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Abstract  

Only recently have human postmortem brain studies of differential gene expression (DGE) 

associated with opioid overdose death (OOD) been published; sample sizes from these studies 

have been modest (N = 40-153). To increase statistical power to identify OOD-associated genes, 

we leveraged human prefrontal cortex RNAseq data from four independent OOD studies and 

conducted a transcriptome-wide DGE meta-analysis (N = 285). Using a unified gene expression 

data processing and analysis framework across studies, we meta-analyzed 20�098 genes and 

found 335 significant differentially expressed genes (DEGs) by OOD status (false discovery rate 

< 0.05). Of these, 66 DEGs were among the list of 303 genes reported as OOD-associated in 

prior prefrontal cortex molecular studies, including genes/gene families (e.g., OPRK1, NPAS4, 

DUSP, EGR). The remaining 269 DEGs were not previously reported (e.g., NR4A2, SYT1, 

HCRTR2, BDNF). There was little evidence of genetic drivers for the observed differences in 

gene expression between opioid addiction cases and controls. Enrichment analyses for the DEGs 

across molecular pathway and biological process databases highlight an interconnected set of 

genes and pathways from orexin and tyrosine kinase receptors through MEK/ERK/MAPK 

signaling to affect neuronal plasticity.  
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Introduction 

The opioid epidemic continues to be a tremendous burden on our society and 

communities around the world. In the United States, 5.6 million people ages 12 and older 

misused opioids during 2021 (1,2). In the same year, the United States saw the highest 12-month 

count of opioid overdose deaths (OOD) recorded, >80�000, a 40% increase since 2019 (1). 

Although our understanding of the neurobiology of opioid addiction remains limited, increased 

sample sizes from recent meta-analyses of genome-wide association studies (GWAS) have 

begun to identify genetic loci robustly associated with opioid addiction, including loci in or near 

OPRM1, FURIN, and SCAI/PPP6C/RABEPK (3–5). However, such robust findings for critical 

features of gene regulation in the human brain, and gene expression in particular, have yet to 

emerge.  

Only recently have human postmortem brain studies of differential gene expression 

(DGE) associated with OOD been published: Corradin et al. 2022 (6); Mendez et al. 2021 (7); 

Seney et al. 2021 (8); and Sosnowski et al. 2022 (9). All four of these studies used human 

postmortem dorsolateral prefrontal cortex (DLPFC) brain tissue from donors identified as dying 

from OOD through toxicology assays administered by forensic scientists and phenotypic 

evidence of opioid addiction. Each of these independent studies had modest sample sizes (N = 

40-153) and compared bulk RNA-seq data from individuals who died from OOD to individuals 

who died from non–drug use causes. The DLPFC region of the brain involves the preoccupation/ 

anticipation component of the addiction cycle, which affects craving, impulsivity, and executive 

function (10). The DLPFC has also been linked to DGE levels studies of OPRM1 (11) and 

associated with anxiety and impulsive neurological disorders (ADHD, schizophrenia, bipolar 
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disorder, etc.). Addictive and reward-response phenotypes are also traits reported to be linked to 

the DLPFC from human and animal model studies, which can lead to drug-seeking behavior.  

Each DLPFC DGE study reported OOD-associated genes with plausible biological links to 

addiction. However, with their sample sizes, statistical power to robustly identify OOD-

associated DGE is limited. Here, we uniformly processed the bulk RNA-seq data across the four 

OOD studies and performed a DGE meta-analysis including 283 samples (case N = 170, control 

N = 113), making this the largest transcriptome-wide analysis of OOD to date. Our findings 

include novel differentially expressed genes (DEGs) in addition to confirming a subset of 

previously reported OOD-associated genes. We link our meta-analysis DEGs to different 

biological processes and pathways, notably the orexin receptor signaling system and signaling by 

Receptor Tyrosine Kinases. Furthermore, we investigated genetic regulation of OOD-associated 

DEGs and assessed shared genetics between these genes and 47 GWAS traits through partitioned 

heritability and colocalization analyses (12–14). 

Methods 

Contributing Study Cohorts  

Characteristics of the four cohorts contributing to this meta-analysis are provided in 

Table 1. Each of the contributing studies defined cases as decedents whose death was attributed 

to opioid overdose based on toxicological analyses by corners’ offices and phenotypic evidence 

of a history of opioid misuse or opioid addiction. Corradin study: Used de-identified human 

cadavers where cause of death was defined from “forensic pathologist following medico-legal 

investigation evaluating the circumstances of death including medical records, police reports, 

autopsy findings and forensic toxicology analysis” (6). Mendez study: Postmortem brains were 

collected from the University of Texas Health Science Center at Houston Brain Collection 
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during routine autopsies, with approval from the Institutional Review Board. Detailed 

psychological autopsies were conducted, including information on psychiatric phenotypes, age of 

onset of drug use, types of drugs used, and co-morbidities. All but one sample was positive for 

opioids on toxicology at time of death (7). Seney study: Samples were obtained during routine 

autopsies by the Office of the Allegheny County Medical Examiner after obtaining consent from 

next-of-kin. Autopsy and toxicology analyses were conducted, and subjects with OUD were 

matched with unaffected comparison subjects for sex and age. Subjects with OUD had a 

diagnosis duration of 5-18 years (8). Sosnowski samples: Postmortem brain samples were 

donated to the Lieber Institute for Brain Development from the Offices of the Chief Medical 

Examiner, with detailed neuropathological examinations and retrospective clinical diagnostic 

reviews for psychiatric and medical historiesAll brain donors had forensic toxicological analysis, 

“which typically covered ethanol and volatiles, opiates, cocaine/metabolites, amphetamines, and 

benzodiazepines” (9).  

