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Abstract
Idiopathic psychosis shows considerable biological heterogeneity across cases. B-SNIP used psychosis-
relevant biomarkers to identity psychosis Biotypes, which will aid etiological and targeted treatment
investigations. Psychosis probands from the B-SNIP consortium (n = 1907), their �rst-degree biological
relatives (n = 705), and healthy participants (n = 895) completed a biomarker battery composed of
cognition, saccades, and auditory EEG measurements. ERP quanti�cations were substantially modi�ed
from previous iterations of this approach. Multivariate integration reduced multiple biomarker outcomes
to 11 “bio-factors”. Twenty-four different approaches indicated bio-factor data among probands were
best distributed as three subgroups. Numerical taxonomy with k-means constructed psychosis Biotypes,
and rand indices evaluated consistency of Biotype assignments. Psychosis subgroups, their non-
psychotic �rst-degree relatives, and healthy individuals were compared across bio-factors. The three
psychosis Biotypes differed signi�cantly on all 11 bio-factors, especially prominent for general cognition,
antisaccades, ERP magnitude, and intrinsic neural activity. Rand indices showed excellent consistency of
clustering membership when samples included at least 1100 subjects. Canonical discriminant analysis
described composite bio-factors that simpli�ed group comparisons and captured neural dysregulation,
neural vigor, and stimulus salience variates. Neural dysregulation captured Biotype-2, low neural vigor
captured Biotype-1, and deviations of stimulus salience captured Biotype-3. First-degree relatives showed
similar patterns as their Biotyped proband relatives on general cognition, antisaccades, ERP magnitudes,
and intrinsic brain activity. Results extend previous efforts by the B-SNIP consortium to characterize
biologically distinct psychosis Biotypes. They also show that at least 1100 observations are necessary to
achieve consistent outcomes. First-degree relative data implicate speci�c bio-factor deviations to the
subtype of their proband and may inform studies of genetic risk.

Introduction
In psychosis, unique physiology and pathology aid diagnosis and promote targeting the most effective
treatments to the needs of individual patients [1–3]. Currently, there is substantial neurobiological
heterogeneity within and overlap between schizophrenia, schizoaffective disorder, and bipolar disorder
with psychosis, the most prominent of the idiopathic psychoses. Since the inception of the of the Bipolar-
Schizophrenia Network for Intermediate Phenotypes [B-SNIP; 4, 5, 6], we have aimed to improve the
standard of care by identifying neurobiological features common across and unique to each of the
prominent psychosis diagnoses.

To achieve these goals, we have used three characteristic approaches: (i) Collect su�ciently large “trans-
diagnostic” samples across diagnoses to capture clinical and neurobiological heterogeneity; (ii) quantify
biological and clinical features at multiple levels of analysis with an emphasis on capturing cognitive and
physiological correlates of psychosis; and (iii) integrate over biomarkers that index a single construct
(e.g., cognition, behavioral inhibition, auditory sensory registration) because no single measure
adequately captures the underlying brain function. Even using large samples, multiple and multi-level
biomarkers, and considering biomarkers both individually and as integrated statistical constructs, we
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found no obvious mapping of neurobiological features to schizophrenia, schizoaffective disorder, or
bipolar disorder with psychosis at a clinically useful level [7, 8].

Following this result, B-SNIP modi�ed the target to idiopathic psychosis generally. We modi�ed our
approach to probe whether there are similar subgroups within the larger trans-diagnostic psychosis
sample. The �rst iteration of this program [B-SNIP1; 7] used numerical taxonomy with integrated
behavioral, cognitive, and electroencephalography (EEG) biomarkers (called bio-factors) and identi�ed
three “psychosis Biotypes.” A second data collection and analysis effort (B-SNIP2; Clementz et al., 2022)
re-quanti�ed biomarker data from both B-SNIP1 and B-SNIP2 using updated and improved procedures.
The outcome (i) replicated all steps in the biomarker and bio-factor quanti�cation process, (ii) replicated
psychosis Biotypes, (iii) cross-validated the subgrouping approach between B-SNIP1 and B-SNIP2, and
(iv) construct validated Biotypes’ de�ning physiological features. These outcomes inspired testing
whether B-SNIP-derived psychosis subgroups facilitate treatment targeting [9] and three major projects
are currently ongoing. Using data from 3507 individuals, this paper aims to further improve and verify the
practical clinical utility and robustness of this laboratory-centered approach to stratifying idiopathic
psychosis cases.

