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Abstract
Background

We pro�led circulating plasma metabolites to identify systemic biochemical changes in clinical and biomarker-assisted diagnosis of Alzheimer’s disease (AD).

Methods

We used an untargeted approach with liquid chromatography coupled to high-resolution mass spectrometry to measure small molecule plasma metabolites
from 150 clinically diagnosed AD patients and 567 age-matched healthy elderly of Caribbean Hispanic ancestry. Plasma biomarkers of AD were measured
including P-tau181, Aβ40, Aβ42, total-tau, neuro�lament light chain (NfL) and glial �brillary acidic protein (GFAP). Association of individual and co-abundant
modules of metabolites were tested with clinical diagnosis of AD, as well as biologically-de�ned AD pathological process based on P-tau181 and other
biomarker levels.

Results

Over 6000 metabolomic features were measured with high accuracy. First principal component (PC) of lysophosphatidylcholines (lysoPC) that bind to or
interact with docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and arachidonic acid (AHA) was associated with decreased risk of AD (OR = 0.91
[0.89–0.96], p = 2e-04). Association was restricted to individuals without an APOE ε4 allele (OR = 0.89 [0.84–0.94], p = 8.7e-05). Among individuals carrying at
least one APOE ε4 allele, PC4 of lysoPCs moderately increased risk of AD (OR = 1.37 [1.16–1.6], p = 1e-04). Essential amino acids including tyrosine
metabolism pathways were enriched among metabolites associated with P-tau181 levels and heparan and keratan sulfate degradation pathways were
associated with Aβ42/Aβ40 ratio.

Conclusions

Unbiased metabolic pro�ling can identify critical metabolites and pathways associated with β-amyloid and phosphotau pathology. We also observed an
APOE-ε4 dependent association of lysoPCs with AD and biologically based diagnostic criteria may aid in the identi�cation of unique pathogenic mechanisms.

Summary
Untargeted metabolomics identi�es Lysophosphatidylcholines association with plasma Ptau181 levels and biological Alzheimer’s Disease in an APOE-ε4
dependent manner.

Introduction
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive and memory decline, affecting millions of individuals
worldwide. Despite extensive research, the underlying pathogenic mechanisms of AD have not been fully revealed, hindering the development of effective
therapeutic strategies. However, recent advancements in high-throughput omics technologies have provided a powerful platform to explore the complex
molecular landscape of AD1.

Mass spectrometry-based metabolic pro�ling, a.k.a. metabolomics, offers a comprehensive analysis of small molecules involved in cellular metabolism. It
provides a unique opportunity to unravel metabolic alterations associated with disease pathogenesis, thus contributing to a better understanding of AD at the
molecular level2–5. Untargeted metabolomics allows the unbiased pro�ling of the entire metabolome, including both known and unknown metabolites.

Metabolomic studies in AD have revealed a range of altered metabolic signaling. Several studies have demonstrated dysregulation of energy metabolism
pathways in AD6–8. These alterations involve changes in glucose metabolism9, including reduced glycolysis10–14 and impaired mitochondrial function15–17,
and decreased levels of metabolites such as glucose, lactate, and pyruvate18. Alterations in the tricarboxylic acid (TCA) cycle intermediates, have also been
observed. Studies have reported lower levels of phosphatidylcholine, phosphatidylethanolamine, and sphingomyelins in AD19–22, suggesting disruptions in
membrane integrity and signaling pathways, altered cholesterol metabolism has also been implicated. Other studies have uncovered alterations in amino acid
metabolism in AD23. Reduced levels of certain amino acids, such as tryptophan24, phenylalanine25,26, tyrosine27,28, and branched-chain amino acids (valine,
leucine, isoleucine)3,29–38 may re�ect disruptions in neurotransmitter synthesis, neuroin�ammation, and protein homeostasis. Studies have also shown
alterations in the levels of neurotransmitters such as acetylcholine, glutamate, and γ-aminobutyric acid (GABA) in AD patients39–43. These changes may
contribute to cognitive dysfunction and synaptic alterations in the disease.

Several groups have reported elevated levels of reactive oxygen species (ROS) and oxidative damage markers, along with alterations in antioxidant
metabolites and enzymes, have been observed in whole blood and brains of AD patients. These �ndings suggest a role for altered redox status in AD
pathogenesis44–47.

Given that metabolomics is the omics layer closest to the phenotype, it has the potential to uncover critical insights into the disease risk and progression, and
potentially uncover therapeutic targets. By integrating metabolomics data with clinical diagnosis and plasma biomarker levels of AD, we aim to identify
metabolic networks underlying the disease. In this study, we investigated the association between metabolites and clinical and biomarker assisted diagnosis
of AD to detect early and mid-stage metabolic changes in disease.