 

RNA Sequencing and Data Processing 

Paired-end RNA-seq FASTQ files were obtained from four publicly available datasets 

(Sequence Read Archive study ID SRP324812, Sosnowski et al. (9), Gene Expression Omnibus 

accession IDs GSE174409, Seney et al. (8) and GSE182321, Mendez et al. (7), and dbGaP study 

phs002724.v1.p1, Corradin et al. (6)) and processed through a unified workflow. Briefly, 

adapters were trimmed and reads filtered using Trimmomatic v0.39 (15). Reads were then 

pseudo-mapped using Salmon v1.1.0 (16) in selective alignment mode (17) using the GENCODE 

v30 comprehensive gene annotation as the transcriptome index and the full GRCh38 primary 

genome assembly as a selective alignment decoy sequence. Salmon transcript quantifications 

(mapping percentage > 30%) were aggregated to the gene level using tximport v1.12.3 (18). 
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Quality metrics for raw and post-Trimmomatic reads (retained reads percentage > 60%) were 

generated using FASTQC v0.11.8 (19), and reads were aligned to the GRCh38 genome using 

HISAT2 v2.1.0 (20) to generate additional quality metrics. All quality metrics and read mapping 

statistics were aggregated using MultiQC v1.7 (21). Samples were then filtered based on several 

quality control criteria (e.g., effective sequencing depth > 10M, read GC content between 35% 

and 65%, transcriptome mapping perfectage > 50%, RNA integrity number (RIN) score >=5, 

mitogenome mapping percentage < 50%, and Ribosomal RNA mapping percentage < 1% . 

 

Differential Gene Expression Analysis 

For each dataset, a regression model was fit using limma with voom-transformed count 

data (22). Prior to model fitting, lowly expressed genes were removed (< 10 gene counts in the 

approximate proportion of samples that comprise the smaller OOD status group). To account for 

dataset-specific characteristics, covariates include in the regression model for each dataset 

reflected those from their respective published studies. All models included OOD status, age, 

sex, post-mortem interval (PMI), and RIN as covariates. Additionally, the Corradin model 

included race, sequencing batch, and 12 surrogate variables estimated by SVA (23). The Mendez 

model included cerebellar pH. The Seney model included race and brain tissue pH. The 

Sosnowski model included race, cocaine/amphetamine toxicology report status, ribosomal RNA 

mapping rate, gene assignment rate, mitochondrial RNA mapping rate, concordant read pair 

mapping rate, overall mapping rate, External RNA Control Consortium spike-in error rate, and 

10 quality control surrogate variables.  
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Meta-analysis 

To combine evidence of differential expression across datasets, we use the samples sizes 

and differential gene expression analysis p-values from our independent analyses of each study 

to conduct a weighted Fisher’s meta-analysis implemented by the R package metapro (24). Any 

genes that were only tested in one study (because they were lowly expressed in the others) were 

removed, and a Benjamini-Hochberg FDR threshold of < 0.05 was applied to declare a gene as 

significantly differentially expressed.  

 

Gene Set Overrepresentation Analysis 

The gene set overrepresentation analysis was conducted using the ToppFunn tool from 

ToppGene Suite, Transcriptome, ontology, phenotype, proteome, and pharmarcome annotations-

based gene list functional enrichment analysis (Toppfun) (25) to identify GO terms, biological 

pathways, and disease-annotated gene sets enriched for meta-analysis DEG. GO terms included 

gene sets from the MF, biological process, and cellular components categories (26,27). 

Biological pathways were from the MsigDB C2 BIOCARTA collection (v7.5.1) (28–30). 

Disease-annotated gene sets were sourced from DisGeNET (BeFree &Curated) (31) 

(Supplementary Table 1). The R package simplifyEnrichment (32) was used to do semantic 

similarity-based hierarchical clustering of GO biological process terms using the Wang et al. (33) 

distance metric (Figure 2.A). We set the seed in Rstudio for “888” for constant results (i.e., 

set.seed(888)). Binary cut was used to determine GO term clusters. Nine other clustering 

methods were compared against the binary cut method (Supplementary Figure 1), but were 

outperformed in similarity scores and cluster quantity by binary cut.  
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Partitioned Heritability Analysis 

In our study, we utilized sLDSC (34) to assess the heritability of 47 GWAS traits 

captured by the genomic regions spanning the OOD-associated differentially expressed genes 

(DEGs). Of these traits, 41 have been previously examined in relation to OUD (5) and 6 in 

relation to sleep (i.e., insomnia and differential sleep duration) (35,36) (Supplementary Table 2) 

For each of the 335 meta-analysis DEGs, we extracted the genomic region encompassing the 

gene body and 100 kilobases upstream and downstream of the gene ends. These regions, along 

with GWAS summary statistics for the 47 traits, were provided as input for sLDSC. We utilized 

the GENCODE v30 (17) comprehensive gene annotation GTF file for GRCh37 to obtain gene 

start and end coordinates and converted the GWAS summary statistics for each trait to the build 

GRCh37 format. An LD reference panel derived from the 1000 Genomes Phase 3 EUR 

superpopulation was used for the LD scores. The munge_sumstats.py script from the LDSC 

GitHub repository was used to ensure consistency in the formatting of the GWAS summary 

statistics. 

