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Abstract

Human behavior is a dominant factor in road accidents, contributing to more than 70% of

such incidents. However, gathering detailed data on individual drivers’ behavior is a signifi-

cant challenge in the field of road safety. As a result, researchers often narrow the scope of

their studies thus limiting the generalizability of their findings. Our study aims to address this

issue by identifying demographic-related variables and their indirect effects on road accident

frequency. The theoretical basis is set through existing literature linking demographics to

risky driving behavior and through the concept of “close to home” effect, finding that the

upwards of 62% of accidents happen within 11km of a driver’s home. Using regression-

based machine learning models, our study, looking at England, UK, explores the theoretical

linkages between demographics of an area and road accident frequency, finding that cen-

sus data is able to explain over 28% of the variance in road accident rates per capita. While

not replacing more in-depth research on driver behavior, this research validates trends

found in the literature through the use of widely available data with the use of novel methods.

The results of this study support the use of demographic data from the national census that

is obtainable at a large spatial and temporal scale to estimate road accident risks; addition-

ally, it demonstrates a methodology to further explore potential indirect relationships and

proxies between behaviors and road accident risk.

1. Introduction

Understanding and quantifying human behavior, especially in diverse and ever-changing pop-

ulations, is a central challenge in behavioral sciences. This complexity arises from the myriad

of external factors influencing individual actions across different timeframes [1]. A specific

subset of this challenge exists in transportation, where human behavior directly correlates with

road safety. Previous studies have underscored that risky behaviors are responsible for over

70% of road accidents; such behaviors include, but are not limited to, reckless driving, dis-

tracted driving, and driving under the influence or fatigue [2–5]. Given the significant influ-

ence these behaviors wield on road safety, enhancing our ability to estimate these behaviors
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could substantially improve road accident prediction models, shape more effective policies,

and foster meaningful data generation.

However, the vast and diverse nature of any population presents methodological hurdles.

Collecting data on every actor’s emotional state, intoxication level, and propensities to act in

more risky manners is infeasible. In order to lessen these hurdles, researchers often narrow

their scope to specific demographics, locations, or other controlled variables, facilitating data

collection through surveys, in-car monitoring devices, or driving simulations [6]. While there

have been impressive results, this narrowed scope invariably sacrifices the generalizability of

the research to broader populations and areas which in itself can be considered a limitation.

To bridge this gap, our research aims to harness more widely available and generalizable

variables to estimate these hard-to-observe behaviors on a larger scale. A promising avenue, as

highlighted in previous literature, is the connection between demographic data and risky driv-

ing propensities. Additionally, another intriguing observation from the previous literature is

the "close to home" effect associated with road accidents. With reports showing that 77% of

accidents take place within 24 km of home and 33% happen within 1.6 km of home, showing

additional statistics that roads within 11 km of home accounted for half of all travel and 62%

of all accidents [7].

In this context, our study delves into the potential of leveraging census data to estimate

road accident frequencies. Building on the established ties between demographic factors

like age and gender and risky driving behaviors, with additional theoretical underpinnings

from the close to home effect of accidents, this research hypothesizes that census data can be

used to explain a notable amount of variance in road accident frequency. To further opti-

mize our predictions and mitigate limitations frequent in statistical modeling of complex

datasets, advanced regression-based machine learning techniques were employed in this

study.

2. Literature review

2.1 Demographics and risky behaviors

The relationship between human behavior and road accidents has been robustly established in

traffic safety research. Notably, over 70% of accidents are attributed to human behavior,

underscoring its significance in this field [2, 3]. Such patterns of behavior provide not only an

academic understanding but also avenues for potential enhancements in road safety.

Speeding, for instance, is a complex concern deeply interwoven with both individual and

environmental variables. Factors such as age, sex, and the driver’s condition—alongside envi-

ronmental conditions like road quality, traffic density, and weather—contribute to the frame-

work of speed-related road safety [8, 9]. Precise modeling of these influences offers insights for

potential interventions to address speed-related accidents.

Indeed, age and gender play pivotal roles in risky driving tendencies. Research consistently

shows that younger male drivers often display more hazardous driving habits [10–12]. Men, in

particular, tend to neglect traffic regulations, indulge in aggressive driving, and frequently

overlook safety precautions, such as seatbelts [13, 14]. In contrast, while women generally

exhibit more caution on the road, this is hypothesized to be associated with a quicker psycho-

logical maturity compared to men [15, 16]. Additionally, the inclination of males, especially

those in their 30s, to breach road rules is concerning [17].

Young individuals, notably those aged 15–24, often manifest a combination of zeal and

risk-taking, making them more inclined to dangerous driving behaviors [18]. Even though

they are involved in fewer accidents—which could be due to the younger age bracket’s lower

likelihood of possessing a driver’s license—the severity of their accidents is markedly higher.
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Conversely, older individuals, while typically more prudent drivers, are unfortunately more

vulnerable to severe injuries, especially when pedestrians [19–21].