First, a full B-SNIP-type laboratory evaluation is impractical for many settings. Previous psychosis
Biotype algorithms combined information from multiple laboratory tests (e.g., multiple EEG paradigms
estimated a single de�ning feature of Biotypes such as event-related potential [ERP] magnitude). To
develop an e�cient diagnostic procedure, however, each assessment must be separately evaluated to
determine their individual utility and unique contributions. This paper accomplishes that goal.

Second, B-SNIP previously screened biomarkers for usefulness by applying statistical comparisons
between DSM psychosis and healthy groups because there was no other generally accepted approach.
That strategy missed informative biomarkers [e.g., 10]. In this paper, we remove that requirement, so the
biomarker selection process is agnostic to clinical diagnoses. We also expanded the range of
physiological assessments to include a direct measure of intrinsic neural activity [11], an important
feature for differentiating psychosis cases [8, 12, 13].

Third, a drawback of numerical taxonomy is that it yields solutions regardless of whether subgroups are
present and whether the outcomes are consistent. Previously, we estimated the number of subgroups
using the gap statistic [14] and the preclustering step of SPSS’s TwoStep cluster analysis algorithm. In
this paper, we expand to 24 such estimators of cluster number. In addition, for the best estimate number
of clusters, we evaluate the consistency of assigning a subject to their modal group as a function of
sample size used to derive the clustering solution. These analyses probe the robustness of the full
sample solution and estimate the number of cases needed to construct a consistent biomarker-based
diagnostic system.

Fourth, most psychosis cases in biomarker studies are medicated. Additionally, most have been
chronically ill and chronically medicated. These factors create uncertainty whether biomarker differences
between groups are related to trait illness, medications, or other effects of living with and adapting to a
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chronic condition. One way to address such concerns is to study the biological relatives without
psychosis of the affected individuals. Medication and chronic condition effects have less explanatory
power if the non-psychotic �rst-degree relatives show the same patterns of biomarker deviations as their
ill relatives. In this paper, we show the responses across biomarkers in our large sample of �rst-degree
relatives using our updated biomarker quanti�cation procedures.

METHODS
In the current B-SNIP database, there are 1907 psychosis cases, 705 nonpsychotic �rst-degree biological
relatives of those cases, and 895 healthy persons recruited from the community. This is an increase of
479 psychosis and 423 healthy subjects over our previous numerical taxonomy paper [8], plus a re-
analysis of biological relative data originally published (Clementz et al.[7]). The procedures for data
collection and pre-processing are the same as Clementz et al. [8], but with updated and modi�ed �nal
quanti�cation approaches.

B-SNIP recruitment sites were in Athens GA (University of Georgia and Augusta University Medical College
of Georgia), Baltimore MD (Maryland Psychiatric Research Center), Boston MA (Beth Israel Deaconess
Medical Center), Chicago IL (University of Illinois-Chicago and University of Chicago), Dallas TX (UT
Southwestern Medical Center), Detroit MI (Wayne State University), and Hartford CT (Institute of Living).
All recruitments, interviews, and laboratory data collections were completed at those locations. The
Institutional Review Board at participating institutions approved the projects; participants provided
informed consent prior to involvement.

Cases were drawn from academic and community mental health centers, small towns with large
universities, large cities, inner cities, rural regions, a�uent and less a�uent areas. B-SNIP recruited a
research sample, not an epidemiological sample; nonetheless, the large study numbers and broad
geographical recruitment foster generalizability of the outcomes across the range of early onset through
midcourse to chronic idiopathic psychosis. See Table 1 for demographic information of probands and
healthy comparison subjects. See table S3 for demographic information of �rst-degree relatives.
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Table 1
Demographic Characteristics of Biotypes

Characteristic Biotype-1

n = 630

Biotype-2

n = 631

Biotype-3

n = 646

Healthy

n = 895

Mean Age (SD) 38 (13) 39 (12) 36 (12) 35 (12)

