 𝑿 that links84

each vertex to its parents and error term 𝐸𝑖 (Pearl, 2009). The error term 𝐸𝑖 is not simply a re-85

gression residual but instead represents the conglomeration of unobserved explanatory variables86

that only influence 𝑋𝑖, such as unobserved transcriptional regulators, certain genetic variants and87

specific environmental conditions. We thus also include the error terms 𝑬 in the directed graph88

of Figure 2 (b). All root vertices are error terms and vice versa. The root causes of 𝑌 are the error89

terms that cause 𝑌 , or have a directed path into 𝑌 . We define the root causal strength (RCS) of 𝑋𝑖90

on 𝑌 as the following absolute difference (Figure 2 (c)):91

Φ𝑖 =
|

|

|

𝔼(𝑌 |Pa(𝑋𝑖), 𝐸𝑖) − 𝔼(𝑌 |Pa(𝑋𝑖))
|

|

|

= |

|

|

𝔼(𝑌 |Pa(𝑋𝑖), 𝑋𝑖) − 𝔼(𝑌 |Pa(𝑋𝑖))
|

|

|

.
(1)

We prove the last equality in the Methods. As a result, RCS Φ𝑖 directly measures the contribution92

of the gene 𝑋𝑖 on 𝑌 according to its error term 𝐸𝑖 without recovering the error term values. The93

algorithm does not impose distributional assumptions or functional restrictions such as additive94

noise to estimate the error term values as an intermediate step. Moreover Φ𝑖 is patient-specific95

because the values of Pa(𝑋𝑖) and 𝑋𝑖 may differ between patients. We have Φ𝑖 = 0 when 𝐸𝑖 is not96

a cause of 𝑌 , and we say that the gene 𝑋𝑖 is a patient-specific root causal gene if Φ𝑖 ≫ 0, or its97

(conditional) root causal effect is large as depicted by the red ellipse in Figure 1 (b).98

Algorithm99

We propose an algorithm called Root Causal Strength using Perturbations (RCSP) that estimates100

Φ = {Φ1,… ,Φ𝑝} from genes measured in both bulk RNA-seq and Perturb-seq datasets derived101

frompossibly independent studies but from the same tissue type. We rely on bulk RNA-seq instead102

of single cell RNA-seq in order to obtain many samples of the label 𝑌 . We focus on statistical103

estimation rather than statistical inference becauseΦ𝑖 > 0when𝐸𝑖 causes 𝑌 undermild conditions,104

so we reject the null hypothesis thatΦ𝑖 = 0 for many genes if many gene expression levels cause 𝑌 .105

However, just like a machine typically breaks down due to only one or a few root causal problems,106

we hypothesize that only a few genes have large RCS scores Φ𝑖 ≫ 0 even in complex disease.107

EstimatingΦ requires access to the true gene expression levels𝑿 and the removal of the effects108

of confounding. We first control for batch effects representing unwanted sources of technical vari-109

ation such as different sequencing platforms or protocols. We however can only obtain imperfect110

counts 𝑿 from RNA sequencing even within each batch (Figure 2 (d)). Measurement error intro-111

duces confounding as well because it prevents us from exactly controlling for the causal effects112

of the gene expression levels. Investigators usually mitigate measurement error by normalizing113

the gene expression levels by sequencing depth. We show in the Methods that the Poisson distri-114

bution approximates the measurement error distribution induced by the sequencing process to115

high accuracy (Choudhary and Satija, 2022; Sarkar and Stephens, 2021). We leverage this fact to116

eliminate the need for normalization by sequencing depth using an asymptotic argument where117

the library size 𝑁 approaches infinity. 𝑁 takes on a value of at least ten million in bulk RNA-seq,118

but we also empirically verify that the theoretical results hold well in the Supplementary Materials.119

We thus eliminate the Poissonmeasurement error and batch effects by controlling for the batches120

𝐵 but not 𝑁 in non-linear regression models.121
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Figure 2. Method overview and synthetic data results. (a) We consider a latent causal graph over the true
counts 𝑿. (b) We augment the graph with error terms 𝑬 such that each 𝐸𝑖 ∈ 𝑬 in red has an edge directed
towards 𝑋𝑖 ∈ 𝑿. (c) The RCS of 𝑋2, denoted by Φ2, quantifies the magnitude of the conditional root causal
effect, or the strength of the causal effect from 𝐸2 to 𝑌 conditional on Pa(𝑋2). (d) We cannot observe 𝑿 in
practice but instead observe the noisy surrogates 𝑿 in blue corrupted by Poisson measurement error. (e)
Perturbing a variable such as 𝑋3 changes the marginal distributions of downstream variables shown in green
under mild conditions. (f) RCSP thus uses the perturbation data to identify (an appropriate superset of) the
surrogate parents for each variable in order to compute Φ. (g) Violin plots show that RCSP achieved the
smallest RMSE to the ground truth RCS values in the synthetic data. (h) RCSP also took about the same
amount of time to complete as multivariate regression. Univariate regression only took 11 seconds on
average, so its bar is not visible. Error bars denote 95% confidence intervals of the mean. (i) Finally, RCSP
maintained low RMSE values regardless of the number of clusters considered.

We in particular show that Φ𝑖 in Equation (1) is also equivalent to:122

Φ𝑖 =
|

|

|

𝔼(𝑌 |SP(𝑋𝑖), 𝑋𝑖, 𝐵) − 𝔼(𝑌 |SP(𝑋𝑖), 𝐵)
|

|

|

, (2)

where SP(𝑋𝑖) refers to the surrogate parents of 𝑋𝑖, or the variables in 𝑿 associated with Pa(𝑋𝑖) ⊆ 𝑿.123

RCSP can identify (an appropriate superset of) the surrogate parents of each variable using per-124

turbation data because perturbing a gene changes the marginal distributions of its downstream125

effects – which the algorithm detects from data under mild assumptions (Figures 2 (e) and (f)).126

The algorithm thus only transfers the binary presence or absence of causal relations from the sin-127

gle cell to bulk data – rather than the exact functional relationships – in order to remain robust128

against discrepancies between the two data types; we empirically verify the robustness in the Sup-129

plementary Materials. RCSP finally performs the two non-linear regressions needed to estimate130

𝔼(𝑌 |SP(𝑋𝑖), 𝑋𝑖, 𝐵) and 𝔼(𝑌 |SP(𝑋𝑖), 𝐵) for eachΦ𝑖. Wewill compareΦ𝑖 against Statistical Dependence131

(SD), a measure of correlational strength defined as Ω𝑖 = |

|

𝔼(𝑌 |𝑋𝑖, 𝐵) − 𝔼(𝑌 |𝐵)|
|

where we have re-132

moved the conditioning on SP(𝑋𝑖).133

In silico identification of root causal genes134

We simulated 30 bulk RNA-seq and Perturb-seq datasets from random directed graphs summa-135

rizing causal relations between gene expression levels. We performed single gene knock-down136

perturbations over 2500 genes and 100 batches. We obtained 200 cell samples from each per-137

turbation, and another 200 controls without perturbations. We therefore generated a total of138

2501 × 200 = 500, 200 single cell samples for each Perturb-seq dataset. We simulated 200 bulk RNA-139

seq samples. We compared RCSP against the Additive Noise Model (ANM) (Peters et al., 2014;140
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Strobl and Lasko, 2023a), the Linear Non-Gaussian Acyclic Model (LiNGAM) (Peters et al., 2014;141

Strobl and Lasko, 2022), CausalCell (Wen et al., 2023), univariate regression residuals (Uni Reg),142

and multivariate regression residuals (Multi Reg). The first two algorithms are state-of-the-art ap-143

proaches used for error term extraction and, in theory, root causal discovery. See Methods for144

comprehensive descriptions of the simulation setup and comparator algorithms.145

We summarize accuracy results in Figure 2 (g) using the Root Mean Squared Error (RMSE) to146

the ground truthΦ values. All statements about pairwise differences hold true at a Bonferonni cor-147

rected threshold of 0.05/5 according to paired two-sided t-tests, since we compared RCSP against a148

total of five algorithms. RCSP estimatedΦmost accurately by a largemargin. ANMand LiNGAMare149

theoretically correct under their respective assumptions, but they struggle to outperform standard150

multivariate regression due to the presence of measurement error in RNA-seq (Supplementary151

Materials). Feature selection and causal discovery with CausalCell did not improve performance.152

Univariate regression performed the worst, since it does not consider the interactions between153

variables. RCSP achieved the lowest RMSE while completing in about the same amount of time as154

multivariate regression on average (Figure 2 (h)). RCSP maintained the lowest RMSE even in the155

cyclic case, and the performance of the algorithm remained robust to differences between the di-156

rected graphs underlying the bulk RNA-seq and Perturb-seq data (Supplementary Materials). We157

conclude that RCSP both scalably and accurately estimates Φ.158

We will cluster the RCS values in real data to find patient subgroups. We therefore also per-159

formed hierarchical clustering using Ward’s method (Ward Jr, 1963) on the values of Φ estimated160

by RCSP with the synthetic data. We then computed the RMSEs and averaged them within each161

cluster. We found that RCSP maintained low average RMSE values regardless of the number of162

clusters considered (Figure 2 (i)). We conclude that RCSPmaintains accurate estimation ofΦ across163

different numbers of clusters.164

Oxidative stress in age-related macular degeneration165

We ran RCSP on a bulk RNA-seq dataset of 513 individuals with age-related macular degeneration166

(AMD; GSE115828) and a Perturb-seq dataset of 247,914 cells generated from an immortalized167

retinal pigment epithelial (RPE) cell line (Ratnapriya et al., 2019; Replogle et al., 2022). The Perturb-168

seq dataset contains knockdown experiments of 2,077 genes overlapping with the genes of the169

bulk dataset. We set the target 𝑌 to theMinnesota Grading System score, ameasure of the severity170

of AMD based on stereoscopic color fundus photographs. We always included age and sex as a171

biological variable as covariates. We do not have access to the ground truth values ofΦ in real data,172

so we evaluated RCSP using seven alternative techniques. See Methods for a detailed rationale of173

the evaluation of real data. RCSP outperformed all other algorithms in this dataset (Supplementary174

Materials). We therefore only analyze the output of RCSP in detail here.175

AMD is a neurodegenerative disease of the aging retina (Hadziahmetovic and Malek, 2021), so176

age is a known root cause of the disease. We therefore determined if RCSP identified age as a177

root cause. Note that RCSP does not need perturbation data of age to compute the RCS values178

of age, since age has no parents in the directed graph. The algorithm estimated a heavy tailed179

distribution of the RCS values indicating that most of the RCS values deviated away from zero180

(Figure 3 (a)). The Deviation of the RCS (D-RCS), or the standard deviation from an RCS value of181

zero, measures the tailedness of the distribution while preserving the unit of measurement. The182

D-RCS of age corresponded to 0.46 – more than double that of the nearest gene (Figure 3 (d)). We183

conclude that RCSP correctly detected age as a root cause of AMD.184

Root causal genes typically affect many downstream genes before affecting 𝑌 . We therefore185

expect to identify few root causal genes but many genes that correlate with 𝑌 . To evaluate this186

hypothesis, we examined the distribution of D-RCS relative to the distribution of the Deviation of187

Statistical Dependence (D-SD), or the standard deviation from an SD value of zero, in Figure 3 (b).188

Notice that the histogram of D-RCS scores in Figure 3 (b) mimics a folded distribution of Figure 1 (b).189