 

Differential Cell-type Proportion Testing 

Cell types were inferred using the BISQUE deconvolution tool (37) using DLPFC single-

nuclei RNA-seq (38) as the reference panel. The proportion of the nine cell types present in the 

reference (astrocytes, GABAergic neurons, excitatory neurons, macrophages, microglia, mural 

cells, oligodendrocytes, oligodendrocyte precursors, and T-cells) were estimated in the bulk 

RNA-seq data from the four studies. To determine whether cell type proportions differed by 

OUD status for each study, cell-type proportions were arcsin transformed, and a linear regression 

model was fit for each cell type with the transformed proportions as the outcome variable. The 
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explanatory variables for all models included age, sex, RIN, PMI, and OOD status. For each 

study, additional covariates were included (Corradin: RNA-seq batch and Race; Mendez: 

cerebellar pH; Sosnowski: cocaine amphetamine tox, “rRNA_rate,” “concordMapRate,” 

“overallMapRate,” “ERCCsumLogErr,” race). Two-sided t-tests were conducted within each 

dataset to assess study-specific associations between OOD and cell type proportion. Finally, a 

Fisher’s meta p-value was calculated by using the p-values from the sumlog function from metap 

v1.8 R package (39). Cell-type proportions were considered as significantly different by OOD 

status for Bonferroni-adjusted meta-analysis p-value < 0.05 (Supplementary Table 3).  

 

Study Reported Gene List 

DEGs from the prior studies were identified for our purposes based on the thresholds 

used and significance reported by each respective study and concatenated (N = 303): Corradin et 

al., 2022; Bonferroni corrected p-value < 0.05 (N = 10); Mendez et al., 2021; FDR p-value < 

0.05 and |FC| >1.5” (N = 29); Seney et al., 2021; FDR p-value < 0.01 and log2 FC > + 0.26 (i.e., 

FC + 1.2 or 20% expression change), focused on the top 250 genes of 567 (N = 250); Sosnowski 

et al., 2022; FDR corrected p-value < 0.10 and log2 FC < -1.5, with the addition of three extra 

genes (N = 4).  

 

Expression Quantitative Trait Loci Look-up 

We copied and transferred the summary statistics from the GTEx portal single-tissue cis-

QTL dataset (67,68) “Brain_Frontal_Cortex_BA9.v8.signif_variant_gene_pairs.txt” and 

“Brain_Forntal_Cortex_BA9.v7.signif_variant_gene_pairs.txt” for the colocalization analysis to 

match the GRCh37 reference genome used in the opioid addiction GWAS. Next, we used a 
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custom script that matched the ensembl ID from the meta-analysis 335 gene list and matched 

them in the eQTL summary statistics text file. The matched eQTL’s p-values threshold was < 

0.05.  

 

Colocalization of eQTL Egenes and Observed Traits Associated to OOD  

Colocalization was tested using the coloc v3.2.0 R package (42) with Brain Frontal 

Cortex (BA9) eQTL summary statistics from the GTEx Portal Version 7 for variants within 1 

Mb of the meta-analysis DEGs and summary statistics for 35 GWAS phenotypes 

(Supplementary Table 4, a subset of phenotypes used for the partitioned heritability analysis. All 

summary statistics used were in Genome Build GRCh37/hg19. Using the coloc.abf() function, 

the eQTL data were specified as a quantitative trait while the GWAS data were specified as case-

control for binary traits or quantitative otherwise. Only variants in both the eQTL summary 

statistics and the GWAS statistics were used (Supplementary Table 5). Colocalization hypothesis 

4 posterior probability > 0.7 was considered as a significant colocalization. 

 

Results  

Differential Gene Expression Meta-Analysis  

To increase statistical power and further our understanding of OOD, we leveraged the 

combined sample sizes of the four studies in a meta-analysis (N = 283, cases =170, controls = 

113). We used the gene expression data generated from our uniform RNA-seq data processing 

workflow and fit regression models consistent with those used by the original studies (see 

Methods). Next, we combined resulting DGE summary statistics (yielding N = 20�098 genes) 

and combined p-values using the “metapro” wfisher function. Most of the tested genes were 
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present in all four studies with the remaining tested genes occurring in two or three of the four 

studies (N = 20 098). Genes present in only one study were excluded from the meta-analysis 

(N=1 781; see Supplementary Figure 2). The results of the wfisher combined meta-analysis 

identified 335 significantly DEG (false discovery rate [FDR] < 0.05) as seen in Figure 1.A and 

1.B. Of the 335 DEGs gene set, 85.2% were protein coding and 10.6% were long noncoding 

RNA genes (Figure 1.C). Comparing the list of 303 DEGs reported in the prior DGE studies with 

the 335 DEGs from this meta-analysis, we observe that 66 genes from the prior studies (6,8,9,43) 

were retained, including DUSP2, DUSP4, DUSP6, EGR1, EGR4, ARC, and NPAS4 

(Supplementary Table 6 & 7) (Figure 1.D).  

