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ABSTRACT 

Background: Polygenic risk scores (PRS) aggregate the contribution of many risk variants to provide a 
personalized genetic susceptibility profile. Since sample sizes of glioma genome-wide association studies (GWAS) 
remain modest, there is a need to find efficient ways of capturing genetic risk factors using available germline data.  
Methods: We developed a novel PRS (PRS-CS) that uses continuous shrinkage priors to model the joint effects of 
over 1 million polymorphisms on disease risk and compared it to an approach (PRS-CT) that selects a limited set 
of independent variants that reach genome-wide significance (P<5×10-8). PRS models were trained using GWAS 
results stratified by histological (10,346 cases, 14,687 controls) and molecular subtype (2,632 cases, 2,445 
controls), and validated in two independent cohorts. 
Results: PRS-CS was consistently more predictive than PRS-CT across glioma subtypes with an average increase 
in explained variance (R2) of 21%. Improvements were particularly pronounced for glioblastoma tumors, with PRS-
CS yielding larger effect sizes (odds ratio (OR)=1.93, P=2.0×10-54 vs. OR=1.83, P=9.4×10-50) and higher explained 
variance (R2=2.82% vs. R2=2.56%). Individuals in the 95th percentile of the PRS-CS distribution had a 3-fold higher 
lifetime absolute risk of IDH mutant (0.63%) and IDH wildtype (0.76%) glioma relative to individuals with average 
PRS. PRS-CS also showed high classification accuracy for IDH mutation status among cases (AUC=0.895).  
Conclusions: Our novel genome-wide PRS may improve the identification of high-risk individuals and help 
distinguish between prognostic glioma subtypes, increasing the potential clinical utility of germline genetics in glioma 
patient management.  
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IMPORTANCE OF THE STUDY 

Inherited genetic variation is one of only a few risk factors known to contribute to gliomagenesis. We leverage the 
largest available collection of genome-wide association studies for glioma to show that a genome-wide PRS 
approach that models the joint effect of correlated variants across the genome yields improved prediction of glioma 
risk. Our novel PRS also improves the classification of cases according to IDH mutation status. Additionally, we 
provide refined estimates of individual genetic susceptibility and show that risk scores in the highest percentiles of 
the PRS distribution confer significant increases in relative and lifetime absolute risk. Taken together, our findings 
provide further evidence of the potential for germline genotyping to be used as a clinical biomarker in the 
assessment of personalized glioma risk and the non-invasive management of patients with newly diagnosed brain 
tumors.  
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INTRODUCTION 

Adult diffuse glioma accounts for approximately 80% of all primary malignant central nervous system tumors with 
over 20,000 new cases each year in the United States1. These tumors encompass a highly heterogeneous group 
of subtypes with distinct genetic risk loci, molecular signatures, histopathologic lineages, etiological mechanisms 
and survival trajectories2. In particular, molecular tumor features including mutations in IDH1 or IDH2 (encoding the 
cytoplasmic and mitochondrial isocitrate dehydrogenase respectively), co-deletion of chromosome arms 1p and 
19q, and mutations in TERT are used to define clinically relevant glioma subtypes3. Tumors without IDH mutation 
are primary glioblastomas (GBM) and carry the poorest prognosis with less than 5% of patients surviving more than 
5 years4. Low grade astrocytomas are defined by IDH mutation without 1p19q codeletion and tend to have a better 
prognosis. Oligodendroglioma tumors, characterized by IDH mutation and 1p19q codeletion, carry the best 
prognosis with a median overall survival of 17.5 years2. 
 
While the etiology of glioma remains poorly understood, multiple studies have shown that inherited genetic variation 
contributes to glioma susceptibility5–7. Genome-wide association studies (GWAS) of glioma patients with tumors 
stratified by histological subtype have identified approximately 25 common single nucleotide polymorphisms (SNPs) 
associated with glioma risk7. More recent glioma GWAS by molecular subtype have identified additional variants 
associated with IDH-mutant glioma in D2HGDH on chromosome 2 and FAM20C on chromosome 78. Recognition 
that heritable genetic variants influence glioma risk has prompted the development of polygenic risk scores (PRS) 
to help identify high-risk individuals9,10. As a rare cancer glioma is not amenable to population-level screening, but 
a PRS that provides more accurate and personalized risk estimates, beyond family history and demographic factors, 
may be useful in certain scenarios such as refining a differential diagnosis. Additionally, predicting the risk of specific 
subtypes may help guide treatment and follow-up of patients with indeterminate brain lesions prior to invasive 
interventions9.  
 