Methods
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Participants. The Estudio Familiar de In�uencia Genetica en Alzheimer (EFIGA) has been recruiting individuals with suspected sporadic and familial AD and
healthy controls similar in age through advertisements in local newspapers and radio stations, and through clinical referrals in the Dominican Republic and in
the Washington Heights neighborhood of New York City48. Participants in this study provided informed consent under protocols approved by the Columbia
University Irving Medical Center Institutional Review Board, and the National Health Bioethics Committee of the Dominican Republic (CONABIOS). They
underwent a medical and neurological history and detailed examinations, neuropsychological testing, and collection of blood for plasma and DNA processing.
CSF were performed in a subgroup of participants. The clinical diagnosis of Alzheimer's disease (AD) was based on NIA-AA criteria49. All clinical diagnoses
were determined in a consensus conference attended by a neurologist, a neuropsychologist, and an internist with expertise in dementia and geriatrics. Brie�y,
individuals with clinical AD must have a history of progressive cognitive decline in the absence of other brain disorders and objective evidence of a decline
memory and in at least two other cognitive domains such as verbal �uency or executive function. Healthy controls showed no evidence of cognitive decline.
For the analyses in this manuscript, only biological samples and data from individuals recruited between January 1, 2018, and April 30, 2022, were considered.

Sample collection
Blood was collected in K2EDTA tubes by standard venipuncture and transported to a laboratory for centrifugation, preparation of plasma, and storage at -80˚C
within 2 hours of collection. CSF was obtained by standard aseptic technique, distributed into aliquots of 400 µL each in polypropylene tubes, frozen, and
stored at -80ºC48.

Plasma and CSF metabolomics data generation
Plasma and CSF metabolites were extracted using acetonitrile and the extracts were injected in triplicate on two chromatographic columns: a hydrophilic
interaction column (HILIC) under positive ionization (HILIC+)50 and a C18 column under negative ionization (C18-)51 coupled to a Thermo Orbitrap HFX Q-
Exactive mass spectrometer, scanning for molecules within 85–1250 kDa. This produced three technical replicates per sample per column. The untargeted
mass spectral data were processed through a computational pipeline that leverages open source feature detection and peak alignment software, apLCMS52

and xMSanalyzer53. The feature tables were generated containing information on the mass-to-charge (m/z) ratio, retention time, and median summarized
abundance/intensity of each ion for each sample. Correction for batch effects was performed using ComBat, which uses an empirical Bayesian framework to
adjust for known batches in which the samples were run54. Each of these ions are referred to as metabolic features. For the analysis, metabolic features
detected in at least 70% of the samples were retained, leaving 3253 features from the HILIC + column and 3628 features from the C18- column for plasma
samples and 4460 features from the HILIC + column and 4501 features from the C18- column for CSF samples. Zero-intensity values were considered below
the detection limit of the instrument and were imputed with half the minimum intensity observed for each metabolic feature. The intensity of each metabolic
feature was log10 transformed, quantile normalized, and auto-scaled for normalization and standardization.

Metabolite annotation
Annotations were made using an internal library and by matching to the Human Metabolome Database (HMDB) using the R package xMSannotator (version
1.3.2)53. This uses a multistage clustering algorithm method to determine metabolic pathway associations, intensity pro�les, retention time, mass defect, and
isotope/adduct patterns to assign putative annotations to metabolic features. When a feature had multiple matches, we used the following rules to assign an
annotation: �rst, we screened features based on the con�dence score assigned by xMSannotator, and the annotation with the highest score was used. Second,
if all annotations had the same score, we chose the annotation with the lowest difference in expected and observed mass (delta parts per million (ppm)).
Finally, if all features had the same score and delta ppm, we indicated the identity as “multiple matches” since we couldn’t decipher a unique putative
annotation. If a feature did not match any database entries, it was denoted as “unknown” (33% from HILIC + column and 40% from C18 – column). The
con�dence in annotation was based on criteria de�ned by Schymanski et al55, where level 1 corresponds to a con�rmed structure identi�ed through MS/MS
and/or comparison to an authentic standard; level 2 to a probable structure identi�ed through spectral matches to a database; level 3 to a putative
identi�cation with a speculative structure; level 4 to an unequivocal molecular formula but with insu�cient evidence to propose a structure; and level 5 to an
exact mass but not enough information to assign a formula.

Blood based biomarker analyses
The methods have been previously described in detail48. Brie�y, the plasma biomarkers assays were performed in duplicate using the SIMOA HD-X platform.
Neurology 3-Plex A kits were used to determine levels of Aβ42, Aβ40, and T-tau, the Advantage V2 kit for P-tau181, and the Neurology 2-Plex B for GFAP and
NfL. Ratio of Aβ42/Aβ40 was also calculated.

Biomarker positive for AD
Based on previous analysis48, P-tau-181 plasma level < 2.33 considered biomarker status negative and ≥ 2.33 considered biomarker status positive. We use
biomarker positive and biological AD interchangeably in the manuscript.

Statistical analysis approach
We used two approaches to �nd circulating metabolic features associated with outcomes of interest: 1) a metabolome-wide association study (MWAS)
framework with correction for multiple comparisons by controlling the false discovery rate (FDR) at 5%, and 2) a co-abundance analysis to �nd modules of
metabolic features associated with outcomes, providing a means of unsupervised dimensionality reduction based on correlation between the metabolic
features. Both analyses were conducted separately for data from each column. All analyses were conducted in R (version 3.6.3).