 

Cell Type Deconvolution 

Previous studies have indicated that opioid use can affect cell type proportion within the 

brain (8,44). To investigate cell type proportions in this meta-analysis, we used a single cell Tran 

et al. (38) reference dataset of the DLPFC to deconvolve the cell type proportions for each 

sample across the four independent datasets for nine cell types (astrocytes, GABAergic neurons, 

excitatory neurons, macrophages, microglia, mural cells, oligodendrocytes, OPCs, and T-cells) 

(Supplementary Table 3). Significant differences in microglia cell type proportions were 

observed within the Sosnowski dataset (Bonferroni p-value = 0. 0.002) and in the meta-analysis 

of cell type differences across all four studies (Bonferroni p-value = 0.039) (see Supplementary 

Figure 3). Although microglia proportions are significantly different between OOD case and 

control, our analysis shows varying direction of effect across cohorts and that the statistical 

significance in the meta-analysis is primarily driven by the Sosnowski et al. (9) results. Although 
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limited by the reference panel for predicting cell type proportions in DLPFC, these results 

suggest that cell type proportions played a minimal role in the observed DGE. 

 

DEG Characterization Through Enrichment Analyses 

Gene Ontology Terms  

Gene Ontology (GO) enrichment analysis was performed on the significant meta-analysis 

genes to better understand the roles these genes may play in OOD. The 335 genes were tested for 

enrichment GO molecular function (MF), cellular component (CC), and biological processes 

(BPs), resulting in 78 significant terms (FDR-BH p-value < 0.05). Of the 78, three were GO MF 

terms relating to signal transduction and transcription factor activity including “MAP Kinase 

phosphatase activity” (p-value = 0.0412), “nuclear glucocorticoid receptor binding” (p-value = 

0.0412), and “DNA-binding transcription factor activity, RNA polymerase 2 specific” (p-value = 

0.0412). Ten of the enriched GO terms were GO CC terms and 65 were GO BP terms that 

reflected functions in synaptic signaling, chromatin regulation, and synaptic development, all of 

which are important in synaptic plasticity (45,46). Semantic clustering was performed on the 

enriched CC and BP terms separately. Within the GO CC terms, two clusters were identified: the 

largest being “vesicles dense cores,” which include synaptic vesicles followed by 

“acetyltransferase histone complex.” Of the GO BP terms, eight clusters were identified, 

including “morphogenesis,” “transcription regulation RNA,” “transsynaptic signaling synaptic,” 

“memory,” and “response hormone” with the largest z-score (Figure 2.A). The largest cluster of 

GO BP terms enriched were terms relating to morphogenesis, projection, and neuronal 

development.  
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Reactome Pathways 

To expand biological characterization of the 335 DEGs, with a focus on relationships 

among signaling and metabolic molecules, we conducted a Reactome pathway enrichment 

analysis (47). Of the 335 submitted genes, 182 were present in the Reactome database. Five 

pathways were significantly enriched for our DEGs (FDR < 0.05; Figure 2.B). The primary 

pathway was Signaling by Receptor Tyrosine Kinase (RTK): 32 DEGs among the 625 in this 

pathway, entity ratio 0.04. The remaining four pathways are all nested under the primary 

pathway, with the enrichments driven by subsets of the 32 DEGs linked with the Signaling by 

RTK pathway, Signaling by NTRKs, Signaling by NTRK1, Nuclear Events (kinase and 

transcription factor activation, and Neuronal Growth Factor stimulated transcription. Signaling 

by RTK is itself a subfamily of the Signal Transduction pathway, constituting a class of cell 

surface proteins enabling ligand binding for stimulating intracellular cascades. Among other 

functions, these TRK pathways mediate synaptic plasticity that may be affected by opioid 

addiction or OOD (Supplementary Table 8 & 9). 

When comparing the complete meta-analysis gene list (N = 335) to the retained gene list 

(N = 66) via GO similarity clustering, disease association (presented below), and pathway 

association, an increase in gene count within said associations was observed (i.e., biological 

process GO; Figure 3.A. This result indicates a strengthening of these GO term enrichments with 

the increase in statistical power under the meta-analysis (Supplementary Figure 1) (Figure 3.A). 

 

Pathway Enrichment: Orexin  

Overall functional enrichment analyses of the genes significant in meta-analysis using 

ToppFunn (MsigDB biocarta v7.5.1) show the orexin receptor pathway (48–50) as the only 
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significantly enriched gene pathway (Bonferroni p-value = 8.39 x 10-4). The orexin receptor 

pathway includes genes involved in the orexin receptor signaling system that encompasses a 

wide range of functions such as regulating the sleep-wake cycle, energy homeostasis, 

neuroendocrine function, glucose metabolism, reward seeking, and drug addiction. Within the 

significant meta-analysis genes, two primary gene categories are present—increased expression 

in OOD cases of genes associated with sleep deprivation (DUSP4, EGR1, ARC, NR4A3, NR4A1, 

PDP1, EGR2) and the increased expression in OOD cases of one of two primary receptors for 

orexin A and orexin B (HCRTR2) (see conceptual model; Figure 3.B). Although these genes 

have a variety of functions, these categories were used in the descriptions within the framework 

of the orexin receptor signaling pathway. Also, it is important to note that the direction of effect 

seen in these genes are opposite of what is associated with wakefulness and coinsides with sleep/ 

sleepness phenotypes (Supplementary Figure 4).  