Further examination of risky behaviors sheds light on the concerning relationship between

alcohol consumption and accident risks, as highlighted by Taylor et al. [22]. This connection

has been reaffirmed in various global contexts, including Nepal and Nigeria [23, 24], and

police records further emphasize alcohol’s significant role in both fatal and grievous injury

incidents [25]. Alarmingly, the cognitive impairments caused by fatigue resemble those

induced by alcohol, with particular demographics like younger drivers and shift workers being

more susceptible [26]. For instance, the risk of a driver nodding off at 2:00 am is 50 times

higher than at 10:00 am [27, 28].

In the contemporary context, distracted driving has evolved as a significant hazard. Numer-

ous studies, utilizing tools like simulators and surveys, delve into the effects of various distrac-

tions, ranging from mobile phone usage to billboard distractions [29, 30]. Teenage drivers,

with their higher tendency to use mobile phones and louder music, are particularly at risk,

given their limited driving experience [31, 32]. Seasoned drivers, however, exhibit more

restraint, suggesting that experience might reduce recklessness [33, 34]. Furthermore, emo-

tional states and personality traits, such as risk propensity, can substantially alter driving

behavior [35, 36], indicating a compelling confluence of psychology and road safety.

In summation, the literature paints a multi-faceted picture of risky driving behaviors,

shaped by personal, environmental, and psychological dimensions. The nuanced interplay

between demographics, specifically age and gender, with these risky behaviors is comprehen-

sively summarized in Table 1.

2.2 Close to home effect

The phenomenon of road accidents occurring closer to one’s residence has been previously

discussed. One study delved into this aspect, revealing that accidents over-represented near

homes predominantly occurred on low-speed (urban) roads and were more often attributed to

lapses in attention than violations. Furthermore, such accidents were more frequent at minor

intersections and mid-blocks than at major ones on these urban roads [41].

Table 1. Summary of literature related to risky driving behavior and road accident risk.

Factor Influence on Road Accident Risk Studies

Risky Behaviors

Human Behavior Attributed to over 70% of road accidents; key factor in risk assessment [2, 3]

Vehicle Speed Influenced by human & environmental factors such as age, sex, vehicle

capacity, road layout, weather

[8, 9]

Alcohol

Consumption

Dose-response relationship; odds ratio for accidents rises with consumption.;

decreased reaction speeds and attention; relationship with other behaviors

[22–25]

Fatigue Driving Affects young age, shift workers, etc.; similar impact to drunk driving [26–28]

Distracted Driving Arises from cell phone use, music, etc.; higher risk for teenagers [29–32, 37]

Reckless Driving Includes high alcohol consumption; less likely in experienced drivers [21, 22]

Personality Traits Depression, anxiety linked to increased accidents; neuroticism elevates risk [35, 36]

Age and Gender

Younger Drivers More prone to risky driving, fatal accidents; men more affected [18–20, 38–

40]

Male Drivers More likely to ignore signs, speed, drive aggressively; more accidents due to

driving style

[10–15, 17]

Older Drivers Generally safer but more likely to be injured; pedestrians at higher risk [41]

https://doi.org/10.1371/journal.pone.0296663.t001
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A study from the National Highway Traffic Safety Administration (NHTSA) reveal that a

significant proportion of vehicular accidents occur in close proximity to one’s residence, with

52% of all accidents happening within an eight-kilometer radius and 69% within sixteen kilo-

meters of home [42]. Complementing these findings, another research comprehensive data to

validate the widely held belief about the prevalence of accidents near one’s home, finding that

roads within an 11 km radius from home accounted for 62% of all accidents, with a strong

association with alcohol and diverted attention. Together, these studies underscore the intri-

cate interplay of familiarity, attention, and behavior in driving, suggesting that everyday routes

might pose unexpected risks for drivers.

Based on this literature review, we can infer that younger, male drivers are most likely to

exhibit more risky driving behaviors, thus increasing their odds allowing for further inference

that they are most at risk of being in an accident. Additionally, these inferences paired with the

statistical evidence that accidents are most likely to occur nearby one’s home, it is possible to

further postulate that accident frequencies may be higher in areas which have higher densities

of populations of whom are more likely to act more riskily, increasing their road accident

risks. This suggest the potential theoretical linkages and backing of the viability of widely avail-

able and easily accessible census data to be used in road safety research.

3. Materials and methods

This study uses data from the UK Department of Transportation [43] for the year 2019. The

choice of 2019 was based on it being the most recent year with a complete and normalized

data set before the COVID-19 pandemic. Road accident deaths decreased significantly during

the pandemic, with a 68% decrease in April 2020 compared to April 2019 [43]. Thus, to avoid

data inconsistencies, 2019 was selected having a total of 106,981 accidents.

3.1 Study area and hexagonal gridding

The first step of the process was to generate an H3 hexagonal grid [44] with resolution level 8

(area = ~730m2) using the h3pandas Python package [45]. This resolution is comparable to the

size of many of the United Kingdom’s, urban Lower Layer Super Output Areas (LSOAs),

which typically comprise around 1,500 residents and 650 households [46], allowing for a more

natural connection with the census data. This research has opted to use the hexagonal grid

over other grid systems as they have a stronger ability to preserve spatial clustering patterns

due to its equidistant nature [47].