Thus, few D-RCS scores had large values implying the existence of only a few root causal genes. In190
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Figure 3. Analysis of AMD. (a) The distribution of the RCS scores of age deviated away from zero and had a
composite D-RCS of 0.46. (b) However, the majority of gene D-RCS scores concentrated around zero, whereas
the majority of gene D-SD scores concentrated around the relatively larger value of 0.10. Furthermore, the
D-RCS scores of the genes in (d) mapped onto the “amino acid transport across the plasma membrane”
pathway known to be involved in the pathogenesis of AMD in (c). Blue bars survived 5% FDR correction. (e)
Drug enrichment analysis revealed four significant drugs, the later three of which have therapeutic potential.
(f) Hierarchical clustering revealed four clear clusters according to the elbow method, which we plot by UMAP
dimensionality reduction in (g). The RCS scores of the top genes in (d) increased only from the left to right on
the first UMAP dimension (x-axis); we provide an example of SLC7A5 in (h) and one of three detected
exceptions in (i). We therefore performed pathway enrichment analysis on the black cluster in (g) containing
the largest RCS scores. (j) The amino acid transport pathway had a larger degree of enrichment in the black
cluster as compared to the global analysis in (c).

contrast, most of the D-SD scores had relatively larger values concentrated around 0.10 implying191

the existence of many genes correlated with 𝑌 . We conclude that RCSP identified few root causal192

genes rather than many correlated genes for AMD.193

The pathogenesis of AMD involves the loss of RPE cells. The RPE absorbs light in the back of194

the retina, but the combination of light and oxygen induces oxidative stress, and then a cascade195

of events such as immune cell activation, cellular senescence, drusen accumulation, neovascular-196

ization and ultimately fibrosis (Barouch and Miller, 2007). We therefore expect the root causal197

genes of AMD to include genes involved in oxidative stress during early pathogenesis. The gene198

MIPEP with the highest D-RCS score in Figure 3 (d) indeed promotes the maturation of oxidative199

phosphorylation-related proteins (Shi et al., 2011). The second gene SLC7A5 is a solute carrier that200

activates mTORC1 whose hyperactivation increases oxidative stress via lipid peroxidation (Nachef201

et al., 2021; Go et al., 2020). The gene HEATR1 is involved in ribosome biogenesis that is down-202

regulated by oxidative stress (Turi et al., 2018). The top genes discovered by RCSP thus identify203

pathways known to be involved in oxidative stress. We further verified that measurement error204
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did not explain their large D-RCS scores in Supplementary Materials.205

We subsequently jointly analyzed the D-RCS values of all 2077 genes. We performed pathway206

enrichment analysis that yielded one pathway “amino acid transport across the plasmamembrane”207

that passed an FDR threshold of 5% (Figure 3 (c)). The leading edge genes of the pathway included208

the solute carriers SLC7A5 and SLC1A5. These two genes function in conjunction to increase the209

efflux of essential amino acids out of the lysosome (Nicklin et al., 2009; Beaumatin et al., 2019).210

Some of these essential amino acids like L-leucine and L-arginine activate mTORC1 that in turn211

increases lipid peroxidation induced oxidative stress and the subsequent degeneration of the RPE212

(Nachef et al., 2021; Go et al., 2020). We conclude that pathway enrichment analysis correctly213

identified solute carrier genes involved in a known pathway promoting oxidative stress in AMD.214

We next ran drug enrichment analysis with the D-RCS scores. The top compound arsenous215

acid inhibits RPE proliferation (Su et al., 2020), but the other three significant drugs have therapeu-216

tic potential (Figure 3 (e)). Busulfan decreases the requirement for intravitreal anti-VEGF injections217

(Dalvin et al., 2022). Genistein is a protein kinase inhibitor that similarly attenuates neovasculariza-218

tion (Kinoshita et al., 2014) and blunts the effect of ischemia on the retina (Kamalden et al., 2011).219

Finally, a metabolite of the antiviral agent 3’-azido-3’-deoxythymidine inhibits neovascularization220

and mitigates RPE degeneration (Narendran et al., 2020). We conclude that the D-RCS scores iden-221

tified promising drugs for the treatment of AMD.222

Hierarchical clustering and UMAP dimensionality reduction on the patient-specific RCS values223

revealed four clear clusters of patients by the elbow method on the sum of squares plot (Figures224

3 (f) and (g), respectively). The RCS scores of most of the top genes exhibited a clear gradation225

increasing only from the left to the right hand side of the UMAP embedding; we plot an example226

in Figure 3 (h). We found three exceptions to this rule among the top 30 genes (example in Figure227

3 (i) and see Supplementary Materials). RCSP thus detected genes with large RCS scores primarily228

in the black cluster of Figure 3 (g). Pathway enrichment analysis within this cluster alone yielded229

supra-significant results on the same pathway detected in the global analysis (Figure 3 (j) versus230

Figure 3 (c)). Furthermore, drug enrichment analysis results by cluster confirmed that patients231

in the black cluster with many root causal genes are likely the hardest to treat (Supplementary232

Materials). We conclude that RCSP detected a subgroup of patients whose root causal genes have233

large RCS scores and involve known pathogenic pathways related to oxidative stress.234

T cell infiltration in multiple sclerosis235

Wenext ran RCSP on 137 samples collected fromCD4+ T cells ofmultiple sclerosis (MS; GSE137143)236

as well as Perturb-seq data of 1,989,578 undifferentiated blast cells that can be induced to differ-237

entiate into lymphoblasts, or the precursors of T cells and other lymphocytes (Kim et al., 2021;238

Replogle et al., 2022). We set the target 𝑌 to the Expanded Disability Status Scale score, a measure239

of MS severity. RCSP outperformed all other algorithms in this dataset as well (Supplementary240

Materials).241

MS progresses over time, and RCSP correctly detected age as a root cause of MS severity with242

RCS values deviating away from zero (Figure 4 (a)). The distribution of gene D-RCS scores concen-243

trated around zero with a long tail, whereas the distribution of gene D-SD scores concentrated244

around a relatively larger value of 0.3 (Figure 4 (b)). RCSP thus detected an omnigenic root causal245

model with a few root causal genes but many correlated genes.246

MS is an inflammatory neurodegenerative disease that damages the myelin sheaths of nerve247

cells in the brain and spinal cord. T cells may mediate the inflammatory process by crossing a248

disrupted blood brain barrier and repeatedly attacking the myelin sheaths (Fletcher et al., 2010).249

Damage induced by the T cells also perturbs cellular homeostasis and leads to the accumulation250

of misfolded proteins (Andhavarapu et al., 2019). The root causal genes of MS thus likely include251

genes involved in T cell infiltration across the blood brain barrier.252

Genes with the highest D-RCS scores included MNT, CERCAM and HERPUD2 (Figure 4 (d)). MNT253

is a MYC antagonist that modulates the proliferative and pro-survival signals of T cells after en-254
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Figure 4. Analysis of MS. (a) The distribution of the RCS scores of age deviated away from zero with a
composite D-RCS of 0.55. (b) The distribution of D-RCS concentrated around zero, whereas the distribution of
D-SD concentrated around 0.3. (d) RCSP identified many genes with large D-RCS scores that in turn mapped
onto known pathogenic pathways in MS in (c). Hierarchical clustering revealed three clusters in (e), which we
plot in two dimensions with UMAP in (f). Top genes did not correlate with either dimension of the UMAP
embedding; we provide an example of the MNT gene in (g). (h) Drug enrichment analysis in the green cluster
implicated multiple cathepsin inhibitors. Finally, EPH-ephrin signaling survived FDR correction in (c) and was
enriched in the pink cluster in (i) which contained more MS patients with the relapsing-remitting subtype in (j);
subtypes include relapse-remitting (RR), primary progressive (PP), secondary progressive (SP), clinically
isolated syndrome (CIS), and radiologically isolated syndrome (RIS).

gagement of the T cell receptor (Gnanaprakasam and Wang, 2017). Similarly, CERCAM is an ad-255

hesion molecule expressed at high levels in microvessels of the brain that increases leukocyte256

transmigration across the blood brain barrier (Starzyk et al., 2000). HERPUD2 is involved in the257

endoplasmic-reticulum associated degradation of unfolded proteins (Kokame et al., 2000). Genes258

with the highest D-RCS scores thus serve key roles in known pathogenic pathways of MS.259

We found multiple genes with high D-RCS scores in MS, in contrast to AMD where age domi-260

nated (Figure 4 (d) versus Figure 3 (d)). Measurement error did not account for the high scores261

(Supplementary Materials). We performed pathway enrichment analysis using the D-RCS scores262

of all genes and discovered two significant pathways at an FDR corrected threshold of 5%: “ade-263

nomatous polyposis coli (APC) truncation mutants have impaired AXIN binding” and “EPH-ephrin264

signaling” (Figure 4 (c)). APC and AXIN are both members of the Wnt signaling pathway and regu-265

late levels of beta-catenin (Spink et al., 2000). Furthermore, inhibition of Wnt/beta-catenin causes266

CD4+ T cell infiltration into the central nervous system via the blood brain barrier in MS (Lengfeld267

et al., 2017). Ephrins similarly regulate T cell migration into the central nervous system (Luo et al.,268

2016) and are overexpressed in MS lesions (Sobel, 2005). The APC-AXIN and EPH-ephrin pathways269

are thus consistent with the known pathophysiology of central nervous system T cell infiltration in270
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MS.271

We subsequently performed hierarchical clustering of the RCS scores. The within cluster sum272

of squares plot in Figure 4 (e) revealed the presence of three clusters by the elbow method. We273

plot the three clusters in a UMAP embedding in Figure 4 (f). The clusters did not show a clear274

relationship with MS symptom severity (Supplementary Materials) or the levels of the top most275

genes of Figure 4 (d); we plot theMNT gene as an example in Figure 4 (g). However, further analyses276

with additional genes revealed that the distribution of many lower ranked genes governed the277

structure of the UMAP embedding (Supplementary Materials). The D-RCS scores of each cluster278

also implicated different mechanisms of T cell pathology including APC-AXIN in the green cluster,279

disturbed T cell homeostasis in the pink cluster and platelet enhanced T cell autoreactivity in the280

blue cluster (Supplementary Materials).281

Global drug enrichment analysis did not yield any significant drugs even at a liberal FDR thresh-282

old of 10%. We thus ran drug enrichment analysis in each cluster of Figure 4 (f). The blue and pink283

clusters again did not yield significant drugs. However, the third green cluster identified the cys-284

teine cathepsin inhibitors dipeptide-derived nitriles, phenylalinine derivatives, e-64, L-006235 and285