Previous PRS for glioma have used an approach known as clumping and thresholding (CT) which involves selecting 
a single GWAS-significant variant per linkage disequilibrium (LD) block9,10. These efforts have shown promising 
results with PRS greatly improving glioma risk prediction beyond demographic risk factors such as age and sex. 
However, since glioma is relatively rare, GWAS sample sizes, especially for contemporary glioma subtypes, remain 
modest with few variants reaching the conventional genome-wide significance threshold (P<5×10-8)7,8. As a result, 
the standard CT approach leaves a substantial component of the genetic liability for glioma unexplained11 and may 
discard information from variants below the significance threshold that could improve prediction accuracy. In 
contrast, genome-wide PRS approaches directly model the genetic architecture of the trait across the genome, 
using shrinkage methods to assign weights to each SNP according to their estimated contribution to the trait12. They 
have been shown to improve prediction performance compared to the CT method for several complex traits 
including schizophrenia13, major depressive disorder13, coronary artery disease14, breast cancer14 and colorectal 
cancer15. With small samples sizes yielding few GWAS-significant variants for glioma, PRS approaches that 
leverage information from variants that do not reach genome-wide significance thresholds may improve risk 
prediction across glioma subtypes.  
 
In this investigation, we developed a novel PRS for glioma using a genome-wide Bayesian approach and assessed 
its ability to predict individual glioma risk and distinguish glioma subtypes compared to a standard CT PRS. Using 
our genome-wide PRS, we estimated lifetime absolute risk and cumulative incidence trajectories across histological 
and molecular subtypes.  
 
 
 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2024. ; https://doi.org/10.1101/2024.01.10.24301112doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.10.24301112
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 3 

METHODS 

Glioma study population 

An overview of the study design and analysis is provided in Figure 1. PRS models by histological subtype were 
trained using summary-level statistics from a meta-analysis of six studies provided by the Glioma International 
Case-Control (GICC) Consortium, which included all glioma (10,346 cases, 14,687 controls), GBM (5,395 cases, 
14,687 controls) and non-GBM (4,466 cases, 14,687 controls) tumors (Supplementary Table 1), as described by 
Melin et al7. This GWAS was performed prior to the widespread adoption of molecular classifications such that the 
case definitions for GBM and non-GBM do not follow the current WHO 2021 guidelines3. Additionally, we leveraged 
data from two case-control studies to develop PRS for molecular subtypes of glioma: (1) the Mayo Clinic and 
University of California San Francisco (UCSF) Adult Glioma Study (1,973 cases) with controls from the GICC study 
(1,859 controls) and (2) UCSF Adult Glioma Study (659 cases, 586 controls)8,9,16. The study-specific summary 
statistics were meta-analyzed by IDH mutation status for a total sample size of 2,632 cases (1115 IDH wildtype, 
699 IDH mutant, 818 IDH unknown) and 2,445 controls. Participants in the GWAS by molecular subtypes as well 
as those included in the individual-level genotype data used for testing were excluded from the GWAS meta-
analysis where only histological subtypes were available. All analyses were restricted to individuals of predominantly 
European ancestry. 
 
The prediction accuracy of PRS models were tested in the UK Biobank (UKB)17,18, a population-based cohort with 
747 glioma cases (516 GBM, 146 non-GBM) and 412,556 controls. PRS models for molecular subtypes were tested 
in The Cancer Genome Atlas (TCGA) with controls from the Wellcome Trust Case Control Consortium (WTCCC), 
as described in Guerra et al19. The TCGA/WTCCC dataset consisted of 814 glioma cases (372 GBM, 442 non-
GBM; 384 IDH wildtype, 384 IDH mutant) and 5,745 controls.  
 
Polygenic risk score development and evaluation 

We compared two different approaches to PRS construction: LD clumping and thresholding (PRS-CT)20 and a 
Bayesian genome-wide approach using continuous shrinkage priors (PRS-CS)21. For PRS-CT we preferentially 
selected variants with the lowest p-value from those with p<5×10-8 that were LD-independent (r2<0.05) within 10 
Mb blocks (Supplementary Table 2). Each selected variant in PRS-CT was weighted by the marginal GWAS effect 
size. PRS-CS is an approach that uses penalized regression to shrink effect size estimates of variants across the 
genome according to the genetic architecture of the trait21. We expanded the panel of genetic markers used in PRS-
CS to ensure adequate coverage of known glioma risk loci for a total of 1,120,700 variants present in HapMap322.  
 
