
A viscoelastic constitutive model for human femoropopliteal 
arteries

Will Zhanga,1,*, Majid Jadidib,1, Sayed Ahmadreza Razianb, Gerhard A. Holzapfelc,d, Alexey 
Kamenskiyb,2, David A. Nordslettena,e,2

aDepartment of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA

bDepartment of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA

cInstitute of Biomechanics, Graz Univerisity of Technology, Graz, Austria

dDepartment of Structural Engineering, Norwegian University of Science and Technology, 
Trondheim, Norway

eDivision of Biomedical Engineering and Imaging Sciences, Department of Biomedical 
Engineering, King’s College London, London, UK

Abstract

High failure rates present challenges for surgical and interventional therapies for peripheral artery 

disease of the femoropopliteal artery (FPA). The FPA’s demanding biomechanical environment 

necessitates complex interactions with repair devices and materials. While a comprehensive 

understanding of the FPA’s mechanical characteristics could improve medical treatments, the 

viscoelastic properties of these muscular arteries remain poorly understood, and the constitutive 

model describing their time-dependent behavior is absent. We introduce a new viscoelastic 

constitutive model for the human FPA grounded in its microstructural composition. The model 

is capable of detailing the contributions of each intramural component to the overall viscoelastic 

response. Our model was developed utilizing fractional viscoelasticity and tested using biaxial 

experimental data with hysteresis and relaxation collected from 10 healthy human subjects aged 

57 to 65 and further optimized for high throughput and automation. The model accurately 

described the experimental data, capturing significant nonlinearity and hysteresis that were 

particularly pronounced circumferentially, and tracked the contribution of passive smooth muscle 

cells to viscoelasticity that was twice that of the collagen fibers. The high-throughput parameter 

estimation procedure we developed included a specialized objective function and modifications 

to enhance convergence for the common exponential-type fiber laws, facilitating computational 

implementation. Our new model delineates the time-dependent behavior of human FPAs, which 

will improve the fidelity of computational simulations investigating device-artery interactions and 

contribute to their greater physical accuracy. Moreover, it serves as a useful tool to investigate 

*Corresponding author at: North Campus Research Center, Building 20, 2800 Plymouth Rd, Ann Arbor 48109., willwz@umich.edu 
(W. Zhang).
1Both authors acknowledge equal contributions for co-first authorship for this work.
2Both authors serve as co-senior authors for this work.

Declaration of Competing Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

HHS Public Access
Author manuscript
Acta Biomater. Author manuscript; available in PMC 2024 January 22.

Published in final edited form as:
Acta Biomater. 2023 October 15; 170: 68–85. doi:10.1016/j.actbio.2023.09.007.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the contribution of arterial constituents to overall tissue viscoelasticity, thereby expanding our 

knowledge of arterial mechanophysiology.
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1. Introduction

Peripheral Artery Disease (PAD) is often understood as an occlusion of the arteries of 

the lower extremities, leading to reduced blood flow to the tissues of the limbs. This 

condition affects millions worldwide, causing severe pain, tissue damage, and the loss of 

toes and limbs [1]. Although PAD accounts for less than 5% of all cardiovascular diseases 

[2], it is one of the most expensive vascular diseases to treat on a per-patient basis [3]. 

This is primarily due to the frequency of surgical repairs and interventions failing and 

requiring repeated care. The development of longer-lasting treatments requires a thorough 

understanding of the mechanical behavior of the arteries in the lower extremities, which can 

then inform computational modeling of device-artery interactions and improve the efficacy 

of treatment modalities.

The femoropopliteal artery (FPA) is the main artery in the lower limb. Although its 

mechanical properties have been extensively studied [4–9], the focus so far has been on 

its hyperelastic behavior. The FPA is a muscular artery. Compared to elastic arteries such 

as the aorta, it demonstrates a greater amount of hysteresis with a directional preference. 

This viscoelastic response is not well studied in the literature and is likely enabled by 

arterial microstructural characteristics. The FPA has a complex intramural structure, which 

includes longitudinally-oriented elastic fibers that facilitate longitudinal pre-stretch, reduce 

arterial kinking during limb flexion, and ensure energy-efficient FPA function [10]. In 

addition, circumferentially oriented smooth muscle cells regulate the diameter of the artery 

in response to downstream tissue oxygen demands, and helically-arranged collagen fiber 

families strengthen the artery and protect it from overstretching [4,11,12]. It remains 

unclear which of these FPA constituents primarily cause viscous dissipation, how much 

of it is direction-dependent, and what functional purpose FPA viscoelasticity serves. It is 

known that viscoelasticity in other arteries reduces the magnitude and temporal variation 

of circumferential stress and strain and causes reduced radial wall movement [13]. A 

greater viscoelastic response may also confer benefits such as increased resistance to abrupt 

deformations and a quicker rate of mechanical energy dissipation [14]. Regardless, it is 

important to account for the viscoelastic properties when designing medical devices that will 

interact with these arteries over millions of cycles, which can have significant consequences 

on both device durability and repair patency.

Traditional methods [15,16] for modeling arterial viscoelasticity mainly integrate rate effects 

using differential equations based on spring and dashpot elements. These approaches 

generally require many material parameters and extensive experimental data to describe the 

directional dependence and the nonlinearity of soft tissues. In addition, the optimal model 
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form has yet to be determined and tested for its ability to fit and predict the response of 

specific types of arteries. In recent studies, fractional viscoelasticity has been used to model 

the behavior of soft tissue [17,18] by representing the material with a continuous viscoelastic 

relaxation spectrum. This approach typically uses only one or two additional variables to 

model the viscoelastic response. The physical meaning of these parameters is also more 

intuitive to understand as the degree of viscoelasticity varies from no rate dependence 

(elastic) to pure stress rate dependence. This makes the approach very practical as it extends 

to the existing hyperelastic models and allows the study of individual intramural component 

contributions to the overall viscoelastic response [19–21].