After the hexagonal grid generation, census data was collected from the Population esti-
mates for the UK, England andWales, Scotland and Northern Ireland: mid-2019 dataset [48]

and then further interpolated according to Tobler’s pycnophylactic interpolation using Python

and PySAL’s tobler package and the area_interpolate function within the area_weighted class

[49]. Tobler’s pycnophylactic interpolation is a geographical data smoothing technique that

preserves the total volume of data while estimating values between known data points. It is

often used in fields like population density mapping, where it ensures that total population

remains accurate, distributing densities across the landscape while creating a smooth spatial

distribution [50].

The 106,981 accident data points were spatially aggregated into 34,554 hexagons using

Python and geopandas and a basic count function to count the accidents falling within each of

the respective hexagons [51]. To better target areas and minimize noise, a further sample of

the data was taken only using with a minimum of 4 accidents in 2019, leaving a total of 7,537

hexagons making up the final sample size. Then, to calculate the accident rates (dependent
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variable), the accident counts for each hexagon were tallied and divided by the area’s total

interpolated population.

When observing the demographic mosaic within this sample dataset, the male-to-female

ratio, averages at 1.005 across the regions. Intriguingly, this ratio experiences notable fluctua-

tions when dissected by age. The 10–19 years demographic witnesses a pronounced male pre-

dominance with a ratio peaking at 6.580, while the elderly segment, those above 65 years, leans

towards a female majority with an average ratio of 0.850.

The age-wise population distribution further paints a comprehensive picture. The 20–34

years demographic emerges as the most populous, constituting roughly 22.85% of the inhabi-

tants. Following closely are individuals aged between 35–49 years, making up 19.85% of the

populace. The representation of both the nascent (under 10 years) and the senior (above 65

years) cohorts is commendable, with respective shares of 12.61% and 15.69%. This demo-

graphic equilibrium, illustrated vividly on the map, provides a foundational understanding of

the study area’s populace, setting the stage for subsequent analyses. Table 2 highlights the vari-

ables used in the model along with their basic descriptive statistics.

To better understand the data and spatial distributions of accident rates throughout

England, Fig 1 illustrates the distribution of accidents in the study area.

The annual report underscores the predominance of behavioral causes, encompassing ele-

ments such as injudicious actions, driver errors, reactions, impairments, distractions, and

inexperience. The multifaceted behavioral nature of road accidents in the study area is revealed

through an analysis that identifies significant contributing factors (Table 3). Speeding emerges

prominently, accounting for 32% of accidents, with an equal distribution of 7% each for

exceeding speed limits and traveling too fast for conditions, and a concerning 18% due to

driver carelessness or recklessness. This category is closely followed by driving under the influ-

ence or while fatigued, which includes 2% for fatigue, 6% for alcohol, and 2% for other drugs,

summing up to 10% of the total accidents.

Distracted driving, while constituting a smaller percentage of 6%, is not to be overlooked,

with specific contributions from cell phone usage, inside and outside distractions. Inexperi-

ence and reckless driving, on the other hand, play a more significant role, representing 28% of

accidents. This includes 5% from inexperience, 1% from slow driving, and a substantial 22%

from various subcategories like following too close and sudden braking. Emotional factors

Table 2. Variables for modeling of driver behavior and demographic features.

Feature mean std. min. max.

Accidents per capita 0.001 0.002 0.0001 0.056

Male to Female ratio 0.978 0.114 0.620 5.025

Male to Female ratio aged <10 1.068 0.178 0.461 2.802

% of population aged <10 0.110 0.029 0.005 0.408

Male to Female ratio aged 10–19 1.072 0.221 0.164 10.194

% of population aged 10–19 0.111 0.026 0.024 0.482

Male to Female ratio aged 20–34 1.064 0.456 0.339 20.894

% of population aged 20–34 0.160 0.068 0.041 0.772

Male to Female ratio aged 35–49 0.961 0.193 0.392 7.543

% of population aged 35–49 0.183 0.029 0.030 0.338

Male to Female ratio aged 50–64 0.975 0.115 0.621 4.041

% of population aged 50–64 0.214 0.040 0.018 0.364

Male to Female ratio aged > = 65 0.884 0.112 0.371 2.500

% of population aged > = 65 0.222 0.072 0.007 0.611

https://doi.org/10.1371/journal.pone.0296663.t002
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Fig 1. Accident rates per capita across England.

https://doi.org/10.1371/journal.pone.0296663.g001

PLOS ONE Exploring the demographic influences of risky behaviors on road safety

PLOS ONE | https://doi.org/10.1371/journal.pone.0296663 January 22, 2024 6 / 15

https://doi.org/10.1371/journal.pone.0296663.g001
https://doi.org/10.1371/journal.pone.0296663


such as aggressive driving and feelings of nervousness add another 7%, making them an essen-

tial aspect to consider. Together, these categories provide a comprehensive view of up to 83%

of recorded road accidents.