Metabolome-wide association study (MWAS)
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MWAS was conducted using multiple linear models, adjusted for age and sex. The analyses were conducted separately for data from each column. We
corrected for multiple comparisons using an FDR of 5% and q-values were estimated using the Benjamini-Hochberg (BH) method.

Metabolite Co-abundance analysis: Co-abundance modular analysis was conducted using weighted gene correlation network analysis56 using the WGCNA R
package (version 1.69). Using normalized intensity values for each metabolic feature from each sample, we �rst constructed a metabolic feature co-
abundance network using pairwise Pearson correlations between each metabolic feature. We used a soft threshold of 4 for the HILIC + data and 3 for the C18
– data, chosen based on saturation of the R2 at 0.9. This correlation network, where the nodes are metabolic features and edges are the scaled correlation
coe�cients, was used to create the topological overlap matrix (TOM), which provides a measure of similarity between a given pair of metabolic features in the
network. This similarity matrix was used to create a dendrogram to assign metabolic features into modules based on their co-abundance pattern. We used the
following parameters: minimum module size of 30, merge cutHeight of 0.25, an unsigned network, and a reassign threshold of 0. After network and
dendrogram construction, modules were de�ned using the moduleEigengenes function in WGCNA. The module eigengene is a quantitative representation of a
module derived from a principal component analysis (PCA) as the �rst PC, conducted using only those metabolic features that were part of the module.
Association analyses were conducted to �nd modules associated with outcomes in linear regression models, adjusted for age and sex. We used the
Bonferroni method to correct for multiple comparisons.

Subgroup comparisons: Subgroup comparisons were conducted using logistic regression and multinomial logistic regression using the R package nnet
(version 7.3–12). We created three different models to compare the six different subgroups: a) BM+/Cases, BM+/Controls and BM-/cases vs BM-/Controls-
using healthy participants with biomarker status negative (BM-) as the reference (i.e BM-/controls), we compared metabolic features with differential levels in
participants with i) biomarker status positive and a clinical diagnosis of AD (BM+/Cases), ii) biomarker status negative and a clinical diagnosis of AD
(BM-/Cases) and, iii) biomarker positive with no clinical diagnosis of AD (BM+/Controls) ; b) BM+/Case and BM+/Control vs BM-/Control- metabolic features
with differential levels among BM+/control, BM+/case, compared to BM-/control; and c) BM+/case compared to BM+/control.

Pathway analysis. To determine the biological relevance of the metabolic features associated with AD and biomarkers, we conducted pathway analysis using
the “functional analysis” module in MetaboAnalyst (version 5.0, ref)57, a web-based interface for comprehensive metabolomic data analysis. We used the
MWAS results from both columns and applied a nominal p-value cut-off of 0.01 to determine metabolic pathway enrichment using the mummichog algorithm
and the human MFN reference database58. We present results for pathways with a Fisher’s exact test p-value < 0.3.

Chemical class enrichment.

This approach was used to determine the different chemical classes represented by metabolic feature members of WGCNA modules signi�cantly associated
with outcomes. The main chemical classes enriched was determined using the Enrichment Analysis module in MetaboAnalyst using the HMDBIDs for
features with an annotation con�dence score < 3.

Construction of lysophosphatidylcholine (lysoPCs) components and strati�ed analysis by APOE-ε4 status

Based on �ndings described below we performed principal component analyses using all features that were annotated as lysoPCs from both columns (44
from HILIC + and 13 from C18-). Since PCs 1–5 explained ~ 60% of the variance in the data, we used the �rst �ve PCs in logistic regression models to �nd the
association with clinical diagnosis of AD and biomarker positive status, adjusted for age and sex. We tested for the presence of an interaction between the
combinations of the lysoPCs and the presence of at least one APOE-ε4 allele and performed a strati�ed analysis since there was a signi�cant interaction term
between APOE-ε4 allele and PC4 (p-value for interaction = 0.0058).

Correlation between plasma and CSF metabolites
Among people with both plasma and CSF metabolomics data available (n = 113), plasma metabolites with level 1 con�dence that were signi�cantly
associated with any outcome were tested for their correlation with the same metabolite identi�ed in CSF using spearman correlation.

Association between lysoPCs and brain pathology in the ROSMAP cohort
To provide external validation of our �ndings with lysoPCs, we obtained data from the ROSMAP cohort and examined associations between lysoPCs and
brain pathology. We identi�ed metabolites identi�ed as lysoPCs and computed principal components as described above. Amongst the 42 PCs generated, we
tested association of the top �ve with amyloid, tangles, total global pathology, clinical and pathological diagnosis of Alzheimer’s disease (AD).