L-873724 (Figure 4 (h)); statistical significance of the first three held even after correcting for multi-286

ple comparisons with the Bonferroni adjustment of 0.05/4 on the q-values. The leading edge genes287

of the significant drugs included the cathepsins CTSL, CTSS and CTSB exclusively. These drug en-288

richment results corroborate multiple experimental findings highlighting the therapeutic efficacy289

of cathepsin inhibitors in a subgroupofMSpatients responsive to interferon therapy (Haves-Zburof290

et al., 2011; Burster et al., 2007).291

Prior researchhas also shown that EPH-ephrin signaling ismoreprevalent in relapsing-remitting292

multiple sclerosis than in other subtypes of the disease (Golan et al., 2021). EPH-ephrin signaling293

survived FDR correction in our analysis (Figure 4 (c)). Furthermore, the pathway wasmore enriched294

in the pink cluster than in the other two (Figure 4 (i)). The pink cluster indeed contained a higher295

proportion of patients with the relapsing-remitting subtype (Figure 4 (j)). RCSP thus precisely iden-296

tified the enrichment of EPH-ephrin signaling in the correct subtype of MS.297

Discussion298

We presented a framework for identifying root causal genes, or the gene expression levels directly299

regulated by root causes with large causal effects on 𝑌 , by modeling the root causes using the300

error terms of structural equation models. Each error term represents the conglomeration of un-301

observed root causes, such as genetic variants or environmental conditions, that directly cause a302

specific gene. We however do not have access to many of the error terms in practice, so we in-303

troduced the root causal strength (RCS) score, or the magnitude of the conditional causal effect304

of each error term, which we can compute using gene expression levels alone. The RCSP algo-305

rithm computes RCS given knowledge of the causal ancestors of each variable, which we obtained306

by Perturb-seq. RCSP only transfers the causal structure (binary cause-effect relations) from the307

single cell to bulk data rather than the exact functional relationships in order to remain robust308

against discrepancies between the two data types. Results with the synthetic data demonstrated309

marked improvements over existing alternatives. The algorithm also recovered only a few root310

causal genes that play key roles in known pathogenic pathways and implicate therapeutic drugs in311

both AMD and MS.312

We detected amodest number of root causal genes in both AMD andMS, but virtually all genes313

were correlated with 𝑌 . This omnigenic model, where “omni-” refers to the nearly all genes corre-314

lated with 𝑌 , differs from the omnigenic model involving core genes (Boyle et al., 2017). Boyle et al.315

define core genes as genes that directly affect disease risk. The authors further elaborate thatmany316

peripheral genes affect the functions of a modest number of core genes, so the peripheral genes317

often explain most of disease heritability. In contrast, root causal genes may not directly cause 𝑌318

but lie substantially upstream of 𝑌 in the causal graph. The error terms of upstream root causal319

genes affect many downstream genes that include both ancestors and non-ancestors of 𝑌 (Figure320
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𝐸1

𝐸2 𝑋1

𝑋2 𝑋3 𝑋4

𝑋5 𝑋6 𝑋7 𝑋8 𝑋9 𝑋10

𝑋11 𝑋12 𝑋13 𝑋14 𝑋15 𝑋16 𝑋17 𝑋18 𝑋19

𝑌

Figure 5. In this example, two root causal genes 𝑋1 and 𝑋2 affect many downstream genes and ultimately
cause 𝑌 . Thus all genes 𝑋1,… , 𝑋19 correlate with 𝑌 , but only 𝑋1 and 𝑋2 have large root causal effects on 𝑌 .
The omnigenic root causal model posits that only a few root causal genes affect many downstream genes, so
that nearly all genes are correlated with 𝑌 . Causal genetic variants can directly cause 𝑌 or cause any gene
expression level that causes 𝑌 – including those with small root causal effects – but only 𝑋1 and 𝑋2 have large
root causal effects on 𝑌 due to genetic and non-genetic root causes modeled by 𝐸1 and 𝐸2. In contrast, the
core gene model assumes only a few direct causal genes 𝑋12, 𝑋13, 𝑋14, 𝑋15, 𝑋17, 𝑋18. These core genes do not
account for the deleterious causal effects of 𝐸1 and 𝐸2 on 𝑋11, 𝑋16 and 𝑋19.

5). These downstream genes contain traces of the root causal gene error terms that induce the321

many correlations with 𝑌 . The root causal model thus assumes sparsity in upstream root causal322

genes, whereas the core gene model assumes sparsity in the downstream direct causal genes1.323

Further, each causal genetic variant tends to have only a small effect on disease risk in complex324

disease because the variant can directly cause 𝑌 or directly cause any causal gene including those325

with small root causal effects on 𝑌 ; thus, all error terms that cause 𝑌 can model genetic effects326

on 𝑌 . However, the root causal model further elaborates that genetic and non-genetic factors often327

combine to produce a few root causal genes with large root causal effects, where non-genetic fac-328

tors typically account for the majority of the large effects in complex disease. Many variants may329

therefore cause many genes in diseases with only a few root causal genes. We finally emphasize330

that the root causalmodel accounts for all deleterious effects of the root causal genes, whereas the331

core gene model only captures the deleterious effects captured by the diagnosis 𝑌 . For example,332

the disease of diabetes causes retinopathy, but retinopathy is not a part of the diagnostic criteria333

of diabetes. As a result, the gene expression levels that cause retinopathy but not the diagnosis of334

diabetes are not core genes, even though they are affected by the root causal genes. The sparsity335

of the root causal genes, the focus on the combined effects of genetic and non-genetic root causes,336

and the ability to account for root causal effects not represented by the target 𝑌 motivate us to337

use the phrase omnigenic root causal model in order to distinguish it from the omnigenic core gene338

model.339

We identified root causal genes without imposing parametric assumptions using the RCS met-340

ric. Prior measures of root causal effect require restrictive functional relations, such as linear re-341

lations or additive noise, and continuous random variables (Strobl and Lasko, 2022; Strobl et al.,342

2024; Strobl and Lasko, 2023a). These restrictions ensure exact identifiability of the underlying343

causal graph and error terms. However, real RNA-seq is obtained from a noisy sequencing process344

and contains count data arguably corrupted by Poissonmeasurement error (Sarkar and Stephens,345

2021). The Poisson measurement error introduces confounding that precludes exact recovery of346

the underlying error terms. The one existing root causal discoverymethod that can handle Poisson347

measurement error uses single cell RNA-seq, estimates negative binomial distribution parameters348

and cannot scale to the thousands of genes required for meaningful root causal detection (Strobl349

1The omnigenic root causal model makes no statement about the number of direct causal genes, so direct causal genes
may be sparse or dense.
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and Lasko, 2023b). RCSP rectifies the deficiencies of these past approaches by ensuring accurate350

root causal detection even in the presence of the counts, measurement error and high dimension-351

ality of RNA-seq.352

This study carries other limitations worthy of addressing in future work. The RCS score impor-353

tantly quantifies root causal strength rather than root causal effect. As a result, themethod cannot354

be used to identify the direction of root causal effect unconditional on the parents. The root causal355

effect and signed RCS (or expected conditional root causal effect) do not differ by much in practice356

(Supplementary Materials), but future work may focus on exactly identifying both the strength and357

direction of the unconditional causal effects of the error terms. Furthermore, RCS achieves patient358

but not cell-specificity because the algorithm relies on phenotypic labels obtained from bulk RNA-359

seq. RCSP thus cannot identify the potentially different root causal genes present within distinct360

cell populations. Modern genome-wide Perturb-seq datasets also adequately perturb and mea-361

sure only a few thousand, rather than all, gene expression levels. RCSP can only identify root causal362

genes within this perturbed and measured subset. Fourth, RCSP accounts for known batch effects363

and measurement error but cannot adjust for unknown confounding. Finally, RCSP assumes a364

directed acyclic graph. We can transform a directed graph with cycles into an acyclic one under365

equilibrium, but real biological distributions vary across time (Spirtes, 1995; Bongers et al., 2021).366

Future work should thus aim to estimate cell-specific root causal effects under latent confounding367

and time-varying distributions.368

In conclusion, RCSP integrates bulk RNA-seq and Perturb-seq to identify patient-specific root369

causal genes under a principled causal inference framework using the RCS score. RCS quantifies370

root causal strength implicitly without requiring normalization by sequencing depth or direct ac-371

cess to the error terms of a structural equation model. The algorithm identifies the necessary372

causal relations to compute RCS using reliable high throughput perturbation data rather than ob-373

servational data alone. The RCS scores often suggest an omnigenic root causal model of disease.374

Enrichment analyses with the RCS scores frequently reveal pathogenic pathways and drug candi-375

dates. We conclude that RCSP is a novel, accurate, scalable and disease-agnostic procedure for376

performing patient-specific root causal gene discovery.377

Methods and Materials378

Background on Causal Discovery379

We denote a singleton variable like 𝑋𝑖 with italics and sets of variables like 𝑿 with bold italics. We380

can represent a causal process using a structural equation model (SEM) linking the 𝑝+1 variables in381

𝒁 = 𝑿 ∪ 𝑌 using a series of deterministic functions:382

𝑍𝑖 = 𝑓𝑖(Pa(𝑍𝑖), 𝐸𝑖), ∀𝑍𝑖 ∈ 𝒁 (3)

where 𝑓𝑖 is a function of the parents, or direct causes, of 𝑍𝑖 and an error term 𝐸𝑖 ∈ 𝑬. The error383

terms 𝑬 are mutually independent. We will use the terms vertex and variable interchangeably. A384

root vertex corresponds to a vertex without any parents. On the other hand, a terminal or sink vertex385

is not a parent of any other vertex.386

We can associate a directed graph to𝒁 by drawing a directed edge from eachmember of Pa(𝑍𝑖)387

to 𝑍𝑖 for all 𝑍𝑖 ∈ 𝒁. A directed path from 𝑍𝑖 to 𝑍𝑗 corresponds to a sequence of adjacent directed388

edges from 𝑍𝑖 to 𝑍𝑗 . If such a path exists (or 𝑍𝑖 = 𝑍𝑗 ), then 𝑍𝑖 is an ancestor of 𝑍𝑗 and 𝑍𝑗 is a389

descendant of 𝑍𝑖. We collate all ancestors of 𝑍𝑖 into the set Anc(𝑍𝑖). A cycle occurs when there390

exists a directed path from 𝑍𝑖 to 𝑍𝑗 and the directed edge 𝑍𝑗 → 𝑍𝑖. A directed acyclic graph (DAG)391

contains no cycles. We augment a directed graph by including additional vertices 𝑬 and drawing a392

directed edge from each 𝐸𝑖 ∈ 𝑬 to𝑋𝑖 except when 𝑋𝑖 = 𝐸𝑖 is already a root vertex. We consider an393

augmented DAG 𝔾 throughout the remainder of this manuscript.394

The vertices𝑍𝑖 and𝑍𝑗 are d-connected given𝑾 ⊆ 𝒁 ⧵{𝑍𝑖, 𝑍𝑗} in𝔾 if there exists a path between395

𝑍𝑖 and 𝑍𝑗 such that every collider on the path is an ancestor of𝑾 and no non-collider is in𝑾 . The396
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vertices are d-separated if they are not d-connected. Any DAG associated with the SEM in Equation397

(3) also obeys the global Markov property where 𝑍𝑖 and 𝑍𝑗 are conditionally independent given398

𝑾 if they are d-separated given 𝑾 . The term d-separation faithfulness refers to the converse of399

the global Markov property where conditional independence implies d-separation. A distribution400

obeys unconditional d-separation faithfulnesswhenwe can only guarantee d-separation faithfulness401

when𝑾 = ∅.402

Causal Modeling of RNA Sequencing403

Performing causal discovery requires careful consideration of the underlying generative process.404

We therefore propose a causal model for RNA-seq. We differentiate between the biology and the405

RNA sequencing technology.406

We represent a snapshot of a biological causal process using an SEM over 𝑿 ∪ 𝑌 obeying Equa-407

tion (3). We assume that the phenotypic target 𝑌 is a terminal vertex so that gene expression causes408

phenotype but not vice versa. Each 𝑋𝑖 ∈ 𝑿 corresponds to the total number of RNA molecules of409

a unique gene in a single cell or bulk tissue sample. The error terms model root causes that are410

outside of gene expression, such as genetic variation or environmental factors. Moreover, the re-411

lation from gene expression to 𝑌 is stochastic because 𝑌 = 𝑓𝑌 (Pa(𝑌 ), 𝐸𝑌 ), where 𝐸𝑌 introduces the412

stochasticity. Two individuals may therefore have the exact same error term values over 𝑿 but413

different instantiations of 𝑌 .414

We unfortunately cannot observe𝑿 in practice but insteadmeasure a corrupted count𝑿 using415

single cell or bulk RNA-seq technology. We derive the measurement error distribution from first416

principles. We map an exceedingly small fraction of each 𝑋𝑖 ∈ 𝑿 within a sample at unequal417

coverage. Let 𝜋𝑖𝑗 denote the probability of mapping one molecule of 𝑋𝑖 in batch 𝑗 so that ∑𝑝
𝑖=1 𝜋𝑖𝑗418

is near zero. The law of rare events (Papoulis, 1984) implies that the Poisson distribution well-419

approximates the library size 𝑁 so that 𝑁 ∼ Pois(∑𝑝
𝑖=1 𝑋𝑖𝜋𝑖𝑗).420

We write the probability of mapping 𝑋𝑖 in a given sample as:421

𝑃𝑖𝑗 =
𝑋𝑖𝜋𝑖𝑗

∑𝑝
𝑖=1 𝑋𝑖𝜋𝑖𝑗

.