3.2 Modeling

To investigate the relationship between road accident rates and demographic characteristics, a

variety of regression-based models were built using the variables from Table 2 as an input with

the output being the expected accident rate per capita. In order to build the machine learning

models, PyCaret, an open source AutoML tool, was used [52]. A major benefit to PyCaret is

that it can produce a wide range of models in order to find what has the strongest

performance.

Our PyCaret model was set up as follows:
setup(dataset, target=’Accidents per Capita’, normalize=True, normal-
ize_method=’robust’, session_id=123)

In this setup, the dataset is passed (with our dependent and independent variables) with the

target set to be “Accidents per Capita” and a session_id being passed as it acts as a seed allowing

for easy replicability. Additionally, PyCaret was used to conduct normalization (by passing

normalize=True as a parameter) on the dataset using the “robust” method (by passing the

normalize_method=’robust’ parameter). Normalization is a technique often applied

as part of data preparation for machine learning. The goal of normalization is to rescale the

values of numeric columns in the dataset without distorting differences in the ranges of values

or losing information. In the case of our set up, with the “robust” method, it scales and trans-

lates each feature according to the Interquartile range [53].

After running that code, the following PyCaret function was run to compare the perfor-

mance of the produced models, setting the variable best_model to be the top performing

model:
best_model = compare_models()

In total, this produced 18 separate models with their respective goodness-of-fit metrics.

However, only the top six were further analyzed, with linear regression being used as a baseline

Table 3. Road accident behavioral causes by subcategory.

Category Subcategory Percentage (%)

Speeding Exceeding Speed Limits 7

Traveling Too Fast for Conditions 7

Driver Carelessness or Recklessness 18

Driving Under the Influence or

Fatigued

Fatigue Driving 2

Alcohol Consumption 6

Other Drugs 2

Distracted Driving Using a Cell Phone 1

Distractions within Vehicle 4

Distractions Outside Vehicle 1

Inexperience and Reckless Driving Inexperience 5

Driving Too Slow for Conditions 1

Other Subcategories (e.g., Following Too Close, Sudden

Braking)

22

Emotions Aggressive Driving 6

Nervous, Uncertain, or Panic 1

Total 83

https://doi.org/10.1371/journal.pone.0296663.t003
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(Table 4). In our case, the Extra Trees Regressor model outperformed the others and was

selected as our best_model. It is important to note that while model hyperparameter tuning

was attempted with PyCaret’s built in methods the model did not improve, leaving us to

default to the best performing model.

To build our final model, the following code was utilized:
final_model = create_model(best_model)

This uses the PyCaret create_model function to further train the input model (our best_mo-

del, the Extra Trees Regressor) to obtain the final model. The results of this are shown below in

Table 5 with the mean values highlighted. The following table shows that the model had a max

R2 of 0.3587, a minimum of 0.2131, and a mean of 0.2872 after 10 folds.

The Extremely Randomized Trees (Extra Trees) algorithm offers an improvement on the

ensemble-based approach of decision trees. Its uniqueness lies in the method it employs to

determine split points. The conventional decision tree’s splitting criterion for regression tasks,

is as follows. Given a dataset, the objective is to find a feature and a threshold that minimizes

the variance of the target variable y within the resulting partitions.

The variance of y for a given set S is:

Var Sð Þ ¼
1

jSj

X

i�S
yi � �ySð Þ

2
ð1Þ

Where:

• |S| is the number of samples in set S.

• �yS is the mean value of the target variable in set S.

Table 4. Machine learning model results.

Model MAE RMSE R2 MAPE

Extra Trees Regressor 0.0024 0.0038 0.2872 0.4828

Light Gradient Boosting Machine 0.0023 0.0038 0.2670 0.4556

Random Forest Regressor 0.0024 0.0038 0.2584 0.4889

Gradient Boosting Regressor 0.0024 0.0039 0.2306 0.4714

K Neighbors Regressor 0.0025 0.0040 0.1810 0.4763

Bayesian Ridge 0.0026 0.0041 0.1582 0.5223

Linear Regression 0.0026 0.0041 0.1578 0.5237

https://doi.org/10.1371/journal.pone.0296663.t004

Table 5. Results of Extra Trees Regressor model training.

Fold MAE MSE RMSE R2 MAPE

0 0.0025 0.0000 0.0042 0.3271 0.4669

1 0.0024 0.0000 0.0040 0.2907 0.4581

2 0.0021 0.0000 0.0030 0.3587 0.4507

3 0.0024 0.0000 0.0039 0.2131 0.5401

4 0.0022 0.0000 0.0032 0.2760 0.4842

5 0.0024 0.0000 0.0036 0.2479 0.4903

6 0.0024 0.0000 0.0037 0.2971 0.4798

7 0.0027 0.0000 0.0050 0.3072 0.4880

8 0.0022 0.0000 0.0031 0.3364 0.4867

9 0.0024 0.0000 0.0037 0.2177 0.4829

Mean 0.0024 0.0000 0.0038 0.2872 0.4828

https://doi.org/10.1371/journal.pone.0296663.t005
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For a feature f and a threshold t, the dataset is split into two subsets Sleft and Sright. The vari-

ance reduction sought is:

VarianceReduction f ; tð Þ ¼ Var Sð Þ �
jSleftj
jSj

Var Sleft
� �

þ
jSrightj
jSj

Var Sright
� �� �

ð2Þ

In this equation, the goal is to find the feature and threshold that maximizes this variance

reduction.