We aimed to develop a new constitutive formulation that can describe the nonlinear 

anisotropic viscoelastic behavior of human FPAs. Specifically, we aim to separately identify 

the major contributors to the mechanical response, especially its viscoelastic component, 

without compromising the identifiability of the resulting parameters. To this end, we 

utilized the fractional viscoelasticity approach and a strain-energy function motivated by 

the extracellular matrix (ECM) structure of the FPA. We further enriched the optimization 

problem by integrating multiple data sources to improve material parameter estimation and 

optimized it for high through-put and automation. The proposed pipeline was tested on 

FPA tissues from 10 healthy middle-aged human subjects, and the results were analyzed 

to examine the relationship between the underlying microstructure and the mechanical 

response of the FPA.

In the following, we first provide an overview of the FPA microstructure and discuss the 

experimental data used for this study. We will then review the kinematic and hyperelastic 

constitutive formulations designed for the FPA. This will be followed by the viscoelastic 

extension of the constitutive model and the description of the algorithm and procedure 

for optimized parameter estimation. Finally, we will present the experimental data for ten 

human subjects and discuss the ability of our model to portray them.

2. Materials and methods

2.1. Microstructure of the femoropopliteal artery

The FPAs need to support two important physiological functions: cardiac cycle pulsation 

and the flexion-induced deformations of the lower limbs [22–25]. The former is facilitated 

by the smooth muscle cells (SMCs) of the tunica media, while the latter is supported 

by the elastic fibers in the external elastic lamina (EEL) located at the junction between 

the tunica media and the adventitia [10]. The structural orientations of these components 

are also specialized to facilitate these roles (Fig. 1). The SMCs are predominantly 

circumferentially oriented to enable regulation of the vessel diameter. On the other hand, 

the elastic fibers in the EEL are predominantly longitudinally oriented to allow mature, 

healthy arteries to maintain axial tension and avoid buckling during fore-shortening 

induced by limb flexion [24,26]. Tunica adventitia supports the FPA from the outside 

and prevents vessel overstretching through families of undulated type I collagen fibers 

mixed with dispersed elastic fibers and fibroblasts [27]. Together, these circumferentially 

oriented SMCs, longitudinally oriented elastic fibers, and helically-organized type I collagen 

fiber families constitute the primary load-bearing components of the FPA wall. They are 
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embedded in a matrix of medial type IV collagen and glycosaminoglycans (GAGs) that 

surround the SMCs and appear to have no preferred orientation.

2.2. Mechanical data

Five male and five female FPAs from tissue donors, ages 57 to 65, were obtained by Live On 

Nebraska within 24 h of death after receiving consent from the next of kin. All arteries were 

free of gross vascular pathology (Table 1). Planar biaxial extension tests were conducted on 

fresh tissues using a CellScale BioTester (CellScale, Waterloo, ON, Canada) with 2.5 N load 

cells. The tests were performed on 13 × 13 mm specimens immersed in 0.9% phosphate-

buffered saline (PBS) at 37 °C with the longitudinal and circumferential directions of 

the arteries aligned with the test axes. To ensure a repeatable response, all arteries were 

preconditioned for 20 loading-unloading cycles at the maximum estimated strain, which was 

in line with our prior experimental protocols aimed to achieve a repeatable response (see 

Fig. 9 of Nordsletten et al. [20]). After preconditioning, we used 21 strain-controlled loading 

cycles with different strain ratios to characterize arterial mechanical properties (Fig. 2). 

These included 10 longitudinal to circumferential strain ratios of 1:1 to 1:0.1 with a step size 

of 0.1, 10 ratios of 1:1 to 0.1:1, and a final ratio of 1:1. The three equibiaxial loading cycles 

were interspersed at the beginning, middle, and end of the testing sequence to verify that the 

tissue did not accumulate damage and remained within the viscoelastic range. Loading and 

unloading were done at a strain rate of 0.01 s −1. The experiment ended with a relaxation 

protocol in which the tissue was held under constant equibiaxial strain, and the decreases in 

longitudinal and circumferential forces were recorded over 600 s. The deformation gradient 

was measured by tracking the movements of graphite markers using a top-mounted camera, 

and the unloaded state before preconditioning was set as the reference configuration. Due to 

the model’s sensitivity to strain rate and strain history, we filtered the experimental data to 

remove outliers and high-frequency noise (see Appendix A).

2.3. Kinematics and kinetics

Deformation can be characterized by the mapping from the reference configuration Ω0 ⊂ ℝ3

to the physical configurations at time t, Ωt ⊂ ℝ3∀t ∈ 0, T , where X ∈ Ω0 denoting the 

material points in the reference configuration and x ∈ Ωt the corresponding spatial points 

in the deformed physical configurations [28–30]. The relative motion is defined by a 

displacement field u ∈ Ω0 × 0, T  such that x X, t = u X, t + X. The deformation gradient, 

which describes the stretch and shear of the material as well as the changes in volume, is 

characterized by the tensor F = ∇Xu + I and its determinant J = det F > 0 [30].3 Arteries are 

often assumed to be incompressible [31], i.e., J ≡ 1, although there is a debate on this issue 

in the literature [32–35].

The invariants of the right and left Cauchy–Green tensors C = FTF and b = FFT often 

provide the basis for developing constitutive relations (e.g., [28]), i.e.,

3∇X is the material gradient operator with respect to the reference configuration.

Zhang et al. Page 4

Acta Biomater. Author manuscript; available in PMC 2024 January 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



IC = C :I, IIC = C :C, IIIC = det C .