 

Disease Enrichment 

Using the meta-analysis gene list, we conducted a disease enrichment analysis to find 

associations between the observed DEGs and more than 11 diseases that could be linked to 

OOD. Using the DisGeNET database (31), we identified 29 diseases with FDR p-values < 0.05 

(Figure 3.C) and 4 diseases with Bonferroni corrected p-values < 0.05: cocaine abuse (p-value = 

2.29 x 10-2), stress-psychological (p-value = 4.88 x 10-2), cocaine-related disorders (p-value = 

2.29 x 10-2), and hypertensive disease (p-value = 4.88 x 10-2), as seen in Table 2. When grouped 

based on symptom, morphology, and localization characteristics, five categories are observed: 

psychiatric disorders, substance abuse disorders, cardiovascular diseases, cancer diseases, and 

miscellaneous.  
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Genetics and Differentially Expressed Genes 

Partitioned Heritability with Published GWAS 

We examined whether DEGs associated with OOD were enriched for genetic signals 

associated with opioid addiction and other related phenotypes using Stratified linkage 

disequilibrium score regression (s-LDSC). We evaluated the 335 meta-analysis gene set against 

the 38 phenotype traits previously reported in Gaddis et al., 2022 (5) for opioid addiction 

GWAS. Given the enrichment in our DEG for the orexin pathway and its known role in sleep we 

added two phenotypes from Jansen et al., 2019 (36) for insomnia GWAS, three phenotypes from 

Dashti et al., 2019 (35) for sleep duration GWAS, and one phenotype from Lane et al., 2019 for 

sleep duration. After filtering for FDR adjusted p-values < 0.05, no phenotypes met the 

significant threshold (Supplementary Table 2). 

 

Colocalization Analysis of Differential Expressed Gene and GWAS Signals 

We conducted a colocalization analysis to determine whether any of the known eQTLs 

associated with the significantly enriched DEGs were associated with a trait or phenotype of 

interest. We ran the colocalization analyses using the coloc R package (42,51) on 36 phenotypic 

traits, some previously reported in Gaddis et al. (5) for opioid addiction GWAS and others from 

sleep cycle studies (Supplementary Table 5). We used eQTL single nucleotide polymorphisms 

from each of the 335 meta-analysis significantly enriched genes and found one significant 

colocalization between the DEG FADS1 and sleep duration (posterior probability H4 = 0.0196). 

FADS1 has been linked to neuropsychiatric disorders and sleep, which could be linked to the 

orexin receptor pathway (but not enriched in the pathway) (52).  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 13, 2024. ; https://doi.org/10.1101/2024.01.12.24301153doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.12.24301153
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Discussion  

The goal for this study was to extend discovery and assess the robustness of differences 

in gene expression associated with OOD by conducting a meta-analysis of four recently 

published, independent transcriptome-wide case/control studies of the DLPFC. Our meta-

analysis identified 335 DEGs, of which 269 were novel and 66 were retained from the gene lists 

previously reported by the independent studies (6–9). Gene set enrichment analyses indicated 

several biological features that suggest that these DEGs dysregulate biology important to 

addiction. GO term enrichment results characterized OOD-associated DGE as functionally 

related to synaptic signaling and morphogenesis (Figure 2.A). Follow-up of DEGs in reactome 

annotations found enrichment in 5 signal transduction pathways (Figure 2.B). Additionally, the 

set of meta-DEGs were significantly enriched for the orexin pathway (Figure 3.B) and associated 

with several diseases across the spectrum of substance use, psychiatric disorders, cardiovascular 

diseases, and cancers (Figure 2.C). There was little evidence that the observed DGE resulted 

from differences in cell-type proportion between cases and controls, with a difference for 

microglia observed in one of four cohorts and differing directions of effect across cohorts. 

Similarly, there was limited evidence of genetic drivers associated with addiction for most of the 

observed DGE. Four phenotypes shared heritability with DEGs: educational attainment, 

schizophrenia, bipolar disorder, and Alzheimer’s disease, only in less strict significant 

parameters (p-value < 1.0). Colocalization and evaluation of eQTLs did not identify variants 

associated with DEG that were also associated with GWAS signals. These findings suggest that 

these observed transcriptional changes are more likely to be consequences of opioid use, rather 

than underlying genetic risk. Overall, our results show increasing robustness of DEG findings 
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with increased sample size and independent cohort contribution, and they implicate the orexin 

pathway and other signaling within the DLPFC associated with OOD. 