Sex        

Male 57% 44% 51% 43%

Female 43% 56% 49% 57%

Ethnicity        

Not Hispanic 86% 88% 90% 88%

Hispanic 14% 12% 10% 12%

Race        

Black 50% 42% 24% 29%

American Indian 0.8% 0.2% 0.3% 0.2%

Asian 3.4% 1.9% 3.6% 8.3%

White 39% 47% 64% 56%

Multiracial 4.6% 5.6% 5.0% 3.6%

Hawaiian/Paci�c Islander 0% 0% 0% 0.2%

Other 2.6% 2.9% 3.0% 2.6%

Global Functioning (SD) 52 (12) 51 (12) 56 (14) 85 (7)

Mean Proband SES (SD) 50 (14) 49 (14) 43 (15) 35 (14)

Mean Family SES (SD) 44 (16) 44 (16) 38 (16) 37 (15)

Clinical Evaluations
B-SNIP recruitment details and approaches are available in Tamminga et al. [6]. Brie�y, clinically stable
outpatients were administered the Structured Clinical Interview for DSM diagnosis [DSM-IV-TR; 15].
Psychosis cases were limited to schizophrenia (n = 783), schizoaffective disorder (n = 582), and bipolar I
disorder with psychosis (n = 542) because these are the diagnoses with the highest prevalence in most
settings. Cases were rated on the Birchwood Social Functioning [SFS; 16], Montgomery-Asberg
Depression Rating [MADRS; 17], Positive and Negative Syndrome [PANSS; 18, 19], and Young Mania
Rating [YMRS; 20] scales. Healthy persons were free of lifetime psychosis syndromes, recurrent mood
syndromes, and a history of psychosis or bipolar disorders in their �rst-degree relatives. Table S1 shows
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the clinical information by group. Table S2 provides a summary of medication information. We previously
demonstrated that medication effects do not signi�cantly account for group differences on biomarker
features [see 8].

Biomarker Panel
Participants completed comprehensive laboratory evaluations within a few weeks of their clinical
assessments. Papers on the individual laboratory paradigms provide extensive data collection and
analysis details [10, 21–29]. Details of biomarker quanti�cation and numerical taxonomy procedures are
in Clementz et al. [8].

The laboratory measures used for Biotypes creation are traditional endophenotypes [30]. Each paradigm
has a substantial literature supporting its use as a biomarker of psychosis. Paradigms include (i) the
Brief Assessment of Cognition in Schizophrenia [BACS; 31, 32] to test general cognitive performance, (ii)
pro- and anti-saccades [saccades; 33, 34, 35] to assess speed of visual orienting, goal maintenance, and
inhibitory control under perceptual con�ict, and (iii) a stop signal task [SST; 36] to assess adequacy of
adapting speeded motor responses to situations requiring inhibitory control [22, 23].

There are also three assessments of brain physiology as measured with dense-array
electroencephalography (EEG). Event-related brain potentials (ERP) were measured with (iv) auditory
paired stimuli and (v) auditory oddball paradigms [37–40] to assess preparation for and recovery from
sensory activations, neural responses to stimulus salience and relevance, context updating in working
memory, and nonspeci�c (or intrinsic) brain activity during performance (i.e., brain activity not time-locked
to stimulus processing). The 9–10 second inter-pair interval of the paired stimuli paradigm was also
included as a direct measure of (vi) intrinsic EEG activity, or IEA [i.e., background brain activity not
associated with ongoing stimulus processing requirements; 10].

Data Reduction and Creation of Bio-Factors
Within each laboratory measurement domain (BACS, saccades, SST, paired stimuli ERP, oddball ERP,
IEA/EEG), principal component analysis (PCA; Covariance Matrix, Promax Rotation, Kaiser Normalization,
Kappa = 3) reduced multiple variables within that domain to an e�cient and smaller variable set. This
was done for two main reasons. First, for estimating the true value on any theoretical construct, multiple
independent measures are better than any single variable. For example, neural response to stimulus
salience is better estimated by many ERP measures than by a single voltage from a single sensor at one
time point. Second, reducing the redundancy of measurements increases the accuracy of numerical
taxonomy [41].

All psychosis and healthy participants were included in PCAs using standardized variables. Age and sex-
adjusted biomarker data were used, if such effects were statistically signi�cant, based on the procedure
described in Dukart et al. [42], and previously described in Clementz et al. [8]. This approach produced
variables integrated over multiple biomarker measurements, which were the units of analysis for
numerical taxonomy. We call these PCA variates “bio-factors” since they capture multiple facets of neuro-
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cognition and physiological responses and labelled them based on their most characteristic biomarker
associations. Similar subcomponents of these procedures proved to be stable and replicated with high
accuracy in two independent samples, each of which contained > 700 psychosis and > 200 healthy
participants [8]. Nonpsychotic �rst-degree relatives’ bio-factor scores were created by applying the PCA
coe�cients obtained from psychosis and healthy persons.