(1)

Like most biological tissues, arteries are often anisotropic due to embedded structural fibers 

such as collagen and elastin. SMCs, which are highly organized, can also be a source 

of tissue anisotropy. For developing constitutive models, it is useful to incorporate the 

structural orientation using pseudo-invariants that compute the strain along the structural 

axes. For example,

Ia = C :a0 ⊗ a0 = a0 ⋅ Ca0 = a ⋅ a

(2)

computes the squared stretch along a0, a unit normal vector in the material configuration. 

Here, a0 can represent the local orientation of collagen fibers, elastic fibers, or SMCs, and 

a = Fa0  represents the deformed vector. A generalized way of representing the orientation 

of these structural components, when they are not well-aligned to a single direction, is to 

replace the tensor a0 ⊗ a0 with the structure tensor

H = 1
4π∫S

ρ(a)a ⊗ adS, with trH = 1,

(3)

where ρ(a) is the 3D orientation distribution, i.e., the probability that the fiber is oriented in 

the direction of a, while the integration is over the unit sphere S [36].

Stresses are primarily defined from the reactions via the Cauchy stress formula t = σ ⋅ n, 

which is expressed in the deformed domain [28–30]. Alternatively, the first Piola-Kirchhoff 

stress tensor P is expressed with respect to the reference domain and is related to the Cauchy 

stress tensor σ by the Piola transformation [30]

P = JσF−T .

(4)

Another Piola transformation can be applied to calculate the second Piola-Kirchhoff stress 

tensor S, i.e.,

S = JF−1σF−T,

(5)

where the introduction of S, along with its strain conjugate E = 1
2 (C − I), are convenient for 

constitutive modeling since it is defined entirely in the reference configuration.
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2.4. Hyperelastic model

The hyperelastic model for the FPAs was previously formulated and used to describe arterial 

behavior during loading [9]. It had four distinct components, including collagen, c, elastin, 

e, passive SMCs, s, and the ground matrix, g, that is comprised of the remaining ECM. The 

strain energy is given by

Ψ = Ψg + Ψc + Ψe + Ψs − p(J − 1),

(6)

where p(J − 1) is the incompressibility constraint. In terms of the second Piola Kirchhoff 

stress tensor, the ground matrix is represented by a neo-Hookean material, i.e.

Ψg = μg
2 IC − 3 , Sg = 2∂Ψg

∂C = μgI,

(7)

where μg is a material parameter related to the ground matrix, while collagen, elastin, and 

SMCs are all modeled as Holzapfel-type fiber families sharing a similar form as

Ψk = μk
4bk

ebkIk
2

− 1 , Sk = 2∂Ψk
∂C = μkIkebkIk

2
Hk, Ik = C :Hk − 1,

(8)

but different structure tensors Hk. Here, μk is the modulus parameter, bk is the exponent 

parameter controlling the nonlinearity of the material, and k ∈ c, e, s  are indices for 

collagen, elastin, and SMCs, respectively. Elastin and smooth muscle cells are modeled 

as simple, uniformly aligned fiber families with

He = me ⊗ me, Hs = ms ⊗ ms .

(9)

In comparison to other major arteries, the important distinction of the FPA is that its 

elastic fibers are oriented longitudinally, SMCs are aligned mainly circumferentially, and 

adventitial collagen type I consists of two major fiber families crisscrossed at angles α
and −α with the longitudinal axis me. This is in accordance with the functional role and 

observed microstructure of the FPA (Section 2.1). The two fiber families are modeled using 

the structure tensor approach [36], i.e.

Hc, i = AI + Bmi ⊗ mi + 1 − 3A − B mn ⊗ mn, i ∈ 4, 6 ,

(10)

where m4 and m6 are the mean orientation of each collagen fiber family, A and B are the 

shape parameters used to parameterize the orientation distributions (ρ(a) in Eq. (3)) and mn

is the out-ofplane direction. The parameters A and B are typically derived by experimentally 
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measuring ρ(a) [9,36] and fitting the resulting data while assuming that the mean preferred 

direction lies in-plane and that there is symmetry about the mean.

The material orientations are not necessarily the same at the Cartesian coordinates 

representing the testing axes, i.e., the specimens may not be perfectly cut and aligned (Fig. 

3). The difference between the two can be represented by a rotation θ in the plane. Hence the 

mean material orientations are

me = cos θ, sin θ , ms = cos(θ + π/2), sin(θ + π/2)
m4 = cos(θ + α), sin(θ + α) , m6 = cos(θ − α), sin(θ − α) .

(11)

2.5. Normalized fiber model

To facilitate the parameterization, we used the scaling approach described in [37] with some 

minor updates. The parameters μk and bk in Eq. (8) are covariant because the parameter bk

increases the value of the curve as a whole like the parameter μk (Fig. 4 A vs. B). Therefore, 

a similar quality of fit can be achieved by increasing the value of bk and decreasing the value 

of μk or vice versa (Fig. 4C). With this in mind, we can introduce linear scaling according to

Sk
* = βkSk,

(12)

where

βk = 1
Imax, k

e−bklmax, k
2

, Imax, k = max
t

Ik(t) .

(13)

With this, Sk
* = μk when C = maxt C(t), allowing bk to only affect the nonlinearity of the curve 

(Fig. 4 B). For collagen, which consists of two fiber families, we take the greater of the 

two Imax. This approach modifies the topology near the objective function and, in particular, 

makes it more elliptical, significantly improving most optimization algorithms’ performance. 

This modification does not change the constitutive model response. All parameter values are 

mapped one-to-one, with the exponent bk having the same value in both forms. The modulus 

in the scaled case uk
* is related to the unscaled case by

μk = μk
*

Imax
e−bImax

2
.