Results

Study participants
717 participants were included in the study of whom 150 (20.9%) were diagnosed with clinical AD and 567 were cognitively unimpaired controls (Table 1). The
study population had a mean age of 69.6 years (standard deviation (SD) = 7.6), the individuals with clinical AD were slightly older, with a mean age of 73.2
(SD = 8.3), compared to controls who had a mean age of 68.6 (SD = 7.2). Two-thirds of the group were women (65%) and this proportion was similar among
AD patients (67%) and controls (65%). A third of the study group had at least one APOE-ε4 allele (38%) and this proportion was only marginally higher in AD
(43%) compared to controls (36%). Among AD, 58% were biomarker positive, while 29% of controls were biomarker positive. The mean levels of most plasma-
based AD biomarkers were higher in AD than in controls, including P-tau181 (3.02 pg/mL (SD = 1.7) in AD and 2.13 pg/mL (SD = 1) in healthy controls), NfL
pg/mL (26.4 (SD = 20.5) in AD and 17.3 pg/mL (SD = 19.2) in healthy controls), and GFAP pg/mL (219 (163) in AD and 140 pg/mL (96) in healthy controls).
The mean ratio of Αβ42/Αβ40 was nominally lower in AD cases (0.049 (SD = 0.01)) compared to healthy controls (0.053 (SD = 0.03)). A subset of the study
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population, n = 113, also had CSF metabolomic data generated (S Table 1). Among them, 35 were clinically diagnosed with AD and 78 were controls. We also
obtained postmortem brain tissue metabolomic data from a subset of participants from the ROSMAP cohort, n = 110 (S Table 2). Of them, 71 were diagnosed
with AD and had brain pathology information available.

Table 1
Characteristics of the study population.

  control

(N = 567)

AD

(N = 150)

ALL

(N = 717)

Age at diagnosis or last visit (years)      

Mean (SD) 68.6 (7.17) 73.2 (8.26) 69.6 (7.64)

Sex      

Men 200 (35.3%) 50 (33.3%) 250 (34.9%)

Women 367 (64.7%) 100 (66.7%) 467 (65.1%)

Plasma pTau181 cut-off      

< 2.33 (Biomarker -) 376 (66.3%) 57 (38.0%) 433 (60.4%)

≥ 2.33 (Biomarker +) 163 (28.7%) 87 (58.0%) 250 (34.9%)

Missing 28 (4.9%) 6 (4.0%) 34 (4.7%)

APOE 4 allele
     

4 allele absent 358 (63.1%) 86 (57.3%) 444 (61.9%)

At least 1 4 allele 206 (36.3%) 64 (42.7%) 270 (37.7%)

Missing 3 (0.5%) 0 (0%) 3 (0.4%)

Plasma pTau181      

Mean (SD) 2.13 (1.00) 3.02 (1.67) 2.32 (1.23)

Missing 28 (4.9%) 6 (4.0%) 34 (4.7%)

Plasma NfL      

Mean (SD) 17.3 (19.2) 26.4 (20.5) 19.2 (19.8)

Missing 28 (4.9%) 6 (4.0%) 34 (4.7%)

Plasma GFAP      

Mean (SD) 140 (95.9) 219 (163) 157 (118)

Missing 28 (4.9%) 6 (4.0%) 34 (4.7%)

Plasma A 42/A 40 ratio
     

Mean (SD) 0.053 (0.031) 0.049 (0.011) 0.053 (0.028)

Missing 33 (5.8%) 7 (4.7%) 40 (5.6%)

\varvecϵ

ϵ

ϵ

\varvecβ \varvecβ
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Table 2
Metabolic features associated with outcomes investigated using a metabolome-wide association study framework. m/z: mass-to-charge ratio, Time: Retentio

time, ID score: con�dence in annotation based on Schymanski scale (1 being the highest and 5 the lowest), ESI: electrospray ionization, Delta ppm: mass
difference in parts per million, CSF: correlation coe�cient for metabolite measured in CSF (this was performed in a subset of participants, n = 113), Std: ident

con�rmed using chemical standard. See supplemental table for complete list of features associated at FDR of 5%.
Outcome m/z Time

(s)
Annotation ID

score
ESI Delta

ppm
Adduct FDR

q-
value CSF

Pathway

Clinical AD 203.0827 35.5 Tryptophan 1 - 0.49 Std -0.334 0.045 0.24 Tryptophan
metabolism

  133.0143 27.3 Malic Acid 1 - 0.38 Std 0.341 0.045   TCA cycle,
gluconeogenesis

  342.2649 109.1 Dodecanoylcarnitine 3 - 0.23 M-H -0.386 0.009   Fatty acid oxidatio

Biomarker/
pTau181
positive

114.0663 33.5 Creatinine 1 + 0.96 Std 0.390 0.021 0.32 Urea cycle/amino
group metabolism

  524.3703 32.2 LysoPC (18:0) 1 + 1.47 Std -0.326 0.021   Glycerophospholip
metabolism

  176.1033 82.9 Citrulline 1 + 1.87 Std 0.337 0.025 0.34 Arginine and prolin
metabolism

pTau181 203.1038 27.1 Valyl-Serine 1 - 0.34 Std -0.245 2.9E-
04

  Glycine, serine, and
threonine
metabolism

  114.0663 33.5 Creatinine 1 + 0.96 Std 0.251 6.2E-
04

0.32 Urea cycle/amino
group metabolism

  176.1033 82.9 Citrulline 1 + 1.87 Std 0.199 0.003 0.34 Arginine and prolin
metabolism