BACS. The BACS subtests, covering verbal abilities, processing speed, reasoning, problem solving, and
working memory, were scored according to standard procedures. PCA of the BACS subtests identi�ed one
component. Thus, there is one BACS bio-factor.

Saccades. Participants completed three pro-saccade (gap, synchronous, and overlap) and one overlap
anti-saccade condition [26, 29, 34, 43]. Trials were scored for (i) direction (to evaluate correct or error
response) and (ii) onset latency. Pro-saccade latencies, anti-saccade latencies, and proportion of correct
anti-saccades were included in the PCA. The scree identi�ed two bio-factors called “latency” and
“antisaccade.”

Stop Signal Task. A baseline task of go-only trials, with a visual stimulus presented pseudo-randomly to
the left or right of central �xation, assessed baseline reaction time. For stop-signal trials, a go cue
appeared to the left or right. On 40% of trials, a stop signal was presented at central �xation [22, 23].
Participants were instructed to respond quickly and accurately to the go cue unless they encountered the
stop signal. Strategic slowing (difference between response latencies on baseline go trials and go trials
during stop signal performance) and proportion of stop signal errors were included in the PCA. The scree
identi�ed one SST bio-factor.

Auditory ERP tasks. For the paired-stimuli task, participants passively listened through headphones to at
least 120 broadband auditory click pairs with 500 msec inter-click interval occurring every 9.5 sec on
average (9–10 sec inter-pair interval). For the oddball task, participants listened through headphones to
567 standard (1000 Hz) and 100 target (1500 Hz) tones presented in pseudorandom order (1300 msec
inter-trial interval) and pressed a button when a target was detected (to maintain vigilance).

Data from trials free of artifacts (± 75 mV) were averaged to create 64-sensor ERPs. In addition to
analyzing the grand-averaged ERP in the time domain, a frequency-wise PCA of evoked power [21, 24]
empirically de�ned low, beta, and gamma frequency bands. The combination of temporal and frequency
information over all sensors and time points maximizes the use of spatial, temporal, and oscillatory
information. A spatial PCA [21, 24, 44, 45] on the grand-averaged ERP and each frequency band yielded
four waveforms (“virtual sensors”). These virtual sensors were analyzed instead of separate sensors,
e�ciently summarizing the spatial distributions, minimizing the number of statistical comparisons, and
maximizing the signal/noise ratio of the EEG/ERP data [44] (See �gure S1 for EEG response across time
for each stimulus type). For the paired-stimuli task, the PCA scree identi�ed three paired-stimuli bio-
factors (�gure S2). For the oddball task, the PCA scree identi�ed three oddball bio-factors (�gure S3).
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Intrinsic EEG Activity (IEA). Data derived from the 9–10 sec inter-pair interval of the paired-stimuli task
[10]. No stimuli were presented during this period. EEG data were pre-processed following methods
described above and in Thomas et al [10]. Data were transformed into the frequency domain, with
frequency bands empirically determined using PCA [10], resulting in four primary bands: delta/theta,
alpha, beta, and gamma. The PCA scree identi�ed one IEA bio-factor.

Data Analyses

Clustering:
The 11 bio-factors were used to construct psychosis subgroups via k-means clustering [8]. Only
psychosis cases were used at this stage since the goal was to determine how to meaningfully parse bio-
factor variance within psychosis. The number of clusters given the data were determined by the gap
statistic [14] and the 23 estimators in the NBclust package in R [46].

Clustering Membership Consistency
Bootstrapped samples of psychosis cases were selected at sizes of 500 to 1800 cases, in 100 case
increments, with 1000 pseudo-replicates for each sample size. Each of the clustering solutions were then
compared to the raw total sample solution using unadjusted and adjusted rand indices for the least and
most conservative estimates of cluster membership consistency.