(14)

All one-to-one parameter sets also have the same objective function value, which means 

that the topology of the optimization problem is fundamentally the same. As long as 

the algorithms converge successfully, the same parameter values are obtained and can be 

mapped back and forth. Another benefit of this approach is that the value of μk
* is more 
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consistent and physically meaningful. In this scaled form, μk
* represents each component’s 

stress contribution at maximum strain. If each component of the tissue can be tested 

individually, then μk
* can simply be set to the maximum stress encountered.

2.6. Viscoelastic extension

Studies have shown that fractional viscoelasticity – a class of viscoelastic models – captures 

some of the key viscoelastic behaviors of soft tissues [38–41]. Conceptually, viscoelasticity 

in soft biological tissues arises from a hierarchical distribution of relaxation mechanisms 

[42,43]. Instead of modeling the resulting viscoelastic relaxation spectrum using discrete 

independent elements, e.g., in a generalized Maxwell model, the fractional model represents 

the entire continuous spectrum using one constant, the order of the fractional derivative v. 

Each v characterizes a spectrum ranging from v = 0, purely elastic, to v = 1, purely viscous. 

A frequently used definition is the Caputo derivative [44], i.e.

Dt
vg = 1

Γ(1 − v)∫0

t
(t − s)−vġ s ds, v ∈ 0, 1 ,

(15)

which has the advantage that the Caputo derivative of any constant is 0. This approach was 

used to model viscoelasticity in a variety of soft tissues [18,45–48], including the heart 

[20,49], lung [50], liver [19], breast [51], heart valves [52], and arteries [21,53,54].

2.7. Final model form

Combining the above, the entire model in terms of the second Piola-Kirchhoff stress tensor 

is given by

S = Sg + Dt
vc Sc, 4 + Sc, 6 + Se + Dt

vs Ss − pC−1 .

(16)

Here, as commonly done in the literature, we considered elastin to be elastic in alignment 

with its functional role. Current studies on isolated elastin do not demonstrate significant 

viscoelasticity [55]. The ground matrix was also considered elastic because of its small 

contributions to the total stress. See further discussion in Sections 4.5 and 4.6, respectively. 

The invariant Ik is defined in Eq. (8) and the structure tensors Hk are defined in Eqs. (10) and 

(11). The parameters needed to characterize this form are ξ = μg, μc
*, bc, μe

*, be, μs
*, bs, θ, α, vc, vs . 

The parameters μk are the modulus parameters of each structural component of the tissue, 

and bk, k ∈ c, e, s  are the corresponding exponents, see Eq. (8). The parameter α is the angle 

of the collagen fiber families in Eqs. (10) and (11). The structure tensor parameters in Eq. 

(10) should ideally be obtained from imaging. However, noticing that these values were 

relatively consistent in our previous study, we set them to A = 0.155 and B = 0.4243, i.e., the 

average of the values from the previous work [9]. In addition, θ is the specimen alignment, 

and vc and vs are the viscoelasticity constants for the fractional derivative of the collagen and 

SMCs.
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2.8. Fractional 2PK stress update formula

The challenge with using fractional derivatives for modeling viscoelasticity is the 

computation of the time integral. If implemented naively, this results in a computation time 

complexity of O Nt
2  and a memory complexity of O Nt  for storing the strain history, where 

Nt is the number of time steps. Following efforts towards more efficient approximations by 

Yuan and Agrawal [56] and others [57,58], we developed an improved approach with better 

convergence properties and discussed its implementation for finite element problems [59]. In 

short, fractional derivatives of a tensor can be approximated using the Prony series, i.e.

Dt
vA: = β0A′(t) + ∑

k = 1

Np ∫
0

t
βkexp(s − t

τk
)A′(s)ds,

(17)

where β0, …, βNp and τ1, …, τNp are 2Np + 1 parameters optimized to match the decay for a 

given α. This can be related to the generalized Maxwell model, where these parameters must 

be determined individually. A discrete approximation can be made by taking advantage of an 

intermediate variable Qk, i.e.

Dn
vA: = β0

Δt (An − An − 1) + ∑
k = 1

Np
Qk

n, Qk
n = ek

2Qk
n − 1 + ekβk(An − An − 1),

(18)

and ek = exp −Δt/ 2τk . This provides O Nt  scaling for computation time and O(1) scaling 

for memory (for Qk
n). The parameters βk and τk can be precomputed independently from the 

function being differentiated [59].

2.9. Parameter optimization

We propose a three-part objective function

ℱ(ξ) = χ(ξ) + ϕ(ξ) (1 + P(ξ)),

(19)

where χ is the residual function, P is a penalty/regularization term for the parameters, and ϕ
is additional fitted data - in this case, the hysteresis of each loading cycle. See Appendix B 

for a more thorough exploration of these terms and their impact. For the stress residuals, we 

used the weighted L2 norm, i.e.

χ(ξ) = ∑
i ∈ 1, 2

∑
p = 1

np
Wii

p ∑
k = N0

p

Ne
p

Sii
k(ξ) − Sii

k 2,

(20)
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which generally converges with the fewest iterations. Only the normal stresses are 

considered due to testing limitations, and the inability to provide all the necessary 

information for accurately calculating the shear stresses [60]. Here, Wii
p are the weights 

for each loading cycle p and stress tensor component Sii. N0
p and Ne

p denote the initial and 

final index of each loading cycle, respectively. The weights are defined as

Wii
p = 1 + 1

4
p
np

2 ∑
k = N0

p

Ne
p

Sii
k + 1

np
∑

k = 0

Ne
np

Sii
k

−1
.

(21)

The first term represents an increase in confidence for the later cycles, with values in the 

range [1,1.25]. This increases the robustness of the parameter estimation against errors 

during testing by favoring the later loading cycles, of which the relaxation protocol is 

especially important for determining the viscoelastic constants (see Appendix B). The 

second term balances the weight of each loading cycle during optimization. Without this, 

the loading cycles with low-stress ratios are being biased against due to lower total stress. 