Figure 4 provides a conceptual model linking DEGs and enriched pathways from across 

our analyses to suggest a coherent hypothesis of gene dysregulation associated with OOD in 

DLPFC. We detail these connections below. When we investigated all DEGs using the reactome 

database, the five pathways that were enriched converged on BDNF-activated TRK receptor 

signaling and FGF2 activated FGFR signaling (both nested within the RTK pathway), both of 

which lead to transcriptional regulation via CREB TF activation, neurite outgrowth, and 

plasticity (Figure 2.B & Figure 4) (53). This is important because both BDNF and FGF2 has 

well-established associations with drug addiction (54–60). However, what is not always clear is 

which of the three downstream signaling cascades BDNF & FGF2-RTKs activates: (1) PLC-

gamma, (2) Pi3K-AKT, or (3) MEK/ERK/MAPK signaling (53,61). Our data indicates, 

downstream activation of MEK/ERK signaling because SHC1, a DEG within the enriched 

pathways, binds to GRB:SOS when phosphorylated, which activates MAPK signaling (62). 

GPCR signaling (enriched pathway) can activate PLC mediated upregulation of intracellular Ca 

2+, PLC mediated activation of MAPK via  RAS GRP/GRP (Figure 4). TRK-MEK/ERK 

signaling has been shown to result in neuronal growth and plasticity (63). The observed up-

regulation of FGF2 could mediate transcriptional activation causing synaptic plasticity and 

growth as well (64). Together our functional enrichments of the meta-analysis DEGs show 

functions of RTK signaling and associated downstream events, which helps to elucidate the 

specific signaling cascade by which opioid overdose death, and posssibly opioid addiction, 

affects the neuronal plasticity within the DLPFC.  
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Another key finding that emerged in this meta-analysis is significant enrichment of genes 

in the orexin receptor pathway (MsigDB biocarta, v7.5.1). Orexin signaling occurs via activation 

of G-protein coupled hypocretin receptors ORX1 and ORX2. The neuropeptides orexin A 

(ORXA) and orexin B (ORXB) can bind and activate ORX2, whereas ORX1 can be activated by 

ORXA only (49). Orexin neurons are mostly located in hypothalamus, but their projections span 

many brain regions including the DLPFC (61,65,66). Our data show down-regulation of the 

ORX2 receptor, which activates MAPK and ERK signaling and regulates the sleep-wake cycle 

(67). Additionally, the activation of the ORX1 or ORX2 (GPCR) from ORXB (enriched DEG) 

mediates PLC activation which then can activate RAS GRP/GFP from the CAMKII enzyme. The 

CAMK2B gene that regulates CAMKII is nominally significant DEG in our meta-analysis 

(wfisher p-value = 0.00138, adj p-value = 0.0619) and is known to interact with the ARC and 

RAS genes (enriched DEGs), and also ERK/MAPK pathways (61,68). This activation of the RAS 

GRP/GFP can link GPCRs to RAS which is also a target of RTKs (Figure 4).  It is important to 

note that orexins are dynamic with the circadian rhythm. In neurotypical brains, orexins are up-

regulated during wake cycles and down-regulated during sleep cycles (67). A disruption of 

ORX2 has been shown in animal models to cause narcolepsy-like symptoms (69). Although 

orexin signaling has mainly been studied under the lens of the sleep-wake cycle, newer studies 

have shown associations with other neurological diseases including Parkinson’s disease (70) and 

addiction (71). It has been shown that patients with narcolepsy have low to undetectable orexin-

producing neurons in their brains and there are low rates of substance use among narcoleptics, 

which is attributed to reduced activation of the mesolimbic reward circuitry (67,69). On the other 

hand, patients with OUD tend to have much higher levels of orexin-producing neurons, and one 

of the primary withdrawal symptoms of opioid use is insomnia (67). It is important to note that 
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the decedents in this analysis are in a state of drug satiation (opioid overdose), which may 

explain the lower expression of genes in the orexin pathway in this study and findings of higher 

orexin levels in patients who are in withdrawal. Several clinical trials of Suvorexant and 

Lemborexant, orexin receptor agonists, will help to elucidate the relationships between orexin, 

opiate use, and sleep (72–75). These studies and ours suggest that orexin levels are not only 

correlated with sleep regulation but also the brain’s reward circuitry and specifically opioid use.  

Overall, this study has shown robust evidence of RTK-mediated synaptic plasticity and 

significant down-regulation of the orexin signaling pathway in OOD brains. Interestingly, studies 

have also established associations between orexin signaling, BDNF, and FGF2. Several studies 

that test orexins as therapeutics for neurological diseases, including anxiety (76), depression 

(77), and Parkinson’s disease (70), have shown that orexin treatment is associated with the up-

regulation of BDNF. Most notably, one study demonstrated that orexin A treatment increases 

BDNF protein in several neuronal subtypes, and orexin treatments in addition to blocking 

Pi3K/Akt signaling, which is known to upregulate BDNF transcription, did not result in BDNF 

up-regulation. Thus, they concluded that orexin A up-regulates BDNF through Pi3K/Akt 

signaling. This paired with our data suggests that in opioid overdose brains, orexin mediates 

regulation of BDNF, which in turn activates TRK signaling and downstream transcriptional and 

synaptic plasticity . GPCR signaling were also enriched with  HTR1B, EDN1, ORX2, and ADM 

genes which are also associated with the orexin pathway and link to Ras and MEK/ERK/MapK 

signaling, from the PLC mediated activation of CAMKII (Figure 4) (61). 