Aβ42/Aβ40 213.1497 242.2 3-Oxododecanoic acid 3 - 0.38 M-H -0.011 4.0E-
23

  Fatty acid
metabolism

  88.9881 236.8 Oxalic acid 3 - 0.79 M-H -0.006 5.4E-
06

  Glyoxylate and
dicarboxylate
metabolism

  540.4982 22.9 Hexacosanoyl carnitine 3 + 0.81 M + H -0.006 8.1E-
06

  Fatty acid oxidatio

NfL 195.051 33.4 Gluconate 1 - 0.15 Std 5.822 4.6E-
11

0.52 Pentose phosphate
pathway

  160.0615 36.7 2-Aminoadipic acid/ N-
methylglutamic acid

1 - 0.12 Std 5.305 1.5E-
09

0.16 Lysine/Glutamate
metabolism

  149.0455 30.1 Arabinose/lyxose/ribose/
xylose

1 - 0.34 Std 5.030 2.9E-
08

0.33 Pentose phosphate
pathway

GFAP 718.2797 178.4 5-
Methyltetrahydropteroyltri
glutamate

3 + 0.85 M + H -17.369 0.032   Methionine
metabolism (gut
bacteria)

  522.3552 32.9 LysoPC (18:1) 3 + 0.42 M + H 16.776 0.044   Glycerophospholip
metabolism

  405.3727 24.3 Dihydroxycholestane 3 + 0.02 M + H -16.646 0.044   Bile acid
biosynthesis

Metabolome wide association study
We identi�ed 6445 and 5827 metabolic features in the HILIC + and C18- columns respectively. Restricting to metabolic features seen in at least 70% of the
group, 3253 and 3628 features were �ltered for further analysis. 669 features were associated with at least one phenotype (clinical diagnosis of AD, P-tau181
biomarker positive for AD or biological AD, plasma levels of Αβ42/Αβ 40 ratio, NfL, P-tau181 and GFAP). Of those, 174 features were annotated with level 1 to
level 3 con�dence based on Schymanski scale (Fig. 1, Table 2, supplementary Table 1).

We identi�ed 107 metabolic features nominally associated (p < 0.05) with both clinical AD and biomarker positive status for AD. Metabolites associated with
being biomarker positive for AD were enriched in tyrosine and urea cycle/amino acid metabolism pathways. Dodecanoylcarnitine (adj p = 0.009) and Ramipril
(adj p = 0.02) were the top analytes associated with clinical AD while lysoPC(18:0) (adj p = 0.02) and creatinine (adj p = 0.02) were associated with biological
AD. 151 metabolites with a level 1–3 con�dence score for annotation were associated (adj p < 0.05) with at least one measured plasma biomarker (Fig. 2,
Supplementary Table 1). The strongest association observed was 3-oxododecanoic acid with Αβ42/Αβ40 ratio (adj p = 4.03E-23). Oxalic acid and
hexacosanoyl carnitine were also strongly associated with Αβ42/Αβ40 ratio. Metabolic features associated with Αβ42/Αβ40 ratio were enriched in heparan

ρ

\varvecβ \varvecρ
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sulfate, chondroitin sulfate and keratan sulfate degradation processes. Increased sulfation and heparan sulfate proteoglycan degradation have been widely
reported in AD related neuritic plaques previously.

Valyl serine, creatinine and citrulline were among the 76 well annotated metabolic features associated with plasma levels of P-tau181. Several
lysophosphatidylcholines (lysoPCs) including lysoPC(22:6), lysoPC(18:0) and lysoPC(20:4) were inversely associated after multiple testing correction with
plasma P-tau181 levels (Supplementary Table 1). Metabolic features associated with P-tau181 levels were enriched in several essential amino acid
metabolism pathways including tyrosine, arginine and proline metabolism, valine, leucine, and isoleucine degradation, and aminosugars, starch and sucrose
metabolism. Lysine metabolism, aspartate and asparagine metabolism and arginine and proline metabolism were enriched only among P-tau181 associated
metabolites.

406 metabolic features were associated with NfL levels in plasma, of which 107 were annotated with Level 1–3 con�dence (Fig. 2, Supplementary Table 1).
Gluconate (adj p = 4.56E-11) and Arabinose (adj p = 2.93E-08) in the pentose pathway and 2-Aminoadipic Acid (adj p = 1.53e-09) in Lysine/Glutamate
metabolism were the top metabolites associated with NfL. Metabolic features associated with NfL shared common pathways with those associated with
Αβ42/Αβ40 ratio including heparan sulfate, chondroitin sulfate and keratan sulfate degradation. Pentose phosphate, aminosugars metabolism and hexose
phosphorylation pathways were shared by features associated with both NfL and P-tau181. Sialic acid metabolism was observed only amongst NfL
associated metabolites.