Considerations must also be given for the low-stress loading cycles being more prone to 

errors, bias, and noises. Thus, this term is the sum of the norm of each loading cycle plus the 

norm of the average of all loading cycles (see Appendix B).

The hysteresis is calculated by the midpoint rules, i.e., for loading cycle p, the hysteresis ℋii
p

is given by

ℋii
p(S, C) = ∑

k = N0
p + 1

Ne
p

1
2(Sii

k + Sii
k − 1)(Cii

k − Cii
k − 1) .

(22)

The full contribution to the objective function is given by

ϕ(ξ) = ∑
i ∈ 1, 2

∑
p = 1

np (∑p Np
e − Np

0)
np

Wii
p ℋii

p(S(ξ), C) − ℋii
p(S, C) 2 .

(23)

Because our objective function did not include shear stresses, there was less data for 

coupling between the material axes. This complicates the unique determination of the 

specimen orientation, θ, and the collagen fiber orientation, α. As a result, collagen tends to 

align with one of the material axes. From a modeling perspective, the directional responses 

became entirely decoupled, and the data were fit independently. Experimentally, however, 

the specimen orientation was close to the test axes, and the collagen fibers formed two 

families crossed between the material axes. Adding two small penalties on θ and α to 

account for these effects, i.e.,
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P(ξ) = 0.001θ2 + 0.01 α − π
4

2
+ vc − vlong

2

+ 1
2 vc + vs − vcirc

2
,

(24)

mitigated these issues and produced more consistent parameter fits. The scaling constants 

for these two terms are deliberately small, so they only affect the results significantly when 

the minimum is ambiguous (See Appendix B). The precomputed viscoelastic constants on 

vlong and vcirc are obtained by fitting the relaxation data Ŝi, k along each axis, i.e.

vi = arg minv∑
k

(Si, k

Si, 0
− tk

−v)
2

for i ∈ {long, circ} .

(25)

Due to the structural orientation of collagen and SMCs, only collagen affects the stress 

decay in the longitudinal direction, while both collagen and SMCs can affect stress decay 

circumferentially.

2.10. Optimization algorithm

To perform the optimization, we leveraged the differential evolution algorithm in the SciPy 

optimization and root-finding package [61]. Differential evolution attempts to find the 

global minimum by mutating a population of randomly seeded parameter vectors. Polishing 

allowed the best seeds to be grafted using the L-BFGS-B gradient method. To improve the 

search radius, 64 seeds per parameter (704 combined) were used along with a mutation 

factor of [0.7, 1.7] and a recombination ratio of 0.7. The constitutive model was coded in 

C++ and compiled as a Python module using the Cython framework [62].

Leveraging the scaling method (Section 2.5), all modulus parameter bounds, i.e. for 

μg, μc
*, μe

*, and μs
*, were set to [10−4, 300] kPa. For our experimental protocol, no 

specimens were loaded with stresses greater than 300 kPa. A different upper bound 

can be chosen for other experimental protocols. A modulus of zero leads to total 

ambiguity of the exponents, requiring a non-zero lower bound. A more adaptive bound 

was required for the exponent parameters. Following the observed trend, i.e., stiffer 

specimens required a larger exponent to exhibit nonlinearity, the bounds were set to 

bc ∈ 0.0, 30.0/ Cmax − 1.0) , be ∈ 0.0, 15.0/ Cmax − 1.0 , and bs ∈ 0.0, 15.0/ Cmax − 1.0 . Finally, 

θ ∈ − π/4, π/4  and α ∈ 0, π/2  represented the entire possible search space. The viscoelastic 

constants were in the range of [0,0.5]. In addition, we require that bc > be and bc > bs since 

collagen is generally stiffer than elastin and SMCs.

3. Results

We investigated the viscoelastic properties of FPAs from five healthy male and five female 

individuals aged 57 to 65 (Table 1). The resulting parameters are summarized in Table 
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2. The scaled modulus is an estimation of the stress fractions at the maximum strain 

(Eq. (14)). Using this metric, the SMCs were the dominant contributor to the total stress 

with a scaled modulus of μs
* = 57.5 ± 26.2 kPa, followed by collagen μc

* = 37.7 ± 16.7 kPa, and 

elastin μe
* = 17.8 ± 5.3 kPa. (Table 2). The contribution of the ground matrix, represented 

by a neo-Hookean model, was usually insignificant, i.e., μg = 1.4 ± 1.7 kPa. A substantial 

portion of the variations of these values were due to the amount of stress experienced by the 

specimens during the test. When normalized by the stresses at maximum strain, the SMCs 

accounted for a consistent 81 ± 9% of the circumferential stress and elastin for 31 ± 8% 

of the longitudinal stress. The collagen fibers, composed of two fiber families orientated 

between the axes, were generally more closely aligned with the longitudinal axis than the 

circumferential axis, allowing the collagen to absorb most of the longitudinal stress.

The most significant differences between these specimens were the exponent parameters 

bc, be, and bs (Table 2). They exhibited a strong correlation with the extensibility of the 

specimens. Initial analysis indicates a potential inverse correlation between the modulus of 

elastin μe and the exponent of collagen bc, but a larger sample size is required to validate 

this relationship. Aligning with traditional perspectives, the collagen fibers demonstrated the 

most nonlinearity, followed by the SMCs and the elastic fibers, which generally displayed 

a near linear behavior, i.e., be ≈ 0. A higher elastin exponent sometimes occurred in stiffer 

specimens, where there was no protruding toe region in the longitudinal direction.

We also observed a larger average viscoelastic constant for the SMCs (i.e., 

vs = 0.0497 ± 0.0214) compared to the collagen fibers (i.e., vc = 0.0259 ± 0.0075) (Table 2). 