This proportion remains virtually unchanged when sampling without replacement because 𝑁 ≪422
∑𝑝

𝑖=1 𝑋𝑖 with small ∑𝑝
𝑖=1 𝜋𝑖𝑗 . We can therefore approximate sampling without replacement by sam-423

pling with replacement using a multinomial: 𝑿 ∼ MN(𝑁 ;𝑃1𝑗 ,… , 𝑃𝑝𝑗). This multinomial and the Pois-424

son distribution over 𝑁 together imply that the marginal distribution of each 𝑋𝑖 ∈ 𝑿 follows an425

independent Poisson distribution centered at (∑𝑝
𝑖=1 𝑋𝑖𝜋𝑖𝑗)𝑃𝑖𝑗 = 𝑋𝑖𝜋𝑖𝑗 , or:426

𝑋𝑖 ∼ Pois(𝑋𝑖𝜋𝑖𝑗). (4)

We conclude that the measurement error distribution follows a Poisson distribution to high ac-427

curacy. Multiple experimental results already corroborate this theoretical conclusion (Grün et al.,428

2014; Sarkar and Stephens, 2021; Choudhary and Satija, 2022).429

We can represent the biology and the RNA sequencing in a single DAG over𝑿∪𝑿∪𝐵∪𝑌 , where430

𝐵 denotes the batch, and 𝑌 the target variable representing patient symptoms or diagnosis. We431

provide a toy example in Figure 6. We draw 𝔾 over 𝒁 in black and make each 𝑋𝑖 ∈ 𝑿 a parent of432

𝑋𝑖 ∈ 𝑿 in blue. We then include the root vertex 𝐵 as a parent of all members of 𝑿 in green. We433

augment this graph with the error terms of 𝑿 in red and henceforth refer to the augmented DAG434

as 𝔾. Repeated draws from the represented causal process generates a dataset.435

No Need for Normalization by Sequencing Depth436

We provide an asymptotic argument that eliminates the need for normalization by sequencing437

depth when estimating conditional expectations using bulk RNA-seq. The argument applies to the438

conditional expectations as a whole rather than their individual parameters.439
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𝐸1
𝐸2

𝐸3

𝑋1
𝑋2

𝑋3 𝑌

𝑋1 𝑋2
𝑋3

𝐵

Figure 6. An example of a DAG over 𝑿 ∪𝑿 ∪ 𝐵 ∪ 𝑌 augmented with the error terms 𝑬. The observed vertices
𝑿 denote counts corrupted by batch 𝐵 effects and Poisson measurement error.

We want to recover the causal relations between 𝑿 by removing batch 𝐵 and depth 𝑁 effects440

from the dataset because they correspond to the sequencing process rather than the underlying441

biology. We first consider removing sequencing depth by finding stably expressed housekeeping442

genes. Let 𝑨 denote the set of housekeeping genes where 𝑋𝑖 = 𝑥𝑖 is a constant for each 𝑋𝑖 ∈443

𝑨; similarly 𝑨 refers to the corresponding set with Poisson measurement error. Let 𝑁 = 𝑛 be444

large enough such that ∑𝑋𝑖∈𝑨
𝑥𝑖 > 0 for each sample. Then dividing by 𝐿 ≜

∑

𝑋𝑖∈𝑨
𝑋𝑖 controls for445

sequencing depth in the following sense:446

lim
𝑁→∞

𝑋𝑖
∑

𝑋𝑖∈𝑨
𝑋𝑖

= lim
𝑁→∞

𝑋𝑖∕𝑁
∑

𝑋𝑖∈𝑨
𝑋𝑖∕𝑁

=
𝑃𝑖𝑗

∑

𝑋𝑖∈𝑨
𝑃𝑖𝑗

=
𝑋𝑖𝜋𝑖𝑗∕

∑𝑝
𝑖=1 𝑋𝑖𝜋𝑖𝑗

∑

𝑋𝑖∈𝑨
𝑥𝑖𝜋𝑖𝑗∕

∑𝑝
𝑖=1 𝑋𝑖𝜋𝑖𝑗

=
𝑋𝑖𝜋𝑖𝑗

∑

𝑋𝑖∈𝑨
𝑥𝑖𝜋𝑖𝑗

,

where we have divided 𝑋𝑖𝜋𝑖𝑗 by a constant in the last term. Thus, dividing by 𝐿 removes measure-447

ment error within each batch as 𝑁 → ∞. We assume that 𝑁 is so large that the approximation448

error is negligible. We only invoke the assumption in bulk RNA-seq, where the library size 𝑁 is on449

the order of at least tens of millions.450

We do not divide by 𝐿 in practice because we may have 𝐿 = 0 with finite 𝑁 . We instead always451

include 𝐿 ∪ 𝐵 in the predictor set of downstream regressions. Conditioning on 𝐿 ∪ 𝐵 ensures that452

all downstream regressions mitigate depth and batch effects with adequate sequencing depth, or453

that 𝔼(𝑌 |𝑼 , 𝐵) = 𝔼(𝑌 |𝑼 , 𝐿, 𝐵) for any 𝑼 ⊆ 𝑿 as 𝑁 → ∞. The equality holds almost surely under a454

mild smoothness condition:455

Lemma 1. Assume Lipschitz continuity of the conditional expectation for all 𝑁 ≥ 𝑛0:456

𝔼 |

|

|

𝔼(𝑌 |𝑼 ) − 𝔼(𝑌 |𝑼 , 𝐿, 𝐵)||
|

≤ 𝔼𝐶𝑁
|

|

|

|

𝑼 − 𝑼
𝑑𝐿

|

|

|

|

,

where 𝑑 = 𝜋𝑼𝐵
∑

𝑋𝑖∈𝑨
𝑥𝑖𝜋𝑖𝐵

, 𝐶𝑁 ∈ 𝑂(1) is a positive constant, and we have taken an outer expectation on both457

sides. Then 𝔼(𝑌 |𝑼 ) = lim𝑁→∞ 𝔼(𝑌 |𝑼 , 𝐿, 𝐵) almost surely.458

We delegate proofs to the Supplementary Materials unless proven here in the Methods. Note that459

lim𝑁→∞
𝑼
𝑑𝐿

= 𝑼 , so the Lipschitz assumption intuitively means that accurate estimation of𝑼 implies460

accurate estimation of 𝔼(𝑌 |𝑼 ). Furthermore, conditioning on the library size 𝑁 instead of 𝐿 can461

introduce spurious dependencies because𝑁 depends on all of the genes rather than just the stably462

expressed ones.463

We now eliminate the need to condition on 𝐿. Note that 𝐿 is a sum of independent Poisson464

distributions given 𝐵 per Expression (4). This implies 𝑌 ⟂⟂ 𝐿|(𝑼 , 𝐵) for any 𝑁 , so that 𝔼(𝑌 |𝑼 ) =465

lim𝑁→∞ 𝔼(𝑌 |𝑼 , 𝐿, 𝐵) = lim𝑁→∞ 𝔼(𝑌 |𝑼 , 𝐵) almost surely. We have proved:466

Theorem 1. Consider the same assumption as Lemma 1. Then 𝔼(𝑌 |𝑼 ) = lim𝑁→∞ 𝔼(𝑌 |𝑼 , 𝐵) almost467

surely, where we have eliminated the conditioning on 𝐿.468
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We emphasize again that these equalities hold for the conditional expectation but not for the re-469

gression parameters; the regression parameters do not converge in general unless we divide by 𝐿.470

We will only need to estimate conditional expectations in order to identify root causal genes.471

Identifying Root Causal Genes472

We showed how to overcome Poisson measurement error without sequencing depth normaliza-473

tion in the previous section. We leverage this technique to define a measure for identifying the474

root causal genes of 𝑌 .475

Definitions476

A root cause of 𝑌 corresponds to a root vertex that is an ancestor of 𝑌 in 𝔾. All root vertices are477

error terms in an augmented graph. We define the root causal effect of any 𝐸𝑖 ∈ 𝑬 on 𝑌 as Υ𝑖 ≜478

ℙ(𝑌 |𝐸𝑖) − ℙ(𝑌 ) (Strobl, 2024; Strobl and Lasko, 2023c).479

We can identify root causes using the following result:480

Proposition 1. If 𝐸𝑖 ̸⟂⟂ 𝑌 or 𝐸𝑖 ̸⟂⟂ 𝑌 |Pa(𝑋𝑖) (or both), then 𝐸𝑖 is a root cause of 𝑌 .481

We can also claim the backward direction under d-separation faithfulness. We however avoidmak-482

ing this additional assumption because real biological data may not arise from distributions obey-483

ing d-separation faithfulness in practice (Strobl, 2022).484

Proposition 1 implies that 𝐸𝑖 is a root cause of 𝑌 when:485

Δ𝑖 ≜ ℙ(𝑌 |Pa(𝑋𝑖), 𝐸𝑖) − ℙ(𝑌 |Pa(𝑋𝑖)) ≠ 0.

The above quantity corresponds to the conditional root causal effect but not the root causal effect486

Υ𝑖 due to the extra conditioning on Pa(𝑋𝑖). The two termsmay also differ in direction; ifΔ𝑖 > 0, then487

this does not imply that Υ𝑖 > 0, and similarly for negative values. The two variables thus represent488

different quantities but – in terms of priority – we would estimate Υ𝑖 when we have nonzero Δ𝑖.489

Experimental results indicate that Υ𝑖 and Δ𝑖 take on similar values and agree in direction about490

95% of the time in practice (Supplementary Materials).491

We now encounter two challenges. First, the quantitiesΥ𝑖 andΔ𝑖 depend on the unknown error492

term 𝐸𝑖. We can however substitute 𝐸𝑖 with 𝑋𝑖 in Δ𝑖 due to the following result:493

Proposition 2. We have ℙ(𝑌 |𝐸𝑖,Pa(𝑋𝑖)) = ℙ(𝑌 |𝑋𝑖,Pa(𝑋𝑖)) under Equation (3).494

We can thus compute the conditional root causal effect Δ𝑖 without access to the error terms:495

Δ𝑖 = ℙ(𝑌 |Pa(𝑋𝑖), 𝐸𝑖) − ℙ(𝑌 |Pa(𝑋𝑖))

= ℙ(𝑌 |Pa(𝑋𝑖), 𝑋𝑖) − ℙ(𝑌 |Pa(𝑋𝑖)).