The key departure of Extra Trees from traditional decision trees is in the selection of the

threshold t. Instead of considering every possible split and choosing the best one, Extra Trees

picks a random threshold for each feature under consideration. The best among these ran-

domly selected splits (in terms of variance reduction) is then chosen to split the node.

Formally, given a set of features F for each feature f � F, a random threshold tf is selected

from its range. The variance reduction is computed for each such (f, tf) pair, and the pair that

offers the most variance reduction is chosen for the split.

Like Random Forest, Extra Trees builds an ensemble of such trees. The final prediction for

a given input is the average of the predictions from all the trees in the ensemble:

ŷ ¼
1

T

XT

i¼1
yi ð3Þ

Where:

• T is the number of trees in the ensemble.

• yi is the prediction of the ith tree.

This contributes to a few notable advantages over other models—By eschewing the exhaus-

tive search for the best split, Extra Trees often achieves faster training times; The model often

exhibits higher bias due to the randomness but compensates with a reduction in variance,

making it more robust to overfitting; And the randomness leads to more diverse trees, which

aids in the ensemble’s overall performance, especially when dealing with intricate datasets.

The results of the Extra Trees Regressor will be further explored in the coming sections to

explain the results more deeply and how they relate to the previous literature as well as the

aims and scope of this research.

4. Results and discussion

The Extra Trees Regressor model showed a Mean Absolute Error (MAE) of 0.0024, Root Mean

Square Error (RMSE) of 0.0038, R-squared (R2) value of 0.2872, and Mean Absolute Percent-

age Error (MAPE) of 0.4828. The R2 may seem low, but it is important to consider the com-

plexity of the problem being addressed. In this case, the model only considers demographic

features, such as age and gender percentages and ratios, to predict a complex phenomenon as

accident rates. With that consideration, the R2 score is reasonable given the limited input

being able to explain nearly 29% of the variance of a complex problem.

Additionally, it is worth noting that the model is not intended to be used as a standalone

predictive tool, but rather as a tool to establish a link between road accident rates and demo-

graphic characteristics, built through previously discussed theoretical linkages. Furthermore,

the MAE and RMSE values are relatively small and within a comparable range, indicating that

the model is accurate in its predictions. The acceptable MAPE score is also a good indicator of

model performance. In summary, while the value of R2 may seem low, it is reasonable given

the scope of the model and the results of other evaluation metrics suggest that the Extra Trees
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Regressor is an effective with establishing a link between demographic characteristics and road

accident rates.

The SHAP (SHapley Additive exPlanation) values have been employed in Fig 2 to provide a

more precise interpretation of the results. SHAP is a mathematical technique used to explain

the predictions of machine learning models based on concepts of game theory. Each feature

can be calculated to help to understand the predictions of the model [54].

When interpreting a SHAP chart, the features are arranged in descending order of impor-

tance, each point in the plot represents a sample point of the data, and the colors (a gradient

from red to blue) represent the value of the sample point. For instance, in the case of "% of

Population (age 35–49)", the red-er the point indicates a higher percentage of the population

aged 35–49, while the bluer the point indicate a lower percentage. Furthermore, the points are

distributed along the plot with 0.0 on the x-axis indicating no major relationship between the

dependent variable and the features; points to the left of the 0 have a negative effect on the pre-

diction, while points to the right have a positive impact.

The SHAP bee swarm plot (Fig 2) generated by the Extra Trees Regressor model reinforces

the trends found during the literature analysis. Specifically, the SHAP plot indicates that road

accident rates increase when there is a greater proportion of people aged 35–49 than those

aged 20–34 and decrease as the elderly population increases. The gender of the population is

also a factor, and road accidents are more common in areas where there are more men

between 35 and 49 years of age. Although the trends for the other features are less clear, they

do learn towards aligning with previous research.

Another SHAP plot was produced to better understand the relationship that each feature

had. Below, Fig 3, shows the mean absolute SHAP value for each feature, in order of effect, as

well as the average direction that the feature pushed the direction with red indicating an

increase in road accident rates and blue indicating a decrease. This plot is useful as it gives a

clear representation of the data.

Fig 3 shows that there is a higher percentage of the population being over the age of 65

decreasing road accidents, and a near equal importance for percentage of the population being

aged 35 to 49 and the ratio of males to females aged 20 to 34 with both increasing road accident

Fig 2. SHAP distribution plot for demographics.

https://doi.org/10.1371/journal.pone.0296663.g002
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rates. Overall, this plot shows that in areas with more males there is a higher rate of road acci-

dents, and in areas with adolescents and the elderly having lower rates of road accidents.