Group Differences:
The 11 bio-factors were compared between-groups using analysis of variance, with Tukey’s method for
post-hoc evaluations (HSD or Tukey-Kramer where appropriate). For statistical signi�cance in omnibus
tests, the Holm-Bonferroni procedure [47] was used to maintain the family-wise alpha at .05. For �rst-
degree relatives’ comparisons, degrees of freedom were adjusted based on the number of unique families
included in the analysis since some families in the study had multiple members.

RESULTS

Bio-factors by Psychosis and Healthy Groups
The means, standard deviations, and effect sizes for the total psychosis versus healthy groups are
presented in Table 2. Of the 11 bio-factors, those in the cognition set (BACS, antisaccade, SST)
differentiated the best (F’s > 90.7, p’s < .001, Glass ∆’s of -1.04, -1.03, and − .45). The ERP response
magnitude bio-factors also signi�cantly differentiated groups (F’s > 33.6, p’s < .001), but with considerably
less separation (Glass ∆’s of -0.35 and − 0.25); the same was true of the intrinsic activity bio-factors (F’s 
> 12.3, p’s < .001, Glass ∆’s of 0.19, 0.26, and 0.16). The bio-factors in the stimulus salience set were more
modestly differentiating, with the latency bio-factor failing to separate psychosis and healthy groups (F < 
1, p > .770, Glass ∆ = − .01). The other two stimulus salience bio-factors, P300 complex and paired-stimuli
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S2, showed signi�cant effects (F’s of 6.2 and 13.8, p’s of .013 and < .001) of small group differentiations
(Glass ∆’s of 0.09 and − 0.16).

Table 2
Standard Score Mean (SD) of Bio-factors by Psychosis and Healthy

Bio-Factors psychosis healthy test Result GLASS DELTA Effect size

BACS -0.25 (0.97) 0.58 (0.80) P < H -1.03

Anti-saccade -0.23 (1.02) 0.51 (0.73) P < H -1.02

SST -0.15 (0.99) 0.28 (0.96) P < H -0.45

PS ERPs -0.08 (1.01) 0.16 (0.95) P < H -0.26

OB erps -0.11 (0.98) 0.23 (0.98) P < H -0.35

intrinsic EEG 0.06 (1.03) -0.10 (0.84) P > H 0.19

pS ongoing hf 0.08 (1.03) -0.16 (0.91) P > H 0.26

ob ongoing hf 0.05 (0.97) -0.09 (0.88) P > H 0.16

frontal P3 complex -0.03 (0.97) 0.07 (1.04) P < H -0.10

PS S2 -0.05 (1.00) 0.11 (0.97) P < H -0.16

Latency 0.00 (1.06) 0.01 (0.86) P = H -0.02

Number of Clusters
These analyses addressed the best estimate of the number of clusters given individual participant scores
across the 11 bio-factors. Gap statistic �gures are presented in �gure S4, and results from the 23 cluster
number estimators of the NBclust packag are presented in table S4. Both the Gap statistic and NBclust
majority rule indicate the most parsimonious solution is three clusters. Therefore, k-means was obtained
requesting a three-cluster solution; the algorithm achieved cluster stability within 43 iterations [see 8]. The
k-means outcome resulted in ~ 630 observations per cluster (psychosis Biotypes) as described in Table 1
(BT1 n = 630, BT2 n = 631, BT3 n = 646).

Consistency of Cluster Membership Assignment
Figure 1 shows two consistency estimates for k-means membership using a sub-sampling approach
(1000 iterations at each subsample size from 500 to 1800 probands). The �rst rand index (upper red line)
shows consistency with the full model solution without adjusting for chance assignment. This outcome
shows remarkable consistency of > 95% agreement for samples of greater than 1400 observations,
excellent agreement of > 90% for sample sizes of greater than 900, and still good agreement > 82% for
sample sizes of at least 500. The second rand index (lower black line) shows consistency adjusting for
the probability of a case being assigned by chance to one of the three groups. This most conservative
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metric shows remarkable agreement of > 95% for samples of greater than 1600, excellent agreement of > 
90% for samples of greater than 1500, and good agreement of > 80% for samples of greater than 1000.