Each PRS was converted to a standardized z-score based on the distribution in controls. Odds ratios (OR) per 
standard deviation (SD) increase in the PRS were estimated using logistic regression with adjustment for age 
(except for TCGA/WTCCC as controls were from the 1958 birth cohort), sex, and the top ten genetic ancestry 
principal components (PCs). The prediction accuracy of each PRS was quantified using two metrics: pseudo-R2 on 
the liability scale23 and the area under the receiver operator characteristic curve (AUC). The relative increase or 
decrease in R2 of PRS-CS compared to PRS-CT is defined as (R2CS-R2CT)/R2CT.  
 
In addition to case/control analyses we also evaluated the potential of PRS to classify glioma cases according to 
IDH mutation status in the TCGA testing dataset. Models that included PRS-CT or PRS-CS were compared to a 
baseline model with age and sex. Model discrimination was assessed using AUC with 95% confidence intervals 
estimated from 2,000 bootstrap samples.  
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Assessment of risk stratification 

We evaluated the risk stratification potential of PRS by estimating age-specific incidence trajectories for glioma 
cases in UKB, following the approach in Kachuri et al17. Cumulative incidence estimates were obtained from cause-
specific Cox regression models for incident glioma cases with all-cause mortality treated as a competing event24,25. 
Cox models were adjusted for age, sex and the first ten genetic ancestry PCs. Cumulative incidence trajectories 
were compared across PRS strata with individuals above the 80th percentile of the PRS distribution defined as 
having high genetic risk, those below the 20th percentile as low risk and those in the middle 20th-80th percentile as 
average risk.  
 
Additionally, we compared the lifetime absolute risk of developing glioma for individuals across PRS levels using 
the method described by Pain et al26. Briefly, the approach defines the population distribution of the risk score within 
normal distribution theory using the estimated OR per SD unit increase in PRS and then calculates the proportion 
of cases within risk score quantiles. Lifetime risk of each glioma subtype in the general population was obtained 
from the Surveillance, Epidemiology and End Results (SEER) Program (https://seer.cancer.gov/). Confidence 
intervals for absolute risk estimates were obtained by parametric bootstrap sampling of the OR estimates of each 
PRS and each glioma subtype.  
 
RESULTS 

Comparison of PRS approaches for predicting glioma risk  

PRS-CS generally showed improved performance over PRS-CT across all glioma subtypes except non-GBM 
tumors with consistent results in the TCGA/WTCCC and UKB testing datasets (Figure 2). For glioma overall, PRS-
CS showed a larger magnitude of association (OR per SD = 1.53, 95% CI: 1.40-1.69, P=1.1´10-18) than PRS-CT 
(OR=1.44, 95% CI: 1.31-1.58, P=4.5´10-14) in TCGA/WTCCC (Supplementary Table 3). The same pattern was 
observed in UKB, although the difference between the two approaches was attenuated (PRS-CS: OR=1.70, 
P=5.7´10-54; PRS-CT: OR=1.64, P=4.1´10-49). Additionally, PRS-CS achieved an increase in R2 of 23.6% and 
11.0% relative to PRS-CT for TCGA/WTCCC and UKB, respectively (Supplementary Table 3).  
 
In TCGA/WTCCC, PRS-CS (OR=1.66, 95% CI: 1.46-1.88, P=5.6´10-15) was more predictive of GBM than PRS-CT 
(OR=1.46, 95% CI: 1.29-1.65, P=2.2´10-9). The ORs for GBM risk were also higher for PRS-CS (OR=1.93, 95% 
CI: 1.78-2.10, P=2.0´10-54) than PRS-CT (OR=1.83, 95% CI: 1.69-1.98, P=9.4´10-50) in UKB. Similar improvements 
were obtained in terms of R2 (TCGA/WTCCC: 71.2% increase; UKB: 10.2% increase).  
 