Increased creatinine levels were associated with biological AD, increased amounts of plasma P-Tau181 and NfL. Several lysoPCs were observed to decrease in
biological AD, and with increased amounts of plasma NfL and P-tau181 levels. Only lysoPC(18:1) was found to increase with increased levels of GFAP,
although it was observed to decrease with increased P-tau181 and NfL levels indicating a time dependent abundance depending on the disease stage.

Metabolites in patients with discordant biological and clinical status of AD. First, we compared healthy participants with no negative biomarker diagnosis
(BM-/Control) with the other three groups (BM+/Case, BM+/Control and BM-/Case) (Fig. 3, Supplementary Figure S7). LysoPCs, in particular, lysoPC 22:6
(DHA) and lysoPC 20:5 (EPA) are reduced in clinical AD and biomarker positive patients. They are depleted the most in patients with both biological and
clinical diagnosis of AD. Similarly, creatinine is increased in BM + and clinical AD patients and is highest in patients with elevated Ptau-181. Tyrosine
metabolism is enriched amongst metabolites that are elevated in patients with either clinical or biological AD. Glycosphingolipid metabolism is altered only in
patients with only clinical diagnosis of AD and urea cycle and amino group metabolism is altered in biological AD patients.

Co-abundance analysis of metabolites. We clustered co-abundant metabolic features using WGCNA independently on metabolic features detected in the HILIC
and C18 columns. WGCNA identi�ed 18 and 15 co-abundant metabolic color-coded modules in HILIC and C18 columns respectively with at least 30 metabolic
features (Supplementary Figure S2). We then tested association of each module with clinical and biological AD and levels of the plasma biomarkers (Fig. 4A).
Purple module was negatively associated with biological AD (adj p = 9e-05) while black module was associated with P-tau181 levels (adj p = 3e-04). Salmon
and greenyellow modules were associated both with biological AD and P-tau181 levels. Enrichment analysis of the metabolites co-abundant in the purple
module found that fatty amides (adj p = 5e-03), glycerophosphocholines (adj p = 5e-03) and sphingoid bases (adj p = 5e-03) were over-represented in the
module (Fig. 4B). Glycerophosphocholines (adj p = 3e-22) were also signi�cantly enriched in the greenyellow module, while amino acids and peptides were the
top group over-represented in the black (adj p = 1.31e-16) and salmon modules (9.22E-07).

We then identi�ed the hub metabolites that are most connected to other metabolites in the purple, salmon and greenyellow modules. Interestingly, 12 lysoPCs
were hub metabolites in the purple module and all of them were more abundant in biomarker negative participants compared to individuals who were
biomarker positive and de�ned to have biological AD (Fig. 4C). Phosphatidylcholines (PC) and lysoPCs were also the hub metabolites in the greenyellow
module and (Fig. 4E, Supplementary table 2) and were also more abundant in healthy participants compared to biomarker positive patients. Creatinine was
the most connected metabolite in the salmon module and as previously described, was increased in AD patients compared to controls.

LysoPCs association with AD biomarkers
Both MWAS and WGCNA detected lysoPCs to be signi�cantly associated with biological AD, P-tau181 and NFL levels. Thus, we tested joint association of all
lysoPCs with clinical and biological AD by constructing lysoPC principal components. We constructed PCs for the 55 lysoPCs detected by HILIC and C18
columns and found that the �rst �ve PCs explained ~ 60% of the variance (Supplementary Figure S3). We tested association of the �rst �ve PCs together in a
regression model adjust for age and sex (Fig. 5A). PC1 and PC4 were associated with biological AD whereas PC5 was associated with clinical diagnosis of
AD. PC1 and PC5 were protective while PC4 increased risk of biological AD. Further stratifying participants by presence of absence of APOE ε4 allele (Fig. 5B),
we found that PC1 and PC5 were protective of biological AD and clinical AD respectively, only in APOE ε4 non-carriers, whereas risk conferred by PC4 was
restricted to APOE ε4 carriers. We investigated the loadings of the lysoPCs on PCs 1,4 and 5 and particularly focused on lysoPCs that have poly unsaturated
fatty acids (PUFAs) at the sn-1 and sn-2 positions (Fig. 5C, Supplementary Fig. 5B). LysoPCs that carry eicosapentaenoic acid (EPA), docosahexaenoic acid
(DHA) and arachidonic acid (AHA) had positive loading on PC1 and hence decreased in biological AD, particularly in APOE ε4 non-carriers. Both DHA and AHA
had negative loadings but EPA had positive loadings on PC4 which increased risk of biological AD. We also tested the correlation between PCs 1, 4 and 5 with
circulating PUFAs in plasma (Supplementary Figure S5) and CSF. PC1 was positively correlated with circulating levels of EPA and AHA, and positively
correlated with CSF levels of AHA. PC4 was negatively correlated with most measured plasma PUFAs and negatively correlated with CSF levels of DHA. PC5
was positively correlated with plasma linolenic acid, EPA and DHA, negatively correlated with plasma AHA, and positively correlated with CSF DHA. We also
found that lysoPCs that carry EPA and DHA were positively correlated with the CSF levels of their respective PUFAs, while this correlation for AHA was
negligible (Supplementary Figure S5). This indicates that lysoPCs, in conjunction with APOE, might play a role in AD biology since they transport long chain
PUFAs into the central nervous system59.