We employed an additional approach to characterize the DEGs by assessing their 

enrichment for established disease associations. This analysis revealed significant enrichment of 

DEGs associated with substance use disorders, specifically cocaine-related disorders, and a range 
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of neurological disorders encompassing mental health conditions, pain syndromes, 

neurodegenerative diseases, and excessive daytime sleepiness. Of particular interest, a subset of 

enriched genes exhibited associations with multiple diseases, as illustrated in Figure 3.C Genes 

like HTR1B, ARC, FOSB, FGF2, EGR1, BDNF, and GCC1 demonstrated overlaps in their 

disease associations. Unexpectedly, we also observed an enrichment of DEGs associated with 

cardiovascular diseases and cancer among those related to OOD. These cardiovascular 

conditions spanned a spectrum from brain-related disorders such as hypertensive diseases, 

cardiovascular disease, cerebral infarction, hypertension nephropathy, myocardial ischemia, 

transient ischemic attack, and acute myocardial infarction, among others. 

A common thread among the majority of these diseases was disruption in blood flow and 

their connection to addictive responses. Given that OOD typically results from suffocation, we 

noted intriguing gene overlaps with diseases associated with asphyxiation. These overlaps 

encompassed factors such as blood flow disturbances, cerebral nutrient deficiencies, oxygen 

deficits in the brain, damage to the cardiovascular lining, and stroke-related processes. 

 

Limitations of the Study 

A recurring issue within this field of OUD research using postmortem human brains is 

that we cannot distinguish between the effects of acute overdose death and chronic OUD: our 

results likely include signatures of both phenotypes. Follow-up analyses in functional paradigms 

with model organisms likely need to differentiate these biological processes. Although this study 

is the largest of DGE and OOD to date, by virtue of meta-analysis, it remains likely that it is 

underpowered to detect all dysregulated gene expression associated with OOD in the DLPFC. 

The relatively modest number of genes retained from the prior four independent cohort studies in 
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the meta-analysis suggests the need for larger sample sizes and more diverse samples to further 

enhance the robustness of our gene expression findings. Another potential limitation is the use of 

bulk tissue RNA-seq. Single cell sequence data would potentially offer more biologically 

informative data within specific cell types. However, our meta-analysis of existing data has 

identified novel findings, despite not being sensitive to cell type–specific gene expression. 

Finally, the ancestral genetic heterogeneity between samples is low, consisting almost entirely of 

people of European descent. This does not accurately represent the population in the United 

States or the population of individuals with OOD. Therefore, our results miss neurobiological 

gene expression patterns that differ across a range of ancestral populations.  

 

Summary  

Our primary objective was to expand our understanding of the neurobiology associated 

with OOD and shed light on OUD by conducting a meta-analysis of four recent, independent 

transcriptome-wide investigations of the DLPFC. Through this meta-analysis, we identified 335 

DEGs, 269 of which were novel discoveries and 66 were identified in the prior independent 

studies. This meta-analysis increased the pool of DEGs associated with OOD and underscored 

the growing robustness of these findings with larger sample sizes and contributions from 

independent cohorts. Significantly, the involvement of MAPK and ERK signaling in the DLPFC 

through a number of pathways, including the orexin pathway, GPCR signaling, and RTK 

signaling, emerged as a central discovery, providing new insights into the neurobiological 

mechanisms of opioid overdose death and opioid addiction. DEGs exhibited significant 

functional enrichment in BPs related to addiction, such as synaptic signaling and morphogenesis. 

Furthermore, our functional enrichment analyses shed light on the signaling cascades associated 
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with these genes, revealing RTK-mediated synaptic plasticity and a notable down-regulation of 

the orexin signaling pathway. These findings offer a foundation for future research into potential 

therapeutic interventions for OUDs by targeting the interplay between orexin (GPCR signaling), 

BDNF, FGF2,  (RTK signaling) (Figure 4).  
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Table 1.  Samples from all four studies used in the meta-analysis 

 

Corradin et al. Mendez et al. Seney et al. Sosnowski et al. 

Control 
(N=23) 

Case 
(N=21) 

Control 
(N=13) 

Case 
(N=27) 

Control 
(N=20) 

Case 
(N=20) 

Control 
(N=79) 

Case 
(N=69) 

Self-reported Sex 

Male 20 (87.0%) 17 (81.0%) 11 (84.6%) 15 (55.6%) 10 (50.0%) 10 (50.0%) 44 (55.7%) 50 (72.5%) 

Female 3 (13.0%) 4 (19.0%) 2 (15.4%) 12 (44.4%) 10 (50.0%) 10 (50.0%) 35 (44.3%) 19 (27.5%) 

Age at Death 

Mean (SD) 35.3 (12.4) 36.8 (10.2) 54.8 (15.2) 39.1 (13.2) 47.3 (9.49) 46.9 (7.27) 37.3 (9.72) 33.6 (8.85) 

Median  
[Min, Max] 

35.0  
[18.0, 56.0] 

39.0  
[21.0, 51.0] 

61.0  
[17.0, 74.0] 

36.0  
[19.0, 70.0] 