For non-GBM tumors, both methods showed comparable results (Supplementary Table 3). In UKB, PRS-CS 
demonstrated a larger effect size (OR=1.75, P=1.7´10-16) and modestly improved discrimination (AUC=0.676) over 
PRS-CT (OR = 1.66, P=4.6´10-15, AUC=0.667). In contrast, we observed slightly higher explained variance for 
PRS-CT (R2=0.0135) than PRS-CS (R2=0.0131) in TCGA/WTCCC. Given the heterogeneity among the 
histopathological lineages of non-GBM tumors, we examined each subtype encompassed by the non-GBM 
category separately (Supplementary Table 4). Both genetic scores were less predictive of astrocytoma risk (PRS-
CS: OR=1.43, P=9.2´10-5; PRC-CT: OR=1.41, P=6.8´10-5), but showed stronger associations with 
oligodendroglioma (PRS-CS: OR=2.18, P=5.2´10-11; PRS-CT: OR=1.92, P=5.5´10-9) in UKB. Similar results were 
observed in TCGA/WTCCC.     
 
Next we sought to examine how well a PRS trained on GWAS summary statistics for GBM and non-GBM tumors 
predicts risk of IDH wildtype and IDH mutant tumors respectively in TCGA/WTCCC (Supplementary Table 5). For 
IDH wildtype tumors, PRS-CS trained on GBM GWAS results (OR=1.72, P=2.3´10-17, R2=0.0107) showed marked 
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improvement over PRS-CT (OR=1.51, P=4.2´10-11, R2=0.0063). For IDH mutant glioma, PRS-CS did not show 
improved performance over PRS-CT when trained using non-GBM GWAS results. The advantage of the genome-
wide PRS-CS approach became more pronounced when models were trained on the smaller molecular-based 
GWAS that yielded fewer GWAS significant variants (Figure 2, Supplementary Table 5). For IDH wildtype gliomas 
PRS-CS showed a larger effect size (OR=1.58, P=1.0´10-12) and a 28% increase in explained variance compared 
to PRS-CT (OR=1.51, P=4.0´10-10). The difference between the two approaches was slightly smaller for IDH mutant 
gliomas (PRS-CS: OR=1.85, P=2.5´10-26; PRS-CT: OR=1.81, P=2.5´10-24).  
 
Lastly, we estimated associations across percentiles of PRS to examine the shape of the risk gradient. Changes in 
risk were not monotonic with individuals above the 80th and 95th percentiles showing substantially elevated risk 
relative to those between the 40th and 60th percentiles (Figure 3, Supplementary Table 6). PRS-CS generally 
showed larger effect sizes than PRS-CT, especially for molecular subtypes of glioma (Supplementary Figure 1). 
Individuals above the 95th percentile of PRS-CS had a significantly higher risk of IDH wildtype glioma (OR=2.85, 
95% CI: 1.74-4.66) and IDH mutant glioma (OR=8.05, 95% Ci: 4.86-13.31) relative to those with average genetic 
predisposition.  
 
Using PRS to predict IDH status among glioma cases 

In addition to evaluating the ability of PRS to discriminate between glioma cases and cancer-free controls, we 
examined the potential of PRS to distinguish glioma cases with and without IDH mutations in TCGA (384 IDH 
mutant; 384 IDH wildtype). First, we evaluated risk scores trained on GWAS results stratified by histological subtype  
(Figure 4, Supplementary Table 7). Without demographic covariates, the non-GBM PRS (PRS-CS: AUC=0.691, 
95% CI: 0.653-0.726; PRS-CT: AUC=0.713, 95% CI: 0.679-0.750) showed improved subtype discrimination 
compared to the GBM PRS (PRS-CS: AUC=0.674, 95% CI: 0.636-0.711;  PRS-CT: AUC=0.632, 95% CI: 0.592-
0.669). Replacing GBM and non-GBM PRS with scores trained on IDH wildtype (PRS-CS: AUC=0.647; PRS-CT: 
AUC=0.630) and IDH mutant glioma (PRS-CS: AUC=0.714; PRS-CT: AUC=0.716) did not consistently increase 
classification accuracy.  
 
The low correlation between the GBM PRS and the non-GBM PRS (Pearson r=0.27) suggested that these scores 
might contribute orthogonal information. Among PRS based on histological subtypes alone, the combination non-
GBM and GBM PRS-CS achieved the best performance with an AUC of 0.758 (95% CI: 0.724-0.792). Similarly, 
combining PRS-CS for IDH wildtype and IDH mutant gliomas produced improved performance with an AUC of 
0.734 (95% CI: 0.699-0.770). Since there was no overlap in participants included in the training GWAS for histology-
based PRS (GBM and non-GBM) and molecular-based PRS (IDH wildtype and IDH mutant), we included both sets 
of scores in a single model. This approach achieved the best overall classification accuracy with an AUC of 0.771 
(95% CI: 0.737-0.803) for PRS-CS and 0.741 (95% CI: 0.708-0.774) for PRS-CT (Supplementary Table 7). 
Incorporating age and sex increased the PRS-CS AUC to 0.895 (95% CI: 0.872-0.918).  
 