LysoPC analysis in the ROSMAP cohort
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To determine the generalizability of our results we examined the association between lysoPCs and AD pathology in the ROSMAP cohort. We used the
metabolomics data derived from 110 brain samples in the ROSMAP cohort to test association of lysoPCs and phosphatidylcholines (PCs) with pathological
de�nition of AD, amyloid burden, tangle density, and global pathology. First, we detected 14 LysoPCs and 13 PCs in the ROSMAP cohort. We constructed
principal components from the LysoPCs and tested association with AD pathology (Supplementary Figure S6). We identi�ed that PC3 is positively associated
with increased tangle density, global pathology and a pathological diagnosis of AD. Of the lysoPCs carrying PUFAs, we only detected AHA in the ROSMAP
cohort. AHA is increased in tangles, global pathology and pathological de�nition of AD. Three phosphatidylcholines were negatively associated with amyloid
burden and tau tangles implying that lysoPCs and PCs are reduced in post-mortem AD brains. These �ndings are consistent with plasma lysoPCs observation
in the EFIGA cohort.

Discussion
We investigated the association of metabolites with plasma biomarkers and clinical diagnoses in a cohort of Caribbean Hispanics to identify metabolic
pathways associated with hallmarks of AD pathology. Two of the most notable �ndings were that metabolite pro�les differed when a clinical diagnosis was
used versus a validated plasma biomarker-based diagnosis and that lysoPCs, which have been reported in recent studies in AD59,60, were identi�ed in our
unbiased approach in a Hispanic population.

LysoPCs were associated with both quantitative levels of plasma P-tau181 and biological AD (de�ned by P-tau181). Co-abundance analysis revealed P-
tau181 association of metabolic modules that harbor several lysoPCs as hub metabolites, suggesting a critical role in disease pathogenesis. Several studies
have observed lower levels of lysoPCs in the brains, CSF and plasma of AD patients61–72. These changes often involve lysoPC species, particularly those that
bind to anti-in�ammatory PUFAs being decreased in patients with AD. Some lysoPC species have been implicated in promoting neurotoxicity and
in�ammation73–75. They can induce oxidative stress, impair mitochondrial function, and activate immune cells, leading to neuronal damage and death.
LysoPCs are also involved in dysregulation of lipid metabolism these disturbances. The breakdown of phosphatidylcholine, a major lipid component of cell
membranes, can generate lysoPCs. Disruptions in enzymes involved in this process, such as phospholipase A2 (PLA2), have been observed in AD and may
contribute to altered lysoPC levels76–78.

We observed a differential effect of lysoPCs within APOE ε4 carriers and non-carriers. The risk conferred by lysoPCs was restricted to APOE ε4 carriers, while
the protective effects were signi�cant within APOE ε4 non-carriers. We previously showed signi�cant differences in metabolic pro�les in a small multi-ethnic
AD cohort and these differences remained when the analysis was restricted to APOE ε4 carriers79. APOE ε4 carriers tend to exhibit higher levels of speci�c
lysoPC species in CSF, plasma, and brain tissue compared to non-carriers80–83. Elevated levels of certain lysoPCs in APOE ε4 carriers have been linked to
increased Aβ deposition, tau phosphorylation, and neuroin�ammation. Distinct patterns of lysoPC alterations have been observed in APOE ε4 carriers
compared to non-carriers.

We also found essential amino acids metabolism (tryptophan and tyrosine) were associated with clinical and biological diagnosis of AD. Urea cycle/amino
group metabolism was associated with only the biological diagnosis of AD. Tyrosine is an essential amino acid and plays a crucial role in the synthesis of
catecholamines. Limited research has focused on measuring tyrosine levels speci�cally in the AD patient brains but administering tyrosine orally can enhance
memory and cognitive function84. Tryptophan is an essential amino acid and a precursor for the synthesis of serotonin, a neurotransmitter involved in mood
regulation and cognition. Alterations in tryptophan metabolism may impact serotonin availability in the brain and contribute to AD pathophysiology,
particularly (Aβ) pathology. Aβ accumulation can disrupt tryptophan metabolism, leading to altered levels of tryptophan and its metabolites. Conversely,
tryptophan metabolites, such as kynurenic acid, can affect Aβ aggregation and clearance, potentially in�uencing disease progression. Interestingly Tryptophan
levels in plasma were associated with clinical diagnosis of AD and were also mildly correlated with CSF levels (correlation = 0.24, Table 2).