We can determine the root causal status of 𝐸𝑖 on 𝑌 when Δ𝑖 ≠ 0 per Proposition 1. Nevertheless,496

the term “root cause” in colloquial language refers to two concepts simultaneously: a root vertex497

that causes 𝑌 and has a large causal effect on 𝑌 . We thus say that 𝑋𝑖 is a root causal gene of 𝑌 if498

Δ𝑖 ≫ 0.499

The second challenge involves computing the non-parametric probability distributions of Δ𝑖500

which come at a high cost. We thus define the analogous expected version by:501

Γ𝑖 ≜ ∫ 𝑦
[

𝑝(𝑦|Pa(𝑋𝑖), 𝑋𝑖) − 𝑝(𝑦|Pa(𝑋𝑖))
]

𝑑𝑦

= 𝔼(𝑌 |Pa(𝑋𝑖), 𝑋𝑖) − 𝔼(𝑌 |Pa(𝑋𝑖))

= 𝔼(𝑌 |SP(𝑋𝑖), 𝑋𝑖, 𝐵) − 𝔼(𝑌 |SP(𝑋𝑖), 𝐵),

where 𝑝(𝑌 ) denotes the density of 𝑌 . Observe that if Δ𝑖 = 0, then Γ𝑖 = 0. The converse is not502

true but likely to hold in real data when a change in the probability distribution also changes its503

expectation. The set SP(𝑋𝑖) ⊆ 𝑿 denotes the surrogate parents of𝑋𝑖 corresponding to the variables504

in 𝑿 associated with Pa(𝑋𝑖) ⊆ 𝑿. The last equality holds almost surely as 𝑁 → ∞ by Theorem 1.505
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We call Φ𝑖 ≜ |Γ𝑖| the Root Causal Strength (RCS) of 𝑋𝑖 on 𝑌 . The RCS obtains a unique value506

Φ𝑖 = 𝜙𝑖𝑗 for each patient 𝑗. We say that 𝑋𝑖 is a root causal gene of 𝑌 for patient 𝑗 if 𝜙𝑖𝑗 ≫ 0, since507

we posit a right skewed distribution of conditional root causal effects for each patient as in Figure508

1 (b). We combine the RCS scores across a set of 𝑛 samples using the Deviation of the RCS (D-RCS)509
√

1
𝑛

∑𝑛
𝑗=1 𝜙

2
𝑖𝑗 , or the standard deviation of RCS from zero. Wemay compute D-RCS for each cluster or510

globally across all patients depending on the context. We thus likewise say that 𝑋𝑖 is a root causal511

gene for a cluster of patients or all patients in a sample if its corresponding D-RCS score for the512

cluster or the sample is much lager than zero, respectively. Note that we do not specify a particular513

cutoff value for large (conditional) root causal effects, since the root causal effects likely lie on a514

continuous graduated scale as opposed to approximately two binary values. Nevertheless, visual515

inspection of the RCS or D-RCS histograms in disease should approximate a power law, where a516

largemass is concentrated around zero and a long tail extends to the right similar to folding Figure517

1 (b).518

Algorithm519

We now design an algorithm called Root Causal Strength using Perturbations (RCSP) that recovers520

the RCS scores using Perturb-seq and bulk RNA-seq data.521

Finding Surrogate Ancestors522

Computing Φ𝑖 for each 𝑋𝑖 ∈ 𝑿 requires access to the surrogate parents of each variable or, equiv-523

alently, the causal graph 𝔾. However, inferring 𝔾 using causal discovery algorithms may lead to524

large statistical errors in the high dimensional setting (Colombo et al., 2014) and require restrictive525

assumptions such as d-separation faithfulness (Spirtes et al., 2000) or specific functional relations526

(Peters et al., 2014).527

We instead directly utilize the interventional Perturb-seq data to recover a superset of the sur-528

rogate parents. We first leverage the global Markov property and equivalently write:529

Φ𝑖 =
|

|

|

𝔼(𝑌 |SA(𝑋𝑖), 𝑋𝑖, 𝐵) − 𝔼(𝑌 |SA(𝑋𝑖), 𝐵)
|

|

|

, (5)

where SA(𝑋𝑖) denotes the surrogate ancestors of𝑋𝑖, or the variables in𝑿 associated with the ances-530

tors of 𝑋𝑖.531

We discover the surrogate ancestors using unconditional independence tests. For any 𝑋𝑘 ∈ 𝑿,532

we test 𝑋𝑘 ⟂⟂ 𝑃𝑖 by unpaired two-sided t-test, where 𝑃𝑖 is an indicator function equal to one when533

we perturb 𝑋𝑖 and zero in the control samples of Perturb-seq. 𝑃𝑖 is thus a parent of 𝑋𝑖 alone but534

not a child of 𝐵, so we do not need to condition on 𝐵. We use the two-sided t-test to assess for535

independence because the t-statistic averages over cells to mimic bulk RNA-seq. If we reject the536

null and conclude that𝑋𝑘 ̸⟂⟂ 𝑃𝑖, then𝑋𝑘 must be a descendant of 𝑃𝑖 by the global Markov property,537

so we include 𝑋𝑘 into the set of surrogate descendants SD(𝑋𝑖). Curating every 𝑋𝑗 ∈ 𝑿 such that538

𝑋𝑖 ∈ SD(𝑋𝑗) into SA(𝑋𝑖) yields the surrogate ancestors of 𝑋𝑖 as desired.539

Procedure540

We now introduce an algorithm called Root Causal Strength using Perturbations (RCSP) that dis-541

covers the surrogate ancestors of each variable 𝑿 using Perturb-seq and then computes the RCS542

of each variable using bulk RNA-seq. We summarize RCSP in Algorithm 1.543

RCSP takes Perturb-seq and bulk RNA-seq datasets as input. The algorithm first finds the surro-544

gate descendants of each variable in𝑿 in Line 2 in order to identify the surrogate ancestors of each545

variable in Line 5. Access to the surrogate ancestors and the batches 𝐵 allows RCSP to compute Φ𝑖546

for each 𝑋𝑖 ∈ 𝑿 from the bulk RNA-seq in Line 6. The algorithm thus outputs the RCS scores Φ as547

desired.548

We certify RCSP as follows:549

Theorem2. (Fisher consistency) Consider the sameassumption as Lemma1. If unconditional d-separation550

faithfulness holds, then RCSP recovers Φ almost surely as 𝑁 → ∞.551
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Algorithm 1 Root Causal Strength using Perturbations (RCSP)
Input: bulk RNA-seq data with batches 𝐵, Perturb-seq data
Output: RCS scores Φ
1: for each 𝑋𝑖 ∈ 𝑿 do
2: SD(𝑋𝑖) ← all 𝑋𝑘 ∈ 𝑿 s.t. 𝑋𝑘 ̸⟂⟂ 𝑃𝑖 in Perturb-seq
3: end for
4: for each 𝑋𝑖 ∈ 𝑿 do
5: SA(𝑋𝑖) ← all 𝑋𝑘 ∈ 𝑿 s.t. 𝑋𝑖 ∈ SD(𝑋𝑘)
6: Compute Φ𝑖 using Eq. (5) in bulk RNA-seq
7: end for

We engineered RCSP to only require unconditional d-separation faithfulness because real distribu-552

tions may not obey full d-separation faithfulness (Strobl, 2022).553

Synthetic Data554

Simulations555

We generated a linear SEM obeying Equation (3) specifically as 𝑋𝑖 = 𝑿𝛽𝑖 + 𝐸𝑖 for every 𝑋𝑖 ∈ 𝑿556

and similarly 𝑌 = 𝑿𝛽𝑌 + 𝐸𝑌 . We included 𝑝 + 1 = 2500 variables in 𝑿 ∪ 𝑌 . We instantiated the557

coefficient matrix 𝛽 by sampling from a Bernoulli(2∕(𝑝 − 1)) distribution in the upper triangular558

portion of thematrix. The resultant causal graph thus has an expected neighborhood size of 2. We559

then randomly permuted the ordering of the variables. We introduced weights into the coefficient560

matrix by multiplying each entry in 𝛽 by a weight sampled uniformly from [−1,−0.25] ∪ [0.25, 1].561

The error terms each follow a standard Gaussian distribution multiplied by 0.5. We introduced562

batch effects by drawing each entry of the mapping efficiencies 𝜋 from the uniform distribution563

between 10 and 1000 for the bulk RNA-seq, and between 0.1 and 1 for the Perturb-seq. We set564

𝑋𝑖 ← softplus(𝑋𝑖) and then obtained the corrupted surrogate 𝑋𝑖 distributed Pois(𝑋𝑖𝜋𝑖𝑗) for each565

𝑋𝑖 ∈ 𝑿 and batch 𝑗. We chose 𝑌 uniformly at random from the set of vertices with at least one566

parent and no children. We drew 200 samples for the bulk RNA-seq data to mimic a large but567

common dataset size. We introduced knockdown perturbations in Perturb-seq by subtracting an568

offset of two in the softplus function: 𝑋𝑖 ← softplus(𝑋𝑖 − 2). We finally drew 200 samples for the569

control and each perturbation condition to generate the Perturb-seq data. We repeated the above570

procedure 30 times.571

Comparators572

We compared RCSP against the following four algorithms:573

1. Additive noise model (ANM) (Peters et al., 2014; Strobl and Lasko, 2023a): performs non-574

linear regression of 𝑋𝑖 on Pa(𝑋𝑖) ∪𝐵 and then regresses 𝑌 on the residuals 𝑬 ⧵𝐸𝑖 to estimate575

|

|

𝔼(𝑌 |𝑬 ⧵ 𝐸𝑖) − 𝔼(𝑌 |𝑿, 𝐵)|
|

for each 𝑋𝑖 ∈ 𝑿. The non-linear regression residuals are equivalent576

to the error terms assuming an additive noise model.577

2. Linear Non-Gaussian Acyclic Model (LiNGAM) (Peters et al., 2014; Strobl and Lasko, 2022):578

same as above but performs linear instead of non-linear regression.579

3. CausalCell (Wen et al., 2023): selects the top 50 genes withmaximal statistical dependence to580

𝑌 , and then runs the Peter-Clark (PC) algorithm (Spirtes et al., 2000) using a non-parametric581

conditional independence test to identify a causal graph among the top 50 genes. The algo-582

rithm does not perform root causal inference, so we use ANM as above but condition on the583

estimated parent sets for the top 50 genes and the ancestors inferred from the Perturb-seq584

data otherwise.585

4. Univariate regression residuals (Uni Reg): regresses 𝑌 on 𝑋𝑖 ∪ 𝐵 and estimates the absolute586

residuals |
|

𝑌 − 𝔼(𝑌 |𝑋𝑖, 𝐵)|| for each 𝑋𝑖 ∈ 𝑿.587
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5. Multivariate regression residuals (Multi Reg): similar to above but instead computes the ab-588

solute residuals after regressing 𝑌 on (𝑿 ⧵𝑋𝑖) ∪ 𝐵.589

The first two methods are state-of-the-art approaches used for root causal discovery. Univariate590

andmultivariate regressions do not distinguish between predictivity and causality, but we included591

them as sanity checks. We performed all non-linear regressions using multivariate adaptive re-592

gression splines to control for the underlying regressor (Friedman, 1991). We also standardized593

all variables before running the regressions to prevent gaming of the marginal variances in causal594

discovery (Reisach et al., 2021; Ng et al., 2024). We compared the algorithms on their accuracy in595

estimating Φ.596

Real Data597

Quality Control598

We downloaded Perturb-seq datasets of retinal pigment epithelial cells from the RPE-1 cell line,599

and undifferentiated blast cells from the K562 cell line (Replogle et al., 2022). We used the genome-600

wide dataset version for the latter. We downloaded the datasets from the scPerturb database on601