This difference was generally difficult to perceive from the relaxation curves alone 

(Fig. 5 A), which is a mix of responses from the viscoelastic collagen and SMCs 

as well as the hyperelastic components of elastin and the ground matrix. Moreover, 

the effects of preconditioning led to an alteration in the reference configuration, which 

resulted in the inability to adequately capture the peak stress of the relaxation protocol, 

inducing a downward shift in the model’s entire relaxation response when compared to 

the experimental data. The underestimation of peak stress can skew the calculation of 

viscoelastic constants because greater viscoelasticity would lead to a more pronounced stress 

decay, allowing the latter part of the relaxation protocol to align more accurately. One 

approach to counterbalance this effect includes the integration of hysteresis and an initial 

approximation of viscoelastic constants described in Section 2.9.

On average, the specimens demonstrated a more significant amount of hysteresis 

circumferentially, e.g., Fig. 5 B right, than longitudinally. Since the SMCs are primarily 

oriented in the circumferential direction (Fig. 1), this provides a reasonable way of 

separating the viscoelasticity of SMCs from that of the collagen. This was reasonably 

successful, where the entire relaxation curve of the model shifted relative to the experimental 

data rather than resulting in a large discrepancy with the rate of decay (Fig. 5 A). These 

results highlight the importance of incorporating hysteresis as a distinct component within 

the objective function to estimate viscoelastic parameters.

The separated stress-strain curves for the individual ECM components of the last equibiaxial 

protocol of a representative specimen are presented in Fig. 5 B. There was a prominent and 
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nearly linear toe region longitudinally, which may be attributed to the presence of elastin. 

Due to the low exponent value, elastin contribution was generally small at maximum strain. 

In contrast, the toe region in the circumferential direction was much less prominent, and the 

curve was significantly more nonlinear. The amount of hysteresis circumferentially was also 

considerably larger, which cannot be explained by the collagen alone without affecting the 

longitudinal curves.

The best-fit curves for all loading cycles are also presented in Fig. 6. Although most of 

the longitudinal nonlinearity was due to the collagen fibers, the SMCs were consistently 

responsible for a significant portion of the nonlinear response circumferentially. This is 

reflected in the circumferential-longitudinal coupling of the mechanical response. It was 

common to observe a substantial decrease in the nonlinearity of the longitudinal response 

for the loading cycles in phase 2 as the maximum circumferential strain decreased (Fig. 

6 A left). On the contrary, the circumferential response for the loading cycles in phase 

3 remained significantly nonlinear as the maximum longitudinal strain decreased (Fig. 6 

B right). The former finding can be attributed to the diminished recruitment of collagen 

fibers in cross directions, leading to the curves approaching a nearly linear response, a 

characteristic typically associated with elastic fibers. Similarly, there was also a reduction 

in the recruitment of collagen fibers when the maximum longitudinal strain decreased in 

phase 3. However, the ensuing response suggests that the supportive structural component, 

the SMCs, diverges significantly from the behavior of elastin. These observations align with 

the microstructural composition of the FPA described in Section 2.1.

The correlation coefficient between the viscoelastic constants and the other material 

parameters was very low – a maximum of 0.26 for vs and 0.38 for vc (Table 3), suggesting 

they may be unique. In comparison, the correlation between the hyperelastic parameters 

of collagen, elastin, and SMCs was sometimes quite high, e.g., the correlation of μc and bc

of −0.97 and the correlation of μs and bs of −0.98. For clarity, a correlation coefficient of 

1.0 implies that the outcomes derived from modifying one parameter are indistinguishable 

from the consequences of altering the other parameter, which means that the corresponding 

parameters cannot be uniquely determined. After applying the parameter scaling (Section 

2.5), the correlation coefficient reduced to −0.27 for μc
* and bc and 0.37 for μs

* and bs. The 

results were not perfect due to the complexity of the full model (Eq. (16)). For instance, the 

correlation between μc and μe increased from −0.22 to 0.87. However, the overall outcomes 

represent a substantial improvement. Consequently, the scaled model required less than half 

the average number of iterations to achieve convergence compared to the original model. 

Notably, both methodologies converged to the same minimum value (Table 3 bottom).

When characterizing the hyperelastic response, it is common to adjust the reference 

configuration, since hyperelastic models cannot produce non-zero stresses at zero strain. 

Viscoelastic modeling differs due to the need to account for the strain history. In particular, 

the same reference configuration must be maintained throughout the experiment, so its 

choice is less clear. We tested the modeling analysis with different reference configurations, 

and the results demonstrate that choosing the first point before preconditioning as a 

reference led to the closest match between the unloaded stresses at the end of each loading 
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cycle afterward (Fig. 7). This suggests that viscoelasticity accounts for a significant portion 

of the changes in the unloaded configurational over time.

The quality of the fits was generally excellent, with an average R2 value of 0.995 (Table 

2) and similar levels of the root mean squared error (RMSE) for each loading curve (Fig. 

8). Even the first two equibiaxial protocols not used for fitting matched well. Due to the 

weights and the inclusion of the a priori estimate of v and the hysteresis, the RMSE tended 

to increase towards the low-stress protocols but remained within the acceptable range.

4. Discussion

4.1. Viscoelasticity in the FPA

Collagen fibers and SMCs are major contributors to the viscoelastic response of the 

muscular FPA. On average, the viscoelastic constant for the SMCs was twice that of 

collagen, which is not surprising given that the experimental mechanical data indicates 

significantly more hysteresis circumferentially, i.e., along the SMC orientation (e.g., Fig. 5). 