Bio-Factors by B-SNIP Psychosis Biotypes
Figure 2 (left plot) shows bio-factors plotted by group membership. All bio-factors differentiate psychosis
Biotypes (Holm-Bonferroni adjusted signi�cance, F’s = 20.21 to 703.81, p’s < .001). This result is not
surprising because numerical taxonomy used these bio-factors to create maximally homogeneous and
distinct groups. When adding the healthy group to the models, all comparisons remained signi�cant and
of similarly large magnitude (Holm-Bonferroni adjusted signi�cance, F’s = 14.96 to 442.78, p’s < .001). The
differences in bio-factor pattern for psychosis groups in comparison to the healthy group is highly
consistent, but more robust than previous reports [8]. Consequently, we maintained the same
designations of BT1 (low cognition and low neural response magnitudes), BT2 (low cognition, poor
inhibition, accentuated intrinsic brain activity), and BT3 (reasonably normal across most bio-factors but
mildly deviant on measures of stimulus salience).

Biotypes have unique patterns across the 11 bio-factors. They are also distinguished from healthy
persons on these variables. To ease visualization of unique group bio-factor patterns, we used canonical
discriminant analysis (CDA) with the criterion of group membership (BT1, BT2, BT3, healthy) and the 11
bio-factors as predictors. This is a simpli�cation of group differentiations in the 11-variable space of the
bio-factors. The CDA yielded three signi�cant variates (chi-squares > 110.7, p’s < .001; canonical
correlations of .69, .64, and .26, p’s < .001; see Fig. 3 and table S5).

CDA Variate 1, what we termed “neural dysregulation,” has the most signi�cant associations with
antisaccades (r = .60), BACS (r = .56), and ongoing EEG high frequency activities (oddball r = .48, paired-
stimuli r = .47). Lower scores indicate a trio of poor cognitive performance and behavioral inhibition
combined with accentuated background brain activity during stimulus processing. Neural dysregulation
best distinguishes BT2 from the other groups, with post-hoc tests showing a pattern of BT2 < BT1 < (BT3 
= HC). CDA Variate 2, termed “neural vigor,” best separates BT1 from the other groups and is associated
with a reduced ERP responses (paired-stimuli r = .69, oddball r = .72) and reduced intrinsic EEG activity
(IEA r = .70). Lower scores indicate generally reduced neural activity. Post-hoc comparisons show a
pattern of BT1 < (HC = BT2) < (BT2 = BT3). CDA Variate 3, termed “stimulus salience,” best separates BT3
from the other groups and is associated with frontal P3 complex responses (r = .61), response to the
second stimulus of the paired-stimuli paradigm (r = − .57), and prosaccade latencies (r = − .34). Lower
scores indicate altered sensitivity to stimulus salience in comparison to healthy persons. Post-hoc
comparisons show a pattern of BT3 < (BT2 = BT1) < H.

First-Degree Relatives by Proband Cluster Membership
Figure 2 (right plot) shows bio-factors plotted for the non-psychotic �rst-degree relatives by the proband
to whom they are related. The BACS, antisaccade, paired stimuli and oddball ERPs, and IEA bio-factors
differentiate the relative groups (Holm-Bonferroni adjusted signi�cance, F’s > 4.1, p’s < .007). The relatives’
patterns of deviation on those bio-factors are like the patterns among their probands. The BACS [(BT1 = 
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BT2) < H < BT3; effect sizes for relatives versus healthy of BT1 = -0.33, BT2 = -0.28, and BT3 = 0.26] and
antisaccade bio-factors [(BT1 = BT2) < (H = BT3); effects sizes of BT1 = -0.30; BT2 = -0.44, and BT3 = 
0.15] show similar patterns of deviations, except that BT3 relatives had the best general cognitive
performance, even in comparison to healthy persons. The patterns for the ERP magnitude measures
recapitulate the probands’ patterns with BT1 relatives having lower ERP amplitudes than the other three
groups combined (paired stimuli ERP effect sizes of BT1 = -0.29; BT2 = 0.01, and BT3 = 0.01; oddball ERP
effect sizes of BT1 = -0.47; BT2 = -0.08, and BT3 = -0.08). Likewise, the IEA bio-factor shows the same
pattern as the ERP magnitude measures, with BT1 relatives being lower than the other three groups
(effect sizes of BT1 = -0.63; BT2 = -0.16, and BT3 = -0.08).