Heparan sulfate, chondroitin sulfate and keratan sulfate degradation processes were associated with Aβ42/40 ratio. Heparan sulfate, chondroitin sulfate, and
keratan sulfate are types of glycosaminoglycans (GAGs) or sulfated carbohydrates that are found in the extracellular matrix of cells. GAGs have been reported
in accumulation and clearance of in Aβ. Heparan sulfate proteoglycans (HSPGs) are a type of protein with heparan sulfate chains that interact with Aβ and
can contribute to the formation of amyloid plaques. Chondroitin sulfate proteoglycans (CSPGs) and HSPGs have been implicated in the regulation of Aβ
clearance. These sulfated glycosaminoglycans can interact with various proteins involved in the clearance of Aβ, including neprilysin and insulin-degrading
enzyme. Disruption of the balance between Aβ production and clearance, partly mediated by GAGs, may contribute to the accumulation of Aβ in AD. GAGs can
interact with various in�ammatory molecules, including cytokines and chemokines, and modulate neuroin�ammatory processes in AD. Chondroitin sulfate
and heparan sulfate chains present on proteoglycans can act as binding sites for in�ammatory molecules, contributing to the activation of immune cells and
the generation of a pro-in�ammatory environment in the brain.

Taken together these results suggest that understanding metabolic heterogeneity in AD pathogenesis may enable identi�cation of biological mechanisms for
speci�c subgroups with the disease and that it is essential to combine biochemical analysis with biomarkers of disease. Speci�cally, identi�cation of
metabolic pathways associated with plasma biomarkers might indicate biological mechanisms underlying AD pathology at different stages of the disease.
We observed common metabolic pathways perturbed in clinical AD and elevated Aβ42/40 ratio, indicating that these metabolites might be involved in both
amyloidogenic and later (clinical) stages of the disease. Similarly, distinct set of metabolites were observed in association with elevated P-tau181 and NfL
levels, suggesting processes that might be involved both in neuro�brillary change and neurodegeneration. However, more investigation speci�cally with
longitudinal measures of biomarkers and metabolic assessments are needed to disentangle the metabolic cascades in different stages of disease
progression. Finally, this study demonstrates the ability of high-resolution mass spectrometry-based untargeted metabolomics to reveal biochemical
differences in participants with differential plasma biomarker pro�les and to identify metabolic perturbations in different stages of the disease. This has the
potential to open up a new era of biochemically-based discovery in AD.
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Figures

Figure 1

Metabolic features and pathways associated with clinical AD and with biomarker positive status. In A, a modi�ed Miami plot shows features with positive
beta values above the zero line and those with negative beta values below the zero line. The dark blue points indicate features with FDR q-value < 0.05 for data
obtained for each column (C18 and HILIC). In B, the overlap in features associated with clinical AD and biomarker positive status at nominal p < 0.05 (light
blue and dark blue points) for each column. In C, the metabolic pathways, with Fisher’s exact test p < 0.3, enriched by features nominally associated with the
clinical AD and biomarker positive status. An asterisk indicates pathway that were signi�cantly enriched (p < 0.05).
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Figure 2

Metabolic features and pathways associated with plasma-based biomarkers of AD. In A, a modi�ed Miami plot shows features with positive beta values
above the zero line and those with negative beta values below the zero line. The dark blue points indicate features with FDR q-value < 0.05 for data obtained
for each column (C18 and HILIC). In B, the overlap in features associated with the four biomarkers at nominal p < 0.05 (light blue and dark blue points) for
each column. In C, the metabolic pathways, with Fisher’s exact test p < 0.3, enriched by features nominally associated with the biomarkers. An asterisk
indicates pathways that were signi�cantly enriched (p < 0.05). 42/40: ratio of A 42 to A 40 measured in plasma, GFAP: glial �brillary acidic protein, NfL:
neuro�lament light chain, pTau181: tau phosphorylated at threonine-181.
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Figure 3

Subgroup analysis based on clinical diagnosis and biomarker positive status. Results from multinomial and regular logistic regression were used to determine
metabolic pathways enriched. A colored box indicates an enriched pathway with Fisher’s exact test p-value < 0.3 while an asterisk indicates statistically
signi�cant enrichment (p < 0.05).
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Figure 4

Results from co-expression analysis using data from the HILIC column. In A, the volcano plot shows metabolic modules signi�cantly associated with clinical
AD, biomarker positive status and AD biomarkers using Bonferroni adjusted p-value. In B, the chemical classes enriched by module member metabolic
features present at a proportion of at least 6.5%. In C, module hub members of the purple module with KME > 0.6 and associated with biomarker positive
status at FDR q-value < 0.05. In D, module hub members of the salmon module with KME > 0.6 and associated with biomarker positive status at FDR q-value <
0.05. In E, module hub members of the greenyellow module with KME > 0.6 and associated with biomarker positive status at FDR q-value < 0.05. In F, module
hub members of the yellow module with KME > 0.6 and associated with clinical AD at FDR q-value < 0.05.
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Figure 5

Lysophosphatidylcholines (LysoPCs) associated with clinical AD and biomarker positive status. In A, the odds ratio (point) and con�dence interval (whiskers)
of PC1 – 5 in relation to biomarker positive status and clinical AD. In B, the results from analysis strati�ed by APOE-ε4 allele status. In C, the loadings of
lysoPCs on the three PCs (PC1, PC4, and PC5) signi�cantly associated with biomarkers positive status or clinical AD.
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