Zenodo (Green et al., 2022) with the same quality controls as the original paper. Replogle et al.602

computed adjusted library sizes by equalizing the mean library size of control cells within each603

batch. Cells with greater than a 2000 or 3000 library size, and less than 25% or 11% mitochondrial604

RNA were kept, respectively. The parameters were chosen by plotting the adjusted library sizes605

against the mitochondrial RNA counts and then manually setting thresholds that removed low606

quality cells likely consisting of ambient mRNA transcripts arising from premature cell lysis or cell607

death.608

We next downloaded bulk RNA-seq datasets derived from patients with age-related macular609

degeneration (AMD; GSE115828) and multiple sclerosis (MS; GSE137143) (Ratnapriya et al., 2019;610

Kim et al., 2021). We excluded 10 individuals from the AMD dataset including one with an RNA611

integrity number of 21.92, five missing an integrity number (all others had an integrity number of612

less than 10), and four without a Minnesota Grading System score. We kept all samples from the613

MS dataset derived from CD4+ T cells but filtered out genes with a mean of less than 5 counts as614

done in the original paper.615

We finally kept genes that were present in both the AMD bulk dataset and the RPE-1 Perturb-616

seq dataset, yielding a final count of 513 bulk RNA-seq samples and 247,914 Perturb-seq samples617

across 2,077 genes. We also kept genes that were present in both theMS bulk dataset and the K562618

Perturb-seq dataset, yielding a final count of 137 bulk RNA-seq samples and 1,989,578 Perturb-seq619

samples across 6,882 genes. We included age and sex as a biological variable as covariates for every620

patient in both datasets in subsequent analyses.621

Evaluation Rationale622

We do not have access to the ground truth values of Φ in real data. We instead evaluate the RCSP623

estimates of Φ using alternative sources of ground truth knowledge. We first assess the accuracy624

of RCS using the control variable age as follows:625

1. Determine if the RCS values of age identify age as a root cause with large causal effect in626

diseases that progress over time.627

Second, few root causal genes should drive pathogenesis because the effects of a few error terms628

distribute over many downstream genes. We verify the sparsity of root causal genes as follows:629

2. Determine if the distribution of D-RCS concentrates around zero more than the distribution630

of the Deviation of Statistical Dependence (D-SD) defined as
√

1
𝑛

∑𝑛
𝑗=1 𝜔

2
𝑖𝑗 for each gene𝑋𝑖 ∈ 𝑿631

where Ω𝑖 = |

|

𝔼(𝑌 |𝑋𝑖, 𝐵) − 𝔼(𝑌 |𝐵)|
|

and 𝜔𝑖𝑗 its value for patient 𝑗.632

Despite the sparsity of root causal genes, we still expect the root causal genes to correspond to at633

least some known causes of disease:634
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3. Determine if genes with the top D-RCS scores correspond to genes known to cause the dis-635

ease.636

Next, the root causal genes initiate the vastmajority of pathogenesis, andweoften have knowledge637

of pathogenic pathways even though wemay not know the exact gene expression cascade leading638

to disease. Intervening on root causal genes should also modulate patient symptoms. We thus639

further evaluate the accuracy of RCSP using pathway and drug enrichment analyses as follows:640

4. Determine if the D-RCS scores identify known pathogenic pathways of disease in pathway641

enrichment analysis.642

5. Determine if the D-RCS scores identify drugs that treat the disease.643

Finally, complex diseases frequently involve multiple pathogenic pathways that differ between pa-644

tients. Patients with the same complex disease also respond differently to treatment. We hence645

evaluate the precision of RCS as follows:646

6. Determine if the patient-specific RCS scores identify subgroups of patients involving different647

but still known pathogenic pathways.648

7. Determine if the patient-specific RCS scores identify subgroups of patients that respond dif-649

ferently to drug treatment.650

In summary, we evaluate RCSP in real data based on its ability to (1) identify age as a known root651

cause, (2) suggest an omnigenic root causal model, (3) recover known causal genes, (4) find known652

pathogenic pathways, (5) find drugs that treat the disease, and (6,7) delineate patient subgroups.653

Enrichment Analyses654

Multivariate adaptive regression splines introduce sparsity, but enrichment analysis performs bet-655

ter with a dense input. We can estimate the conditional expectations of Φ using any general non-656

linear regression method, so we instead estimated the expectations using kernel ridge regression657

equipped with a radial basis function kernel (Shawe-Taylor and Cristianini, 2004). We then com-658

puted the D-RCS across all patients for each variable in 𝑿. We ran pathway enrichment analysis659

using the fast gene set enrichment analysis (FGSEA) algorithm (Sergushichev, 2016) with one hun-660

dred thousand simple permutations using the D-RCS scores and pathway information from the661

Reactome database (version 1.86.0) (Fabregat et al., 2017). We likewise performed drug set en-662

richment analysis with the Drug Signature database (version 1.0) (Yoo et al., 2015). We repeated663

the above procedures for the D-RCS of all clusters identified by hierarchical clustering via Ward’s664

method (Ward Jr, 1963).665

Data Availability666

All datasets analyzed in this study have been previously published and are publicly accessible as667

follows:668

1. Bulk RNA-seq for AMD: GSE115828669

2. Bulk RNA-seq for MS: GSE137143670

3. Perturb-seq for the RPE-1 and K562 cell lines: DOI 10044268671

Code Availability672

R code needed to replicate all experimental results is available on GitHub.673
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Supplementary Materials834

Additional Synthetic Data Results835

Normalization by Sequencing Depth836

We theoretically showed that RCS does not require normalization by sequencing depth in theMeth-837

ods using an asymptotic argument. We tested this claim empirically by drawing 200 bulk RNA-seq838

samples from random DAGs as in the Methods but over 𝑝+ 1 = 250 variables. We varied the mean839

sequencing depth 𝑁∕𝑝 of each gene from 15, 20, 30, 50, 90, 170, 330 to 650 counts; multiplying840

𝑁∕𝑝 by 𝑝 recovers the library size 𝑁 . We only included one batch in the bulk RNA-seq in order841

to isolate the effect of sequencing depth. We compared no normalization, normalization by 10842

housekeeping genes, normalization by 20 housekeeping genes, and normalization by library size.843

We repeated each experiment 100 times and thus generated a total of 100 × 4 × 8 = 3200 datasets.844

We plot the results in Supplementary Figure 1. All methods improved with increasing mean845

sequencing depth as expected. The no normalization strategy performed the best at low mean846

sequencing depths, followed by the housekeeping genes and then total library size. The result847

even held with a small library size of𝑁 = 15×249 = 3735 at the smallest mean sequencing depth of848

15, suggesting that the asymptotic argument holds well in bulk RNA-seq where𝑁∕𝑝 is often greater849

than 500 and𝑁 greater than the tens of millions. However, the average RMSEs of all normalization850

methods becamemore similar as sequencing depth increased. We conclude that no normalization851

exceeds ormatches the accuracy of other strategies. We therefore do not normalize by sequencing852

depth in subsequent analyses.853

Supplementary Figure 1. Mean RMSE to the ground truth RCS values across different mean sequencing
depths and normalization strategies. The no normalization strategy achieved low RMSEs at lower mean
sequencing depths, but the performances of all methods converged as the mean sequencing depths
increased. Error bars denote 95% confidence intervals of the mean RMSE.

Functional Causal Models and Measurement Error854

The experiments in the Results section quantify the accuracies of the algorithms in estimating Φ.855

However, the functional causal models ANM and LiNGAM also estimate the error terms as an in-856

termediate step, whereas RCSP does not. We therefore also investigated the accuracies of ANM857

and LiNGAM in estimating the error term values.858

Theoretical results suggest that ANM and LiNGAM cannot consistently estimate the error terms859

in RNA-seq due to the Poisson measurement error. We empirically tested this hypothesis by sam-860

pling from bulk RNA-seq data as in the Methods but with 𝑝 + 1 = 100 and a batch size of one in861

order to isolate the effect of measurement error. We repeated the experiment 100 times for bulk862

RNA-seq sample sizes of 100, 200, 400, 800, 1600 and 3200. We plot the results in Supplementary863

Figure 2. The accuracies of ANM and LiNGAM did not improve beyond an RMSE of 0.44 to the864

ground truth error term values even with a large sample size of 6400. We conclude that ANM and865

LiNGAM cannot estimate the error terms accurately in the presence of measurement error even866

with large sample sizes.867

23 of 34

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 7, 2024. ; https://doi.org/10.1101/2024.01.13.574491doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.13.574491
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure 2. Mean RMSE values to the ground truth error term values across different sample
sizes. The accuracies of ANM and LiNGAM do not improve with increasing sample sizes.

Cyclic Causal Graphs868

We also evaluated the algorithms on directed graphs with cycles. We generated a linear SEM over869

𝑝+1 = 1000 variables in𝑿 ∪𝑌 . We sampled the coefficient matrix 𝛽 from a Bernoulli(1∕(𝑝−1)) distri-870

bution but did not restrict the non-zero coefficients to the upper triangular portion of the matrix.871

We then proceeded to permute the variable ordering and weight each entry as in the Methods for872

the DAG. We repeated this procedure 30 times and report the results in Supplementary Figure 3.873

RCSP again outperformed all other algorithms even in the cyclic case. The results suggest that874

conditioning on the surrogate ancestors also estimates the RCS well even in the cyclic case. How-875

ever, we caution that an error term 𝐸𝑖 can affect the ancestors of 𝑋𝑖 when cycles exist. As a result,876

the RCS may not isolate the causal effect of the error term and thus not truly coincide with the877

notion of a root causal effect in cyclic causal graphs.878

Supplementary Figure 3. RCSP achieved the lowest RMSE in cyclic graphs as well. However, error terms can
influence ancestors in the cyclic case, so the interpretation of the RCS remains unclear when cycles exist.

DAG Incongruence879

We next assessed the performance of RCSP when the DAG underlying the Perturb-seq data differs880

from the DAG underlying the bulk RNA-seq data. We considered a mixture of two random DAGs in881

bulk RNA-seq, where one of the DAGs coincided with the Perturb-seq DAG and second alternate882

DAG did not. We instantiated and simulated samples from each DAG as per the previous subsec-883

tion. We generated 0%, 25%, 50%, 75%, and 100% of the bulk RNA-seq samples from the alternate884

DAG, and the rest from the Perturb-seq DAG. We ideally would like to see the performance of RCSP885

degrade gracefully, as opposed to abruptly, as the percent of samples derived from the alternate886

DAG increases.887

We summarize results in Supplementary Figure 4. As expected, RCSP performed the best when888

we drew all samples from the same underlying DAG for Perturb-seq and bulk RNA-seq. However,889

the performance of RCSP also degraded slowly as the percent of samples increased from the al-890
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ternate DAG. We conclude that RCSP can accommodate some differences between the underlying891

DAGs in Perturb-seq and bulk RNA-seq with only a mild degradation in performance.892

Supplementary Figure 4. The performance of RCSP degrades gracefully as the percent of samples from the
alternate DAG increases.