DISCUSSION
The B-SNIP consortium reported and replicated [8] that DSM schizophrenia, schizoaffective disorder, and
bipolar disorder with psychosis are not obviously neurobiologically distinctive, a conclusion also
supported by large-scale genetics projects [48]. Such realities muddy efforts to link a speci�c clinical
feature or syndrome to identify a pathology responsive to a speci�c intervention. Guze [1] believed
standardized clinical evaluations in psychiatry are useful for detecting speci�c disease entities, but only
“up to a point.” As the “all psychosis” versus “healthy” comparisons reveal, much is hidden by imprecise
groupings. For psychosis, including neuroscience in diagnostic de�nitions could be bene�cial since the
brain is the most affected organ. B-SNIP implemented laboratory assessments to stratify idiopathic
psychosis cases regardless of their speci�c clinical diagnoses [7, 8]. We demonstrated that these
psychosis Biotypes have unique patterns of clinical features that can assist laboratory diagnosis [49].

This paper modi�es and extends our previous efforts. We improved the e�ciency and reinforced the
robustness of the B-SNIP psychosis Biotypes algorithm and identi�cation in three ways:

1. Previous iterations required multiple laboratory paradigms to assess a single construct (e.g., the
n100 response in an auditory ERP). We changed to using paradigms individually. This approach (i)
provides internal replication of effects common to multiple paradigms, and (ii) aides identi�cation of
e�cient tests for distinguishing psychosis subgroups. We con�rm that auditory paired-stimuli and
oddball ERPs have the same patterns across psychosis Biotypes. Three measures of background or
intrinsic brain activity (IEA, and ongoing activity during the paired-stimuli and oddball tasks) also
showed the same Biotypes differentiations. A signi�cant project that we have worked on is to
develop the “ADEPT” algorithm which aims to evaluate the diagnostic utility of these bio-factors
individually [49]. This could help prioritize the order measures should be collected and would help
with future clinical implementation. These similar laboratory measures, may track differently across
interventions, thus providing unique treatment targets and outcome assessments.

2. In previous iterations, biomarker selection was tied to statistical differences between healthy and
DSM diagnostic groups. Here, biomarker inclusion is agnostic to group membership and is instead
based on characteristics of the measures themselves (e.g., the prototypical patterns of EEG/ERP
responses to auditory oddball stimuli). We expanded the physiological assessments to include a
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direct measure of intrinsic neural activity (IEA). This approach yielded two additional bio-factors (IEA
and separate measures of ongoing activity from the paired stimuli and oddball paradigms),
rearranged what is measured by individual bio-factors (i.e., paired-stimuli and oddball ERPs
disentangled, frontal P3 ERP uniquely quanti�ed), and enhanced separations between psychosis
Biotypes. We also extracted three components from the 11 bio-factors that uniquely identi�ed the
most characteristics features of psychosis Biotypes from each other and from healthy comparison
subjects: neural dysregulation for BT2, neural vigor for BT1, and deviations of stimulus salience for
BT3. The discrimination of BT3 was a new addition made possible by this modi�ed approach.

3. For procedures like k-means, it is crucial to validate the veridicality of the number of subgroups. In
comparison to previous psychosis Biotypes iterations, we used one overlapping (gap statistic) and
23 new cluster estimation procedures (from NBclust in R). The most probable outcome was again
three subgroups (10 of 24 estimates). We also evaluated the consistency of assigning cases to their
modal subgroup across a range of bootstrapped sample sizes. The bio-factors are highly repeatable
[8], so the chance group assignment correction of the adjusted rand index is conservative for our
case. Nevertheless, even using a conservative approach, individual cases are assigned to their modal
Biotype group with exceptional to good consistency with sample sizes greater than 1000. The
outcome of this analysis, however, highlights the sample sizes required to construct a robust
neuroscience-assisted classi�cation procedure.

The analysis of biological relatives’ bio-factors probed which neuro-biological features may be crucial to
the etiology and pathogenesis of B-SNIP psychosis Biotypes. Bio-factor patterns of probands were
replicated among their nonpsychotic �rst-degree relatives for BACS, antisaccade, auditory ERPs and IEA
bio-factors. Given that these variables also show high familial similarity [more liberally called heritability;
7], these measures appear to be endophenotypes [30], but only for speci�c psychosis Biotypes. Even BT3
psychosis cases, who are statistically equivalent to healthy persons on cognitive performance, are
de�cient in relation to their non-psychotic family members. This �nding may re�ne previous reports of
cognitive endophenotypes for bipolar disorder [50, 51], and also recapitulates the generally lower
cognitive performance of psychosis probands in relation to their unaffected �rst-degree relatives [52].
These outcomes raise the possibility that laboratory measures such as motor inhibition from the SST,
induced EEG activity, and stimulus salience assessments maybe pathology markers of idiopathic
psychosis after it has developed rather than causal markers related to elevated psychosis-risk.
Alternatively, the nonfamilial bio-factors may index other acquired deviations that explain why members
of the same high-risk family differ in psychosis manifestation.