Incorporating PRS to improve risk stratification 

Age-specific 5-year cumulative incidence trajectories diverged significantly between individuals with a high-risk 
PRS-CS profile (>80th  percentile) compared to those with low (<20th percentile) and intermediate (>20th to <80th 
percentile) PRS profiles (Figure 5, Supplementary Figure 2). At age 60, risk increased from 0.11% to 0.23% for 
the high risk PRS profile in males and from 0.07% to 0.14% in females (Supplementary Table 8). For GBM tumors, 
PRS-CS also produced distinct cumulative incidence trajectories, with 5-year risk increasing from 0.07% (average 
PRS) to 0.16% (high PRS) in 60-year-old males and from 0.04% to 0.08% in 60-year-old females. The degree of 
risk stratification provided by PRS-CS was lower for non-GBM tumors, with overlapping age-specific incidence 
trajectories.  
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We found large differences in the lifetime absolute risk of developing glioma across the genetic susceptibility 
distribution estimated using PRS-CS (Figure 6, Supplementary Table 9). In UKB, the lifetime risk of glioma 
increased from 0.46% (95% CI: 0.45-0.48%) for average-risk individuals in the 40-60th percentiles to 1.39% (95% 
CI: 1.25-1.55%) for the highest-risk individuals above the 95th percentile. The increase in risk was similar for GBM 
and non-GBM tumors. We also observed significant differences in the lifetime risk of IDH wildtype (0.29% vs. 0.76%) 
and IDH mutant gliomas (0.17% vs. 0.63%) between the average-risk and the highest-risk individuals.  
 
DISCUSSION 

In this study we developed a novel PRS for glioma and its molecular subtypes using a genome-wide Bayesian 
approach with a custom reference panel designed to robustly tag known glioma risk loci. Previous PRS efforts for 
glioma have implemented variations of the standard clumping and thresholding approach, constructing risk scores 
based on a limited number of variants that reach genome-wide significance thresholds9,10. Our findings suggest that 
PRS approaches that model the joint effects of correlated variants across the genome may capture the genetic 
architecture of glioma more comprehensively than approaches that select independent risk variants from GWAS-
identified risk loci. These results are consistent with observations for several complex traits, including other 
cancers13–15. We found that PRS-CS had improved prediction accuracy in terms of R2 and AUC, and higher effect 
sizes compared to PRS-CT for glioma overall, GBM, IDH mutant tumors and IDH wildtype tumors. However, PRS-
CS did not show an advantage for non-GBM gliomas, possibly due to greater within-subtype heterogeneity which 
may limit the ability of PRS-CS to accuracy identify truly non-zero signals21.  
 
We also found that the genome-wide PRS approach was highly effective at classifying gliomas according to IDH 
mutation status (AUC=0.895). Interestingly, PRS models trained on IDH wildtype and IDH mutant GWAS results 
did not outperform PRS developed based on GWAS stratified by histological labels alone. However, the GBM and 
non-GBM PRS were trained on a substantially larger GWAS than the molecular-based PRS. Since most GBM and 
non-GBM cases were likely IDH wildtype and IDH mutant, respectively, the larger sample size may compensate for 
some misclassification when using case definitions based on histology alone to predict IDH mutation status. This 
finding should be interpreted with caution since a high degree of phenotype misclassification can lead to dilution 
and decrease PRS accuracy27. Increasing GWAS sample sizes for gliomas defined using contemporary molecular 
classifications thus remains important for improving the accuracy of genetic prediction models. Importantly, we also 
showed that combining risk scores developed using histological and molecular GWAS data is a viable strategy that 
significantly improves discrimination of IDH mutation status.  
 