Non-Sink Target893

We finally considered the scenario where 𝑌 is a non-sink (or non-terminal) vertex. If 𝑌 is a parent894

of a gene expression level, then we cannot properly condition on the parents because modern895

Perturb-seq datasets usually do not intervene on 𝑌 or measure 𝑌 . We therefore empirically inves-896

tigated the degradation in performance resulting from a non-sink target 𝑌 , in particular for gene897

expression levels where 𝑌 is a parent. We again simulated 200 samples from bulk RNA-seq and898

each condition of Perturb-seq with a DAG over 1000 vertices, an expected neighborhood size of 2899

and a non-sink target 𝑌 . We then removed the outgoing edges from 𝑌 and resampled the DAGwith900

a sink target. We compare the results of RCSP for both DAGs in gene expression levels where 𝑌 is901

a parent. We plot the results in Supplementary Figure 5. As expected, we observe a degradation902

in performance when 𝑌 is not terminal, where the mean RMSE increased from 0.045 to 0.342. We903

conclude that RCSP is sensitive to violations of the sink target assumption.904

Supplementary Figure 5. Results with a sink or non-sink target 𝑌 . RCSP estimated the RCS scores less
accurately with a non-sink target indicating that the algorithm is sensitive to violations of the sink target
assumption.

Root Causal Effect versus Conditional Root Causal Effect905

We compared the expected and unconditional root causal effects Ω𝑖 ≜ 𝔼(𝑌 |𝐸𝑖) − 𝔼(𝑌 ) to the ex-906

pected and conditional root causal effects or, equivalently, the signed RCS scores Γ. These root907

causal effects and conditional root causal effects are not the same, but they are similar. We empiri-908

cally investigated the differences between the estimated values of Γ and the true values of Ω using909

the RMSE and also the percent of samples with incongruent signs; Γ and Ω have incongruent signs910

if one is positive and the other is negative. We again drew 200 bulk RNA-seq samples from random911

DAGs as in the Methods over 𝑝 + 1 = 250 variables with one batch. We varied the bulk RNA-seq912

sample size from 100, 200, 400 to 800. We also compared true Γ against true Ω by estimating the913
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two to negligible error using 20,000 samples of 𝑿. We repeated each experiment 100 times and914

thus generated a total of 100 × 5 = 500 datasets.915

We summarize the results in Supplementary Figure 6. The estimated Γ values approached the916

trueΩ values with increasing sample sizes. The true Γ values did not converge exactly to the trueΩ917

values, but the RMSE remained low at 0.05 and the two values differed in sign only around 5.3% of918

the time. Increasing the number of samples of𝑿 to 50,000 did not change performance, confirming919

that we reached the floor. We conclude that the empirical results replicate the theoretical results920

because Γ and Ω do not match exactly. However, the two quantities take on similar values and921

their signs matched around 95% of the time in practice.922

Supplementary Figure 6. Mean RMSE (blue, left) and percent sign incongruence (green, right) of the
expected root causal effects and signed RCS values, respectively. The RMSE continues to decrease with
increasing sample size but reaches a floor of around 0.05. Similarly, the percent sign incongruence decreases
but reaches a floor of around 5%.

Additional Results for Age-related Macular Degeneration923

Algorithm Comparisons924

We say that an algorithm performs well in real data if it simultaneously (1) identifies a sparse set925

of root causal genes, (2) recovers known pathogenic pathways with high specificity measured by926

the sparsity of leading edge genes, and (3) clusters patients into clear subgroups.927

We compared the algorithms with the AMD data. We summarize the results in Supplementary928

Figure 7 plotted on the next page. The figure contains 6 rows and 3 columns. Similar to the D-RCS,929

we can compute the standard deviation of the output of each algorithm from zero for each gene.930

The first column in Supplementary Figure 7 denotes the histograms of these standard deviations931

across the genes. We standardized the outputs to have mean zero and unit variance. We then932

added the minimum value so that all histograms begin at zero; note that the bars at zero are not933

visible formany algorithms, since only a few genes attained standard deviations near theminimum.934

If an algorithm accurately identifies root causal genes, then it should only identify a few genes with935

large conditional root causal effects under the omnigenic root causal model. The RCSP algorithm936

had a histogram with large probability mass centered around zero with a long tail to the right. The937

standard deviations of the outputs of the other algorithms attained large values for nearly all genes.938

Incorporating feature selection and causal discovery with CausalCell introduced more outliers in939

the histogram of ANM. We conclude that only RCSP detected an omnigenic root causal model.940

We plot the results of pathway enrichment analysis in the second column of Supplementary941

Figure 7. RCSP, LiNGAM and univariate regression detected pathways related to oxidative stress942

in AMD. However, the “mitotic prometaphase” and “DNA strand elongation” pathways in blue for943

LiNGAM involved 94 and 27 leading edge genes, respectively. The “cellular responses to stimuli”944

and “signal transduction” pathways for multivariate regression also involved 253 and 282 leading945

edge genes. In contrast, the “amino acid plasma membrane transport” pathway for RCSP involved946

two leading edge genes. We conclude that RCSP identified a known pathogenic pathway of AMD947

with the fewest number of leading edge genes.948
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We finally plot the clustering results in the third column of Supplementary Figure 7. The RCSP949

sum of squares plot revealed a sharp elbow at four groups of patients, whereas the other plots950

did not reveal a clear number of categories using the elbow method. We conclude that only RCSP951

identified clear subgroups of patients in AMD.952

In summary, RCSP detected a small set of root causal genes, identified pathogenic pathways953

withmaximal specificity and discovered distinguishable patient subgroups. We therefore conclude954

that RCSP outperformed all other algorithms in the AMD dataset.955

Supplementary Figure 7. Comparison of the algorithms in age-related macular degeneration.
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Effect of Sequencing Depth956

Theorem 1 states that RCS scores may exhibit bias with insufficient sequencing depth. The genes957

with large D-RCS scores may therefore simply have low sequencing depths. To test this hypothesis,958

we plotted sequencing depth against D-RCS scores. Consistent with Theorem 1, we observed a959

small negative correlation between D-RCS and sequencing depth (𝜌 = −0.16, p=2.04E-13), and D-960

RCS scores exhibited greater variability at the lowest sequencing depths (Supplementary Figure 8).961

However, genes with the largest D-RCS scores hadmean sequencing depths interspersed between962

20 and 3000. We conclude that genes with the largest D-RCS scores had a variety of sequencing963

depths ranging from low to high.964

Supplementary Figure 8. Mean sequencing depth of each gene plotted against their D-RCS scores in AMD.
Genes with the largest D-RCS scores (red ellipse) had a variety of sequencing depths.

Biological Results965

We provide the full pathway enrichment analysis results in Supplementary Table 1 corresponding966

to Figure 3 (c). We summarize pathway enrichment analysis of the black cluster of Figure 3 (g) in967

Figure 3 (j). However, analyses of the blue, green andpink clusters did not yield significant pathways968

even at a liberal FDR threshold of 10%.969

We examined whether the clusters of Figure 3 (g) differentiate dry and wet macular degenera-970

tion. Wet macular degeneration is associated with the highest Minnesota Grading System (MGS)971

score of 4 (Olsen and Feng, 2004). We plotted the UMAP embedding against MGS (Supplementary972

Figure 9 (a)). None of the two UMAP dimensions correlated significantly with the MGS score (5%973

uncorrected threshold by Spearman’s correlation test). These results and the large RCS scores of974

age in Figure 3 (a) seem to support the hypothesis that wet macular degeneration is a more severe975

type of dry macular degeneration. However, MGS does not differentiate between wet macular de-976

generation and late stage dry macular degeneration involving geographical atrophy. We therefore977

cannot separate late stage dry and wet macular degeneration using the RCS scores alone.978

Pathway p-value q-value Effect Size Leading Edge
Amino acid transport across the plasma membrane 2.44e-05 0.038 0.995 8140,6510
RHO GTPases Activate ROCKs 2.09e-03 0.388 0.976 4659,5500
Endosomal/Vacuolar pathway 2.32e-03 0.388 0.998 3107
Diseases of Cellular Senescence 2.97e-03 0.388 0.997 1021
Binding of TCF/LEF:CTNNB1 to target gene promoters 6.52e-03 0.680 0.993 4609
APEX1-Indep. Resolution of AP Sites via Nucleotide Replacement 7.28e-03 0.712 0.980 11284,7515
MASTL Facilitates Mitotic Progression 1.59e-02 0.978 0.911 84930,983
PI5P Regulates TP53 Acetylation 1.94e-02 0.978 0.980 79837
Formation of Incision Complex in GG-NER 2.24e-02 0.978 0.791 2966,9978,2967
Glycine degradation 2.24e-02 0.978 0.977 1738
Prefoldin mediated transfer of substrate to CCT/TriC 3.96e-02 0.978 0.787 5203,5201,10576

Supplementary Table 1. Full pathway enrichment analysis results for all patients in the AMD dataset. We list
the Entrez gene IDs of up to the top three leading edge genes in the right-most column.
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We correlated the two UMAP dimensions with the top 30 genes ranked by their RCS scores. We979

plot genes with the highest correlation to the first and second UMAP dimensions in Supplementary980

Figures 9 (b) and 9 (c), respectively. Many genes correlated with the first dimension, but only three981

genes correlated with the second at an FDR threshold of 5%.982

(a) Severity (b) UMAP Dimension 1 (c) UMAP Dimension 2

Supplementary Figure 9. Additional UMAP embedding results for AMD. (a) The UMAP dimensions did not
correlate with AMD severity as assessed by the MGS score. Many genes correlated with the first UMAP
dimension in (b), but only three genes correlated with the second UMAP dimension in (c). Blue bars passed an
FDR threshold of 5%, and error bars denote 95% confidence intervals.