B-SNIP’s multi-domain, neurobiologically de�ned, trans-diagnostic psychosis Biotypes offer an alternative
to the traditional clinical approach for case strati�cation. This approach has been galvanized by the
extent of unsuccessful research into the biological mechanisms of conventional psychosis diagnoses
and the failure to develop new treatments. With our re�ned biologically based sub-groups, we have
attempted to capture homogenous disease groups with common biological dysfunctions. This is an
approach we will continue to re�ne and is being more widely adopted in biological psychiatry research
[53–56]. Critically, it deserves thorough and rigorous testing. The bio-factor underpinnings of B-SNIP
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Biotypes are stable and replicable, and the Biotypes themselves show excellent cross- and construct
validation [8, 12, 13, 57–59]. They also have differentiating patterns of clinical features [9, 49, 60].

This does not mean B-SNIP psychosis Biotypes are the �nal or correct model; the solution is a function of
variables used and methods applied. But this approach yields rational, testable hypotheses [61, 62] of
pathophysiological theories and treatment targets that are not derivable from any available alternative. It
perhaps offers a beginning for transitioning a part of psychiatry to a laboratory discipline. The ability to
tailor treatments to individual psychosis patients and improve outcomes, however, will be the ultimate
validator of this or any other approach to psychosis diagnosis [63].
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Figures

Figure 1

Cluster Consistency

To test cluster member consistency, a bootstrapping approach was used on subsamples in sizes ranging
from 500 to 1800, in steps of 100, of the total sample (1000 iterations each step). A random subsample
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was selected at each sample number, normalized, and submitted to the k-means clustering algorithm
1000 times. Membership from each subsample clustering solution was compared to the membership of
the total sample with an adjusted and non-adjusted rand index. Rand index is a similarity measure
between two clustering solutions. Red line is the average of the non-adjusted rand index the 1000
iterations at each subsample. Error bars are the 99% Con�dence interval. Gray shading represent the 40th

and 60th percentile values. Black line is the adjusted rand index average across the 1000 iterations at
each sub-sample. At sample sizes greater 1000, the adjusted rand index shows good and the unadjusted
rand index shows excellent consistency across subsamples.

Figure 2

Bio-factors by B-SNIP Psychosis Biotypes and their Relatives

Right: Standardized values of each of the 11 bio-factors that were included in the clustering algorithm by
Biotype. The average healthy values was subtracted from each bio-factor to show the relative difference
across measures. Across all bio-factors there were signi�cant differences betweene psychosis Biotypes
(Holm-Bonferroni adjusted signi�cance, F’s = 20.21 to 703.81, p’s < .001).  Error bars=99% Con�dence
intervals.

Left: Standardized values of each of the 11 bio-factors by non-psychotic �rst degree relatives separated
by their proband Biotype membership. BACS, antisaccade, paired stimuli and oddball ERPs, and IEA bio-
factors differentiate the relative groups (Holm-Bonferroni adjusted signi�cance, F’s > 4.1, p’s <.007). Error
bars=99% Con�dence intervals.
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Figure 3

Canonical Discriminant Analysis Variates by B-SNIP Psychosis Biotypes

Results of the canonical discriminant analysis which had 3 signi�cant variates (chi-squares > 110.7, p’s
<.001; canonical correlations of .69, .64, and .26, p’s <.001). A. CDA variate 1 (Neural dysregulation) was
associated with lower cognitive scores and higher ongoing frequency activity from the Oddball and
Paired Stimulus tasks. B. CDA Variate 2 (Neural Vigor) was associated with reduced ERP responses and
intrinsic neural activity. C. CDA variate 3 (Stimulus Salience) was associated with the frontal P3a EEG
response, Paired Stimulus S2 ERP activity, and pro-saccade Latency. See table S5 for CDA Structure
Matrix.
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