The complex machinery of the SMCs with their actin and myosin proteins was reported to 

produce a direction-dependent viscoelastic response with more significant hysteresis along 

the cell direction [63]. Physiologically, this may suggest that peripheral arteries that are 

farther from the heart experience a lower pressure gradient, and therefore energy efficiency 

may be less important than viscoelastic damping during diameter regulation. Conversely, a 

more elastic longitudinal behavior may be desirable to withstand the hostile biomechanical 

environment of the flexing lower limbs where the artery undergoes axial extension and 

compression during locomotion [22–25].

Importantly, the viscoelastic constants obtained in this study are very consistent, with the 

SMCs from nine of the ten specimens showing more viscoelasticity than collagen. For 

eight of the ten specimens, the SMC viscoelastic constants were 50% to 100% higher 

than for collagen (Table 2). The ten specimens we selected for this study were all from a 

similar age group (57–65 years) (Table 1) and did not exhibit gross pathology that could 

significantly alter the biomechanical response. However, as expected for most soft biological 

tissues, they exhibited some variability in their responses, particularly regarding the degree 

of extensibility captured by the exponent b k parameters (Table 2). Overall, however, 

the consistency in the viscoelastic parameters was good, suggesting that they were likely 

determined reliably. From a theoretical point of view, this makes sense since soft tissue 

extensibility is generally related to the degree of collagen fiber crimping in the reference 

configuration, which should not affect the innate properties of the intramural constituents. 

This consistency of the determined viscoelastic constants is encouraging as it opens up the 

possibilities to study how they change with the broader subject population and vascular 

pathology known to drive the change in intramural FPA composition [8,27]. We leave these 

questions to future studies.

4.2. Stress contribution of collagen, elastin, and SMCs

The stress fraction of collagen, elastin, and SMCs were relatively consistent in magnitude, 

although some variations were observed. If, instead, the values were analyzed relative to the 
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maximum axial stress, the SMCs consistently accounted for 81 ± 9% of the circumferential 

stress at maximum deformation. Likewise, elastin was responsible for 31 ± 8% of the 

longitudinal stress at maximum deformation. In addition, differences can also be affected 

by the variations in loading. However, it is encouraging that the values were similar among 

the analyzed specimens, which represented a relatively uniform group. The contribution of 

collagen was less straightforward to analyze because collagen families do not align with 

any of the material axes, and their orientation may vary between specimens. However, the 

collagen stress fraction was 63 ± 31% of the maximum stress value in the longitudinal 

direction and 18 ± 14% of the maximum stress value in the circumferential direction. It 

would be interesting to investigate how this contribution shifts with FPA aging as the elastin 

degrades and more of the cross-linked collagen takes on the redistributed load, causing a 

shift in the stress-strain toe region.

4.3. The importance of hysteresis

Incorporating hysteresis into the objective function and its weight relative to the residual 

stress is crucial for the reliable estimation of viscoelastic constants. The significance of the 

hysteresis term is on par with or exceeds the residuals in the objective function. It is not 

uncommon for the viscoelasticity along an axis to be overlooked in pursuit of a superior 

on-axis fit at high stresses. Moreover, the viscoelasticity also affects the unloaded state after 

each cycle. Consequently, any bias in the reference configuration due to preconditioning or 

other permanent set effects could result in suboptimal estimates of the viscoelastic constants 

(e.g., Fig. 7). This situation is compounded by the requirement for a continuous strain 

history. Given that the hysteresis is unaffected by the reference configuration, it serves as a 

valuable metric for estimating viscoelasticity.

4.4. Preconditioning and viscoelasticity

Preconditioning is typically used to achieve a repeatable response when assessing the 

hyperelastic behavior of postmortem tissues. After death, the adenosine triphosphate 

molecule that separates the actin-myosin bridges and causes muscle relaxation is no longer 

produced, and the cross-bridging locks the muscles in place until either decomposition 

or mechanical stretching breaks them apart. Partly for this reason (and partly due to 

the reorientation of other microstructural components such as collagen), the reference 

configuration is usually taken after the preconditioning to ensure a repeatable response. 

However, due to the importance of strain history for the viscoelastic response, there is 

no luxury for adjusting reference configuration for individual loading curves to produce 

congruent stress-strain data. Due to the need to continuously simulate all loading cycles over 

time, it is not clear what the reference configuration should look like. For all ten specimens 

tested in our study, the choice of the first data point, i.e., before preconditioning, led to the 

smallest difference in stresses after the unloading of the last equibiaxial loading cycle (e.g., 

Fig. 7). This suggests that viscoelasticity also plays an important role in the changes in the 

reference configuration during testing. For the ten specimens in this study, these viscoelastic 

effects were comparable to the preconditioning effects.
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4.5. Viscoelasticity of elastin

Elastin is well known for its contribution to the elastic recoil of arteries and other soft 

biological tissues. The more elastic the mechanical response of the tissue, the more 

efficiently it adapts to the physiological cardiac cycle loading. Despite this, the viscoelastic 

response of elastin has been described in several studies [55,64–68] but the observed 

stress decay poses several interpretative challenges. First, most experiments involved 

elastin undergoing dehydration and immersion in various solutions [64–68]. Isolated elastic 

structures reveal substantial stress decay within the first few seconds, but medium- to long-

term decay curves exhibited a tendency to flatten [55], typical of elastic materials. Second, 

elastin demonstrates no creep [55]. Third, it is difficult to argue that the aggressive process 

of extracting elastin from soft biological tissue, which usually involves decellularization and 

destruction of the remaining extracellular matrix, does not impact the mechanical response 

of the constituents. All these issues likely contribute to the inconsistencies in the reported 

experimental findings. Although the viscoelastic response of undisturbed elastin is likely 

minor, its inclusion in the model would have introduced an additional variable, thereby 

complicating the determination of other parameters.