We finally performed drug enrichment analysis in each of the four clusters in Figure 3 (g). We983

summarize the results in Supplementary Figure 10. Only two drugs – and one potentially thera-984

peutic option – passed FDR correction in patients in the black cluster with the most identified root985

causal genes according to the RCS scores. In contrast, enrichment analysis identified many drugs986

in patients in the green cluster with the lowest RCS scores and thus relatively few root causal genes.987

The pink and blue clusters yielded moderate results. We conclude that drug enrichment analysis988

expectedly identified more drugs for patients on the left hand side of the UMAP embedding with989

fewer root causal genes than on the right hand side with many simultaneous root causal genes.990

(a) Black (b) Pink

(c) Green (d) Blue

Supplementary Figure 10. Drug enrichment analysis results by cluster in Figure 3 (g). The analyses
recovered similar drugs across clusters, but the results for the green cluster in (c) were supra-significant.
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Additional Results for Multiple Sclerosis991

Algorithm Comparisons992

We compared the algorithms using the MS data with the same criteria used for the AMD dataset.993

We summarize the results in Supplementary Figure 11 plotted on the next page. Only the his-994

togram of RCSP had large probability mass centered around zero as shown in the first column.995

The histogram of LiNGAM contained many outliers, so it appears to spike around a value of 18.996

The histograms of ANM and CausalCell were again near identical. We conclude that only the his-997

togram of RCSP supported an omnigenic root causal model in MS.998

We performed pathway enrichment analysis on the algorithm outputs and summarize the999

results in the second column of Supplementary Figure 11. The functional causal models ANM,1000

LiNGAM and CausalCell did not identify significant pathways at an FDR corrected threshold of 0.05.1001

In contrast, multivariate and univariate regression both identified many significant pathways in1002

blue with no specific link to the blood brain barrier. The top six significant pathways for multivari-1003

ate and univariate regression involved 112 to 831 and 18 to 545 leading edge genes, respectively.1004

In contrast, the two significant pathways of RCSP involved only 2 and 9 leading genes. We conclude1005

that RCSP detected pathogenic pathways of MS with the sparsest set of leading edge genes.1006

We finally clustered the algorithm outputs into patient subgroups. We list the sum of squares1007

plots in the third column of Supplementary Figure 11. Univariate regression did not differentiate1008

between the patients because it detected one dominating cluster. RCSP and multivariate regres-1009

sion identified clear subgroups according to the elbow method, whereas the sum of squares plots1010

for ANM, LiNGAM and CausalCell showed no clear cutoffs. We conclude that only RCSP and multi-1011

variate regression identified clear patient subgroups in MS.1012

In summary, only RCSP simultaneously detected an omnigenic root causal model, identified1013

pathogenic pathways with high specificity and discovered clear patient subgroups. We therefore1014

conclude that RCSP also outperformed all other algorithms in the MS dataset.1015
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Supplementary Figure 11. Comparison of the algorithms in multiple sclerosis.
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Effect of Sequencing Depth1016

We plot sequencing depth against the D-RCS scores of each gene similar to the AMD dataset. We1017

again observed a small negative correlation (𝜌 = −0.136, p<2.2E-16), indicating that genes with low1018

sequencing depths had slightly higher D-RCS scores on average (Supplementary Figure 12). How-1019

ever, genes with the largest D-RCS scores again had a variety of sequencing depths. We conclude1020

that sequencing depth has minimal correlation with the largest D-RCS scores.1021

Supplementary Figure 12. Mean sequencing depth of each gene plotted against their D-RCS scores in MS.
Genes with the largest D-RCS scores (red ellipse) again had a variety of sequencing depths.

Biological Results1022

We provide the full global pathway enrichment analysis results for MS in Supplementary Table 2.1023

Pathway enrichment analysis of the individual clusters in Figure 4 (f) consistently implicated EPH-1024

ephrin signaling among the top two pathways. However, each cluster also involved one separate1025

additional pathway (Supplementary Figure 13). The green cluster involved the sameAPC-AXIN path-1026

way as the global analysis via beta-catenin. On the other hand, the blue cluster involved “platelet1027

sensitization by LDL.” Low density lipoprotein enhances platelet aggregation. Platelet degranula-1028

tion in turn drives the generation of autoreactive T cells in the peripheral circulation during distur-1029

bance of the blood brain barrier (Orian et al., 2021). Finally, CTLA4 regulates T-cell homeostasis1030

and inhibits autommunity for the pink cluster (Basile et al., 2022). The D-RCS scores of each cluster1031

thus implicate different mechanisms of T cell pathology.1032

Pathway p-value q-value Effect Size Leading Edge
APC truncation mutants have impaired AXIN binding 1.91e-06 3.45e-4 0.960 5525,5527
EPH-ephrin signaling 4.23e-05 6.12e-3 0.826 8874,102,8976
Ethanol oxidation 2.02e-03 0.182 0.967 219,128
RHOQ GTPase cycle 2.72e-03 0.226 0.793 9322,8874,10395
Glycogen storage disease type 0 (muscle GYS1) 4.32e-03 0.322 0.996 2992
NFE2L2 regulating TCA cycle genes 6.31e-03 0.414 0.970 4199,3417
C6 deamination of adenosine 7.42e-03 0.414 0.981 103,104
Ion channel transport 7.63e-03 0.414 0.728 57198,540,55515
Synthesis of IP3 and IP4 in the cytosol 7.65e-03 0.414 0.904 3633,805,23236
Diseases associated with glycosaminoglycan metabolism 8.21e-03 0.414 0.894 2132,11285,3339
Signaling by SCF-KIT 8.67e-03 0.414 0.794 7006,5578,3815

Supplementary Table 2. Full pathway enrichment analysis results for all patients in the MS dataset. We
again list up to the top three leading edge genes in the right-most column.
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(a) Blue (b) Pink (c) Green

Supplementary Figure 13. Pathway enrichment analysis results by cluster consistently revealed EPH-ephrin
signaling as well as an additional pathway implicating T cell pathology.

The severity of MS, as assessed by the Expanded Disability Status Scale (EDSS) score, did not1033

correlate with either dimension of the UMAP embedding (Supplementary Figure 14 (a)). The top1034

genes in Figure 4 (d) such asMNT andCERCAMalso did not correlate. However, lower ranked genes1035

such as TRIP10 did (Supplementary Figure 14 (b)). An expanded correlation analysis with the top1036

30 genes revealed significant correlations across a variety of lower ranked genes (Supplementary1037

Figures 14 (c) and 14 (d)). We conclude that the distribution of lower ranked genes govern the1038

structure of the UMAP embedding in Figure 4 (f).1039

(a) Severity (b) TRIP10

(c) UMAP Dimension 1 (d) UMAP Dimension 2

Supplementary Figure 14. Additional analyses of the UMAP embedding for MS. (a) The UMAP dimensions
did not correlate with MS severity as assessed by EDSS. However, lower ranked genes such as TRIP10
correlated with both dimensions in (b). We expanded the analysis to the top 30 genes and plot the genes with
the highest correlations to UMAP dimension one and two in (c) and (d), respectively.
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Proofs1040

Lemma 1. Assume Lipschitz continuity of the conditional expectation for all 𝑁 ≥ 𝑛0:1041

𝔼 |

|

|

𝔼(𝑌 |𝑼 ) − 𝔼(𝑌 |𝑼 , 𝐿, 𝐵)||
|

≤ 𝔼𝐶𝑁
|

|

|

|

𝑼 − 𝑼
𝑑𝐿

|

|

|

|

, (6)

where 𝑑 = 𝜋𝑼𝐵
∑

𝑋𝑖∈𝑨
𝑥𝑖𝜋𝑖𝐵

, 𝐶𝑁 ∈ 𝑂(1) is a positive constant, and we have taken an outer expectation on both1042

sides. Then 𝔼(𝑌 |𝑼 ) = lim𝑁→∞ 𝔼(𝑌 |𝑼 , 𝐿, 𝐵) almost surely.1043

Proof. We can write the following sequence:1044

𝔼
|

|

|

|

𝔼(𝑌 |𝑼 ) − lim
𝑁→∞

𝔼(𝑌 |𝑼 , 𝐿, 𝐵)
|

|

|

|

= 𝔼 lim
𝑁→∞

|

|

|

𝔼(𝑌 |𝑼 ) − 𝔼(𝑌 |𝑼 , 𝐿, 𝐵)||
|

≤ 𝔼 lim
𝑁→∞

𝐶𝑁
|

|

|

|

𝑼 − 𝑼
𝑑𝐿

|

|

|

|

≤ 𝐶𝔼
|

|

|

|

𝑼 − 1
𝑑

lim
𝑁→∞

𝑼
𝐿
|

|

|

|

= 𝐶𝔼
|

|

|

|

𝑼 − 1
𝑑
𝑼𝑑

|

|

|

|

= 0,

where we have applied Expression (6) at the first inequality. We have 𝐶𝑁 ≤ 𝐶 for all 𝑁 ≥ 𝑛0 in the1045

second inequality because 𝐶𝑁 ∈ 𝑂(1). With the above bound, choose 𝑎 > 0 and invoke the Markov1046

inequality:1047

ℙ
(

|

|

|

|

𝔼(𝑌 |𝑼 ) − lim
𝑁→∞

𝔼(𝑌 |𝑼 , 𝐿, 𝐵)
|

|

|

|

≥ 𝑎
)

≤ 1
𝑎
𝔼
|

|

|

|

𝔼(𝑌 |𝑼 ) − lim
𝑁→∞

𝔼(𝑌 |𝑼 , 𝐿, 𝐵)
|

|

|

|

= 0.

The conclusion follows because we chose 𝑎 arbitrarily.1048

Proposition 1. If 𝐸𝑖 ̸⟂⟂ 𝑌 or 𝐸𝑖 ̸⟂⟂ 𝑌 |Pa(𝑋𝑖) (or both), then 𝐸𝑖 is a root cause of 𝑌 .1049

Proof. If 𝐸𝑖 ̸⟂⟂ 𝑌 or 𝐸𝑖 ̸⟂⟂ 𝑌 |Pa(𝑋𝑖) (or both), then 𝐸𝑖 and 𝑌 are d-connected by the global Markov1050

property. Since 𝐸𝑖 is a root vertex, the d-connection implies that there exists a directed path from1051

𝐸𝑖 to 𝑌 .1052

Proposition 2. We have ℙ(𝑌 |𝐸𝑖,Pa(𝑋𝑖)) = ℙ(𝑌 |𝑋𝑖,Pa(𝑋𝑖)) under Equation (3).1053

Proof. We can write:1054

ℙ(𝑌 |𝐸𝑖,Pa(𝑋𝑖)) = 𝔼𝑋𝑖|𝐸𝑖 ,Pa(𝑋𝑖)
ℙ(𝑌 |𝐸𝑖, 𝑋𝑖,Pa(𝑋𝑖)) = ℙ(𝑌 |𝐸𝑖, 𝑋𝑖,Pa(𝑋𝑖)) = ℙ(𝑌 |𝑋𝑖,Pa(𝑋𝑖)).

The second equality follows because𝑋𝑖 is a constant given 𝐸𝑖 and Pa(𝑋𝑖). The third equality follows1055

by the global Markov property because 𝑌 is a terminal vertex.1056

Theorem2. (Fisher consistency) Consider the sameassumption as Lemma1. If unconditional d-separation1057

faithfulness holds, then RCSP recovers Φ almost surely as 𝑁 → ∞.1058

Proof. If 𝑋𝑘 ̸⟂⟂ 𝑃𝑖 in Line 2 of Algorithm 1, then 𝑋𝑘 is a descendant of the root vertex 𝑃𝑖 under1059

the global Markov property. Similarly, if 𝑋𝑘 is a descendant of 𝑃𝑖, then 𝑋𝑘 is d-connected to 𝑃𝑖1060

so 𝑋𝑘 ̸⟂⟂ 𝑃𝑖 by unconditional d-separation faithfulness. Hence, SD(𝑋𝑖) contains only and all the1061

surrogate descendants of𝑋𝑖 for each𝑋𝑖 ∈ 𝑿. This in turn implies that SA(𝑋𝑖) in Line 5 of Algorithm1062

1 contains only and all the surrogate ancestors of 𝑋𝑖. Hence, RCSP now has access to the correct1063

set SA(𝑋𝑖) as well as𝐵 for each𝑋𝑖 ∈ 𝑿. We finally invoke Theorem 1 to conclude that RCSP recovers1064

Φ almost surely as 𝑁 → ∞.1065
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