Overall, the top three findings from analyzing the results of the model are that as the per-

centage of the population aged 65 or older increases, the average predicted ’Accidents per Cap-

ita’ decreases. This suggests that areas with a larger proportion of older residents tend to have

fewer accidents per capita, according to the model. Additionally, that the average predicted

’Accidents per Capita’ increases slightly as the percentage of the population aged 35–49

increases, but then it decreases after the percentage of that population gets to a certain point.

This suggests that there might be an optimal range of the percentage of the population aged

35–49 where the number of accidents per capita is highest. Outside this range, the number of

accidents per capita decreases, according to the model. Then, as the average predicted ’Acci-

dents per Capita’ increases as the male-to-female ratio in the 20–34 age group increases. This

suggests that areas with a higher male-to-female ratio in this age group tend to have more acci-

dents per capita, according to the model aligning well with previous literature.

It is important to note that the presence of these trends does not necessarily mean that

there is a direct correlation between the demographics of an area and road accident rates; nor

are the results surprising or novel in their own rights as research has proven across a range of

fields that there are connections between demographics and risky behaviors as well as risky

behaviors and road accident risks. However, the methodology and data used to further quan-

tify these linkages is novel demonstrating that the linkages found in previous, in-depth, case

studies on driver’s behavior and demographics holds true even with more generalized data

(i.e., census data). These results can inform a range of areas from more efficient planning and

resource allocations of EMS and other accident-related services to insurance premiums, to

more informed accident prediction models.

5. Implications

The implications of this research extend to a broad spectrum of stakeholders, from urban

planners and policymakers to researchers in the field of road safety. Our study underscores

Fig 3. Mean Absolute SHAP values and their impact.

https://doi.org/10.1371/journal.pone.0296663.g003
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the pivotal role of demographic data, especially from the national census, in illuminating

patterns and predictors of road accident frequencies. The findings further validate previous

research finding that human behavior, deeply influenced by demographic variables, plays a

significant role in road accidents, accounting for a substantial proportion of such incidents.

However, our findings bring additional novelty through the use of more general and avail-

able data, whereas previous research utilized surveys, in-car sensors, and other methods that

are unfeasible at a large scale as they involve identifying the demographics of every individ-

ual car.

With the rapid proliferation of data and modeling techniques, the importance of establish-

ing robust theoretical links between datasets and the variables they predict cannot be over-

stated. Machine learning models, while powerful, lack innate abilities to decipher the

intricacies of data. The responsibility of this deciphering then falls on the researchers. Our

work seeks to fulfill this by drawing upon abundant existing literature, notability in behavioral

and psychological sciences as well as the "close to home" effect, which reveals that a staggering

62% of accidents occur within 11km of a driver’s residence and over 70% of accidents are

caused by behavioral factors.

By utilizing regression-based machine learning models, we’ve successfully elucidated the

connection between an area’s demographic profile and road accident frequency in England,

UK. The findings suggest that census data can explain more than a quarter of the variance in

per capita road accident rates. This not only reaffirms the utility of widely accessible data in

echoing intricate patterns observed in more granular studies but also introduces innovative

methodologies to analyze potential indirect relationships.

For urban planners, our research paves the way for more precise road safety models by inte-

grating census data. This integration could amplify their model’s accuracy and facilitate well-

informed decisions. Policymakers, equipped with insights from our study, can develop tar-

geted risk maps. These maps can spotlight regions with higher propensities for accidents, pav-

ing the way for proactive interventions such as public awareness campaigns or heightened law

enforcement presence.

Furthermore, the ability to identify areas with a higher concentration of "risky" populations

can help optimize emergency response strategies. By strategically deploying Emergency Medi-

cal Services (EMS) in these zones, not only can accidents be preempted, but the aftermath of

incidents can be more effectively managed.

6. Conclusion

This study is anchored in the belief that census data can elucidate variations in accident rates,

building upon established relationships between risky driving, demographics, and road acci-

dents with the "close to home" phenomenon, which highlights the propensity for accidents to

occur near one’s residence, providing a theoretical supports the utilization of census data for

this analysis.

While behavioral sciences have made considerable advances, challenges persist in acquiring

granular and expansive driver data. By intertwining census data with the “close to home” prin-

ciple, our research surmounts some of these challenges. The resulting model, though open to

further enhancement, explains 28.7% variance in road accidents despite only having limited

features. Reinforcing insights from prior studies, our results suggest the theoretical influence

of driver behavior and demographics on accident rates is possible. Future research could

enrich this model by integrating overlooked factors like infrastructure, weather conditions,

and others that have been found to influence road accident rates.

PLOS ONE Exploring the demographic influences of risky behaviors on road safety

PLOS ONE | https://doi.org/10.1371/journal.pone.0296663 January 22, 2024 12 / 15

https://doi.org/10.1371/journal.pone.0296663


Author Contributions

Conceptualization: Dakota McCarty.

Data curation: Dakota McCarty.

Formal analysis: Dakota McCarty.

Investigation: Dakota McCarty.

Methodology: Dakota McCarty.

Supervision: Hyun Woo Kim.

Validation: Dakota McCarty, Hyun Woo Kim.

Writing – original draft: Dakota McCarty.