In addition to disease and subtype classification, we also evaluated the potential of PRS to refine risk stratification. 
We found that the lifetime absolute risk for individuals with the highest inherited genetic risk was significantly greater 
than that for individuals with average genetic risk profiles. The low lifetime absolute risk of glioma even in individuals 
with the highest genetic risk, however, presents a barrier to the use of PRS for population-level disease screening 
since disease risk for most screened individuals would be too low to warrant an intervention. In the first study of 
genetic scores for glioma subtypes, Eckel-Passow9 suggests that PRS could instead be used in conjunction with 
diagnostic imaging to characterize suspicious brain lesions. For example, a glioma risk score could help distinguish 
among high-grade glioma, solitary metastases28,29, meningiomas29, primary central nervous system lymphomas28 
and tumefactive demyelinating lesions30 which often display similar imaging features but require substantially 
different management. Since the differentiation of brain lesions remains a challenge, risk scores that identify 
individuals with a genetic predisposition to glioma could provide useful clinical context for the interpretation of 
indeterminate imaging findings and help refine the differential diagnosis.  
 
Molecular markers, together with tumor morphology, have been shown to accurately predict prognosis31–33 and 
treatment response34. Since establishing a molecular diagnosis early is important for prediction of tumor behavior 
and clinical management35,36, tumor molecular features such as IDH mutation have been explored as potential 
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targets for cancer therapeutics. Vorasidenib, an inhibitor of mutant IDH1 and IDH2 enzymes, was recently shown 
in a phase 3 trial to improve progression-free survival and delay the time to next intervention in patients with grade 
2 IDH-mutant glioma35, becoming the first therapy targeted to a specific molecular subtype. Currently, the 
classification of brain tumors is based on immunohistochemical and genomic sequence analysis of tumor 
specimens, which often delays the evaluation of patient prognosis and treatment options until after surgery. Given 
the invasiveness of tumor resection and the risks of delaying treatment until after surgery, research has been 
directed at the use of non-invasive procedures such as imaging37–39 and genotyping9 to classify glial tumors prior to 
surgery. Our study provides further support for the potential use of germline genetic PRS, which can be easily 
calculated, to help predict IDH mutation status in gliomas. Importantly, our results add to the collection of non-
invasive tools that could be used to help select patients suitable for neoadjuvant therapy with IDH inhibitors35, assist 
in preoperative planning of extent of resection40 and accurately delineate IDH wildtype non-enhancing tumors which 
often display characteristics of low-grade tumors on imaging but require aggressive treatment.  
 
In evaluating this study, several limitations should be acknowledged. Our TCGA/WTCCC validation dataset used 
external controls, which may introduce bias and inflate type I error due to batch effects and inadequate data 
harmonization. We attempted to limit the influence of technical artifacts by selecting WTCCC controls that were 
genotyped using the same array as TCGA cases as well as conducting systematic genotype harmonization and 
rigorous pre- and post-imputation quality control. We also used the UK Biobank, a population-based cohort, as an 
additional validation dataset. Although the UK Biobank lacked information on molecular subtypes, we observed 
consistent and robust results for PRS analyses of glioma overall and histological subtypes. Additionally, prediction 
performance for non-GBM tumors may have been limited by differences in the relative proportions of different 
histopathologic lineages comprising non-GBM between the GWAS training and PRS testing datasets. As larger 
studies comprised of tumors specimens with more refined molecular classification become available, the accuracy 
and utility of PRS models for glioma are expected to improve. Finally, our study was limited to participants of 
European ancestry and the developed PRS models are expected to have lower accuracy in populations with diverse 
and predominantly non-European ancestral backgrounds41,42. Future research efforts should prioritize recruitment 
of more diverse patients populations to help elucidate the genetic underpinnings of glioma and increase the clinical 
utility of genetic prediction models. 
 
This work has several important strengths. Our study develops a novel PRS model for glioma and its subtypes that 
may better capture the underlying genetic architecture of glioma than previous models that were limited to a small 
number of genetic markers. Each PRS model is trained using the largest available collection of glioma GWAS data 
across glioma subtypes and tested in two independent cohorts. Furthermore, we introduce an expanded linkage 
disequilibrium reference panel for PRS-CS that is designed to more comprehensively characterize known glioma 
risk loci across the genome. The development of custom reference panels may be particularly advantageous for 
PRS modelling of other complex traits with similarly sparse genetic architecture that is not well characterized by 
commonly used reference panels. Finally, we use our novel PRS to provide a comprehensive description of the 
relative influence of genetic risk factors on the lifetime risk of developing glioma. Further improvements in risk 
stratification could be achieved by incorporating additional non-genetic risk factors such as family history and 
varicella-zoster virus (VZV) antibody seropositivity43,44 into integrated glioma risk models. 
 