48.0  
[23.0, 60.0] 

45.5  
[35.0, 59.0] 

36.8  
[18.1, 49.7] 

33.4  
[18.6, 49.8] 

Race/Ethniciy 

White 14 (60.9%) 11 (52.4%) 7 (53.8%) 22 (81.5%) 13 (65.0%) 19 (95.0%) 54 (68.4%) 58 (84.1%) 

African American 9 (39.1%) 10 (47.6%) 3 (23.1%) 5 (18.5%) 7(35.0%) 1(5.0%) 25(31.6%) 10(14.5%) 

Asian 0 (0%) 0 (0%) 1 (7.7%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

Hispanic 0 (0%) 0 (0%) 2(15.4%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

Multi-Racial 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (1.4%) 
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Table 2.  Differentially expressed genes significantly enriched for a spectrum of diseases. Significantly enriched diseases that 

had FDR p-values < 0.05 can be seen (N = 29). Bonferroni corrected p-values < 0.05 can be seen in red (N = 4).  

 

 
Psychiatric 
disorders 

Substance abuse 
disorders 

Cardiovascular 
diseases Cancer diseases Miscellaneous 

Pain Addictive behavior 
Hypotensive 

disease 
Nasopharyngeal 

carcinoma Bejel 

Neurodegenerative 
Disorders 

Cocaine abuse 
Cardiovascular 

disease 

Malignant 
neoplasm of 
endometrium 

Cartilage—hair 
hypoplasia 

Mental disorders 
Cocaine-related 

disorders 
Cerebral infarction Brain neoplasms 

Nonvenereal 
endemic syphilis 

Stress, 
psychological 

Cocaine 
dependence 

Myelodysplastic 
syndrome 

Small cell 
carcinoma of lung  

Neuropathy  
Acute myocardial 

infarction 

Secondary 
malignant 

neoplasm of liver 
 

Anxiety and fear  
Transient ischemic 

attack 
Colorectal 
neoplasms 

 

Excessive daytime 
sleepiness 

 
Myocardial 

ischemia 
Carcinoid heart 

disease 
 

  Hypertensive 
nephropathy 
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Figure 1A. Volcano plot (FDR-BH corrected p-value < 0.05) for genes tested in the differential gene 

expression meta-analysis. Differential expression magnitude is represented here using the standardized 

mean differences (SMD) across studies. A total of 169 up-regulated (red triangle) and 166 down-

regulated (blue triangle) significant genes; 

Figure 1B. MA plot (FDR-BH corrected p-value < 0.05) using the SMD;  

Figure 1C. Biotypes of the 335 significant genes from meta-analysis partitioned into percentages of the 

various different types of genetic biomarker types;  

Figure 1D. Venn diagram representing how many genes were reported genes (significantly expressed 

genes documented in the four studies described above), meta-analysis genes (significant differentiated 

expressed genes Bonferroni corrected), and the 66 retained genes (number of genes that are present in 

both candidate gene list and meta-analysis gene list). 
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Figure 2A. Heatmap of FDR significant p-values < 0.05 toppgene biological process GO terms N = 65, 

clustering of semantic similarity, the larger the characteristic, the greater the correlation.  

Figure 2B. Dot plot of Reactome databases results from differentially expressed gene list. Entities 

(nucleic acids, proteins, complexes, vaccines, anti-cancer therapeutics, and small molecules) 

participating in reactions form a network of biological interactions and are grouped into pathways. 
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Figure 3A. Bar plot of overlapping biological process GO terms from both complete meta-analysis gene 

lists (Bonferroni-adjusted p-value < 0.05) and retained genes that were previously reported in the four 

studies. This is addressing the 66 genes that overlap, as seen in the Venn diagram.  

Figure 3B. Only Bonferroni corrected p-value < 0.05, enriched gene pathway (orexin receptor pathway) 

gene list (13 genes) from complete meta-analysis gene list. Up regulation (red) and Down regulation 

(blue).  

Figure 3C. Heat plot of enriched disease from complete meta-analysis gene list. Presented diseases were 

reduced from 29 to 15 significantly enriched diseases to focus on neurological and sleep-related 

disorders. 
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Conceptual diagram of cell signaling pathways enriched. 

Figure 4: Schematic including the DEGs within the orexin receptor pathway, GPCR signaling, and 

Tyrosine receptor Kinase (Trk) signaling enriched using ToppFunn, Gene Ontology (GO), Reactome 

enrichment analyses respectively. Receptors and gene products from the hit list for each pathway are 

included in this depiction. Solid arrows indicate direct regulation while dashed arrows indicate indirect 

regulation. Genes are colored to represent significant up regulation in green and down regulation in red. 

Additional pathway related genes that are included are colored blue. Within this diagram we see themes 

of synaptic plasticity in the pathways leading to actin/microtubule organization, neurite outgrowth, and 

GPC receptor recycling. We also see transcriptional plasticity, which is important response in addiction 

through the differential expression and regulation of activity regulated TFs (BDNF, ARC, DUSP2/4/6, 

ETV5, EGR1/2/5), chromatin remodelers (KAT6A, SUDS3, KCTD21). Together this diagram represents 

potential mechanisms by which these signaling pathways may be affected by opioid overdose.  
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