Writing – review & editing: Dakota McCarty, Hyun Woo Kim.

References
1. Kelly MP, Barker M. Why is changing health-related behaviour so difficult? Public Health. 2016; 136:

109–116. https://doi.org/10.1016/j.puhe.2016.03.030 PMID: 27184821

2. Chand A, Jayesh S, Bhasi AB. Road traffic accidents: An overview of data sources, analysis techniques

and contributing factors. Materials Today: Proceedings. 2021; 47: 5135–5141. https://doi.org/10.1016/j.

matpr.2021.05.415

3. Abdullah P, Sipos T. Drivers’ Behavior and Traffic Accident Analysis Using Decision Tree Method. Sus-

tain Sci Pract Policy. 2022; 14: 11339. https://doi.org/10.3390/su141811339

4. Andrew Yockey R, Barroso CS. Drugged driving among U.S. adolescents, 2016–2019, USA. J Safety

Res. 2023; 84: 1–6. https://doi.org/10.1016/j.jsr.2022.10.002 PMID: 36868638

5. Bener A, Burgut HR, Sidahmed H, AlBuz R, Sanya R, Ali Khan W. Road traffic injuries and risk factors.

Californian J Health Promot. 2009; 7: 92–101. https://doi.org/10.32398/cjhp.v7i2.2017

6. Brown ID. Exposure and experience are a confounded nuisance in research on driver behaviour. Accid

Anal Prev. 1982; 14: 345–352. https://doi.org/10.1016/0001-4575(82)90012-4

7. Burdett BRD, Starkey NJ, Charlton SG. The close to home effect in road crashes. Saf Sci. 2017; 98: 1–

8. https://doi.org/10.1016/j.ssci.2017.04.009

8. Mohan D, Indian Institute of Technology, Delhi. Road Traffic Injury Prevention Training Manual. World

Health Organization; 2006. https://play.google.com/store/books/details?id=9_dU2MFGA6UC

9. Yusuf IT, Adeleke OO, Salami AW, Ayanshola AM. THE FACTORS THAT AFFECT THE FREE FLOW

SPEED ON AN ARTERIAL IN ILORIN, NIGERIA. Nig J Tech. 2016; 35: 473–480. https://doi.org/10.

4314/njt.v35i3.2

10. Bener A, Crundall D. Role of gender and driver behaviour in road traffic crashes. Int J Crashworthiness.

2008; 13: 331–336. https://doi.org/10.1080/13588260801942684

11. Rhodes N, Pivik K. Age and gender differences in risky driving: the roles of positive affect and risk percep-

tion. Accid Anal Prev. 2011; 43: 923–931. https://doi.org/10.1016/j.aap.2010.11.015 PMID: 21376884

12. Russo F, Biancardo SA, Dell’Acqua G. Road safety from the perspective of driver gender and age as

related to the injury crash frequency and road scenario. Traffic Inj Prev. 2014; 15: 25–33. https://doi.org/

10.1080/15389588.2013.794943 PMID: 24279963

13. Romano EO, Peck RC, Voas RB. Traffic environment and demographic factors affecting impaired driv-

ing and crashes. J Safety Res. 2012; 43: 75–82. https://doi.org/10.1016/j.jsr.2011.12.001 PMID:

22385743

14. Vlahogianni EI, Golias JC. Bayesian modeling of the microscopic traffic characteristics of overtaking in

two-lane highways. Transp Res Part F Traffic Psychol Behav. 2012; 15: 348–357. https://doi.org/10.

1016/j.trf.2012.02.002

15. Goralzik A, Vollrath M. The effects of road, driver, and passenger presence on drivers’ choice of speed:

a driving simulator study. Transportation Research Procedia. 2017; 25: 2061–2075. https://doi.org/10.

1016/j.trpro.2017.05.400

16. Morgan A, Mannering FL. The effects of road-surface conditions, age, and gender on driver-injury

severities. Accid Anal Prev. 2011; 43: 1852–1863. https://doi.org/10.1016/j.aap.2011.04.024 PMID:

21658514

PLOS ONE Exploring the demographic influences of risky behaviors on road safety

PLOS ONE | https://doi.org/10.1371/journal.pone.0296663 January 22, 2024 13 / 15

https://doi.org/10.1016/j.puhe.2016.03.030
http://www.ncbi.nlm.nih.gov/pubmed/27184821
https://doi.org/10.1016/j.matpr.2021.05.415
https://doi.org/10.1016/j.matpr.2021.05.415
https://doi.org/10.3390/su141811339
https://doi.org/10.1016/j.jsr.2022.10.002
http://www.ncbi.nlm.nih.gov/pubmed/36868638
https://doi.org/10.32398/cjhp.v7i2.2017
https://doi.org/10.1016/0001-4575%2882%2990012-4
https://doi.org/10.1016/j.ssci.2017.04.009
https://play.google.com/store/books/details?id=9_dU2MFGA6UC
https://doi.org/10.4314/njt.v35i3.2
https://doi.org/10.4314/njt.v35i3.2
https://doi.org/10.1080/13588260801942684
https://doi.org/10.1016/j.aap.2010.11.015
http://www.ncbi.nlm.nih.gov/pubmed/21376884
https://doi.org/10.1080/15389588.2013.794943
https://doi.org/10.1080/15389588.2013.794943
http://www.ncbi.nlm.nih.gov/pubmed/24279963
https://doi.org/10.1016/j.jsr.2011.12.001
http://www.ncbi.nlm.nih.gov/pubmed/22385743
https://doi.org/10.1016/j.trf.2012.02.002
https://doi.org/10.1016/j.trf.2012.02.002
https://doi.org/10.1016/j.trpro.2017.05.400
https://doi.org/10.1016/j.trpro.2017.05.400
https://doi.org/10.1016/j.aap.2011.04.024
http://www.ncbi.nlm.nih.gov/pubmed/21658514
https://doi.org/10.1371/journal.pone.0296663