In summary, we found that PRS for glioma has predictive power for both general risk modeling and subtype 
delineation. Across histological and molecular subtypes of glioma, the genome-wide approach to PRS modeling 
consistently showed improved risk prediction, risk stratification and subtype classification.  
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Figure 1: Overview of the study design. 
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Figure 2: Prediction accuracy of PRS-CT and PRS-CS in the UK Biobank and TCGA/WTCCC datasets across 
glioma subtypes. (A-B) Prediction accuracy, measured as variance explained (R2) on the liability scale, for PRS 
trained using discovery GWAS summary statistics specific to target phenotype (histological: all glioma, GBM, non-
GBM; molecular: IDH wildtype, IDH mutant). Each bar represents one testing cohort with the shade of the bar 
representing the testing dataset (light=UK Biobank; dark=TCGA/WTCCC). (C-D) The odds ratio (OR) per standard 
deviation (SD) unit increase in PRS for each glioma subtype in the UK Biobank and TCGA/WTCCC testing datasets. 
Each dot corresponds to one testing cohort with the shape of the dot representing the PRS construction method 
(circle=PRS-CT; triangle=PRS-CS) and the shade of the dot representing the testing dataset (light=UK Biobank; 
dark=TCGA/WTCCC). The error bars represent the 95% confidence intervals (CIs). The R2, ORs and 95% CIs for 
each subtype, PRS construction method and testing cohort are provided in Supplementary Tables 3-5. 
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Figure 3: Relative glioma risk by PRS category stratified by histological subtype. (A) All glioma. (B) GBM 
subtype. (C) Non-GBM subtype. The x axis indicates the percentiles of the PRS distribution (0-40%, 40-60%, 60-
80%, 80-100%, 95-100%). The y axis indicates odds ratios (ORs) with error bars representing 95% confidence 
intervals (CIs) for each PRS category relative to the middle category (40-60%) of risk scores. The results are 
stratified by testing dataset (light=UK Biobank; dark=TCGA/WTCCC) and PRS method (circle=PRS-CT; 
triangle=PRS-CS). Each PRS (colored shape) is trained using discovery GWAS summary statistics that correspond 
to the target phenotype. 
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Figure 4: Comparison of PRS performance for logistic regression models that classify TCGA cases 
according to IDH mutation status. Classification accuracy of TCGA cases (384 IDH mutant; 384 IDH wildtype) 
for PRS-CT and PRS-CS using PRS trained on discovery GWAS summary statistics with histological (GBM or non-
GBM) or molecular profiling (IDH mutant and IDH wildtype). Each bar represents the area under the receiver 
operating characteristic curve (AUC) and 95% confidence interval (CI) (2,000 bootstraps) for a single logistic 
regression model adjusted for the first 10 genetic ancestry principal components with the shade of the bar 
representing the PRS construction method (light=PRS-CT; dark=PRS-CS). The x axis indicates the PRS included 
in each model (single: GBM [purple], non-GBM [green], IDH wildtype [red], IDH mutant [orange]; multiple: GBM + 
non-GBM [blue], IDH mutant + IDH wildtype [yellow], all=GBM + non-GBM + IDH mutant + IDH wildtype [grey]). 
Results with additional covariates are provided in Supplementary Table 7. 
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Figure 5: Estimated 5-year cumulative incidence as a function of age stratified by percentiles of the PRS-
CS distribution for a typical individual of European ancestry in UK Biobank. Low PRS corresponds to below 
the 20th percentile, average PRS is defined as between the 20th and 80th percentiles and high PRS includes 
individuals above the 80th percentile of the normalized PRS-CS distribution. Each PRS-CS is trained on discovery 
GWAS summary statistics corresponding to the target phenotype (all glioma, GBM and non-GBM). The shaded 
areas represent 95% confidence intervals. 
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Figure 6: Lifetime absolute risks for each glioma subtype by PRS category. (A) Histological subtypes (all 
glioma, GBM and non-GBM). (B) Molecular subtypes (IDH wildtype and IDH mutant). The x axis indicates the PRS 
percentile, and the y axis is the lifetime absolute risk with error bars for the 95% confidence intervals (Cis). Each 
PRS (colored dots) is trained on discovery GWAS summary statistics that correspond to the target phenotype 
(labeled grey bar) using PRS-CS with the shading of the dots representing the testing cohort (light=UK Biobank; 
dark=TCGA/WTCCC). 
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