17. Awialie Akaateba M, Amoh-Gyimah R. Driver attitude towards traffic safety violations and risk taking

behaviour in Kumasi: The gender and age dimension. Int J Traffic Transp Eng. 2013; 3: 479–494.

https://doi.org/10.7708/ijtte.2013.3(4).10

18. Noland RB, Oh L. The effect of infrastructure and demographic change on traffic-related fatalities and

crashes: a case study of Illinois county-level data. Accid Anal Prev. 2004; 36: 525–532. https://doi.org/

10.1016/S0001-4575(03)00058-7 PMID: 15094404

19. Aguero-Valverde J, Jovanis PP. Spatial analysis of fatal and injury crashes in Pennsylvania. Accid Anal

Prev. 2006; 38: 618–625. https://doi.org/10.1016/j.aap.2005.12.006 PMID: 16451795

20. Huang H, Abdel-Aty MA, Darwiche AL. County-Level Crash Risk Analysis in Florida: Bayesian Spatial

Modeling. Transp Res Rec. 2010; 2148: 27–37. https://doi.org/10.3141/2148-04

21. Wier M, Weintraub J, Humphreys EH, Seto E, Bhatia R. An area-level model of vehicle-pedestrian injury

collisions with implications for land use and transportation planning. Accid Anal Prev. 2009; 41: 137–

145. https://doi.org/10.1016/j.aap.2008.10.001 PMID: 19114148

22. Taylor B, Irving HM, Kanteres F, Room R, Borges G, Cherpitel C, et al. The more you drink, the harder

you fall: a systematic review and meta-analysis of how acute alcohol consumption and injury or collision

risk increase together. Drug Alcohol Depend. 2010; 110: 108–116. https://doi.org/10.1016/j.drugalcdep.

2010.02.011 PMID: 20236774

23. Manandhar RB. Determinants of road traffic accidents in Nepal. Int Res J Mgt Sci. 2022; 7: 121–130.

https://doi.org/10.3126/irjms.v7i1.50632

24. Owoaje ET, Amoran OE, Osemeikhain O, Ohnoferi OE. Incidence of road traffic accidents and pattern

of injury among commercial motorcyclists in a rural community in south western Nigeria. J Com Med

and PHC. 2005; 17: 7–12. https://doi.org/10.4314/jcmphc.v17i1.32418

25. Prijon T, Ermenc B. Influence of alcohol intoxication of pedestrians on injuries in fatal road accidents.

Forensic Science International Supplement Series. 2009; 1: 33–34. https://doi.org/10.1016/j.fsisup.

2009.09.001

26. Lowrie J, Brownlow H. The impact of sleep deprivation and alcohol on driving: a comparative study.

BMC Public Health. 2020; 20: 980. https://doi.org/10.1186/s12889-020-09095-5 PMID: 32571274

27. Bharadwaj N, Edara P, Sun C. Sleep disorders and risk of traffic crashes: A naturalistic driving study

analysis. Saf Sci. 2021; 140: 105295. https://doi.org/10.1016/j.ssci.2021.105295

28. Horne JA, Reyner LA. Driver sleepiness. J Sleep Res. 1995; 4: 23–29. https://doi.org/10.1111/j.1365-

2869.1995.tb00222.x PMID: 10607207

29. Zokaei M, Jafari MJ, Khosrowabadi R, Nahvi A, Khodakarim S, Pouyakian M. Tracing the physiologi-

cal response and behavioral performance of drivers at different levels of mental workload using driv-

ing simulators. J Safety Res. 2020; 72: 213–223. https://doi.org/10.1016/j.jsr.2019.12.022 PMID:

32199566

30. Papantoniou P, Papadimitriou E, Yannis G. Review of driving performance parameters critical for dis-

tracted driving research. Transportation Research Procedia. 2017; 25: 1796–1805. https://doi.org/10.

1016/j.trpro.2017.05.148

31. Gershon P, Sita KR, Zhu C, Ehsani JP, Klauer SG, Dingus TA, et al. Distracted Driving, Visual Inatten-

tion, and Crash Risk Among Teenage Drivers. Am J Prev Med. 2019; 56: 494–500. https://doi.org/10.

1016/j.amepre.2018.11.024 PMID: 30799162
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