4.6. Viscoelasticity of the ground matrix and GAGs

The viscoelasticity of the ground matrix is an interesting topic of discussion. By definition, 

these are the remaining components of the extracellular matrix but not the main structural 

components. This is commonly done in biomechanics since the mechanical response of the 

remaining matrix components tends to be insignificant. This also means that the ground 

matrix includes GAGs, proteoglycans, and other viscoelastic molecular structures. It is, 

therefore, natural to expect the ground matrix to be viscoelastic. However, considering that 

the overall response of the ground matrix is marginal (contributing less than 1% of the total 

stress, Fig. 5 B), it is unlikely that it could make a significant contribution to the overall 

viscoelastic response.

4.7. Optimization algorithm and objective function modification

The optimization algorithm is always an important consideration in any constitutive 

modeling problem. Gradient algorithms are superior in terms of speed, but they also depend 

heavily on the initial parameter estimate. More often than not, unimodality, convexity, and 

ellipticity are not guaranteed due to imperfect data and constitutive model nonlinearity 

and complexity. One approach is bootstrapping [69], but this can become quite expensive. 

Although the search space can be narrowed by examining the data, this is challenging with 

a large data set. Global algorithms like differential evolution are an attractive alternative 

with pseudo-randomized initial seeds and non-gradient-based exploration. Of course, genetic 

algorithms lend themselves to a more thorough exploration of the objective function, but 

there is still a significant investment of time.

Another avenue is to improve the objective function itself. Exponential-type constitutive 

models are well known for their banana-shaped rather than elliptic objective function 

surfaces, leading to slow convergence [37,70,71], e.g., Fig. 4 B. Applying our scaling 

modification (Section 2.5) led to significant gains in convergence even with a non-

gradient algorithm, highlighting the importance of ellipticity. This can also be seen in 
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the improvement of the correlations between parameters (Table 3), which become more 

decoupled after scaling. Since this modification is one-to-one and maintains the same 

objective function value, the same minimum is reached (Table 3, bottom). Since the original 

parameters are easily recoverable, there is no downside. For our problem, this led to an 

acceptable 5 to 20 min per specimen parameter estimation when run on 16 processors.

The optimal theoretical scenario would consider a model of the form Sf = aebEf and fitting 

log Sf with the parameter log a whereby the optimization problem could be formulated as 

follows

min
a, b

∑
i

(Sf(Ef, i) − Sf, i)2 min
A, b

∑
i

bEf, i + A − log(Sf, i) 2,

(26)

where A = log a, i.e. fitting to a straight line. This is the underlying reason why such 

parameter transformation approaches are effective in pure in silico studies like [70,71]. In 

practice, there are numerous problems with this approach. Using the logarithm skews the 

fit to the low-stress data and amplifies the noise in that range. It does not tolerate zero 

and negative stresses, which can be produced by reference configuration shifts and shear 

deformations. Finally, and most relevant to this work, negative stresses make perfect sense in 

the context of viscoelasticity.

4.8. Potential implications

While structurally motivated hyperelastic models to describe arterial behavior have been 

established for some time [72], the focus has been predominantly on elastic arteries, like 

the aorta, where viscoelastic effects are not as pronounced as in muscular arteries. Vessels 

such as the FPA are structurally different to facilitate their function further away from the 

heart. The exact reasons necessitating their greater viscoelasticity remain somewhat elusive, 

though the biomechanical environment provides some indication. A greater viscoelastic 

response of the FPA may confer benefits such as increased resistance to abrupt deformations 

from external mechanical factors like limb flexion and a quicker rate of mechanical 

energy dissipation [14]. The predominantly muscular composition also allows arteries 

like the FPA to control the body’s blood pressure and flow through vasoconstriction and 

vasodilation, which requires a higher degree of viscoelasticity to accommodate frequent and 

rapid structural changes. Regardless of the precise physiological underpinnings driving the 

pronounced circumferential viscoelasticity of the FPA, it is important to account for these 

viscoelastic properties when designing medical devices that will interact with these arteries 

over millions of cycles. This understanding can significantly optimize the longevity and 

effectiveness of the repair devices and contribute to improved repair patency.

4.9. Study limitations

Our study introduces a new viscoelastic constitutive model for human FPA and provides an 

algorithmic implementation to make it usable for large data sets. Nevertheless, the results 

must be seen in the context of study limitations. First, since our specimens were collected 

postmortem, assessing their active mechanical properties was not possible, and we have 
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only considered the passive SMC response. The active SMC tone has a major effect on the 

mechanical properties of muscular arteries in animals [73], and there is no reason to believe 

it does not have a similar effect in humans.

Secondly, estimating shear stress in biomechanical testing is quite difficult because of the 

heterogeneity of the specimens and the lack of attachment systems that can apply traction 

homogeneously to the edge. The best way to achieve this is to use self-equilibrating pulleys 

and sutures [60], but the problem of creating a homogeneous internal stress field remains. 

Additionally, applying suture attachments to small samples is technically challenging, 

time-consuming, and can result in tissue damage if done improperly. Most existing testers 

utilize rakes or clamped boundaries, which are much easier to use, and the off-axis forces 

are not even measured, so shear stresses cannot be estimated. There is no easy way to 

get around this limitation, but in our previous work with the self-equilibrating pulley 

system, the FPA shear effects were small when the test axes were aligned with the arterial 

directions [74], justifying the use of a rake system in our subsequent experiments [7–9]. 

In this study, we applied small corrections to the specimen orientation and collagen splay 

angle to compensate for the potential influence of specimen misalignment, and using a 

global algorithm and quality fits, we were able to achieve consistent results despite the 

uncertainties in the reference configuration caused by preconditioning.

Thirdly, the microstructure of the ECM has a major impact on the overall response of 

biological tissues. It determines the anisotropy and the axial coupling response, which can 

be quite complicated in tissues like the FPA that undergo complex deformations. Ideally, 

microstructural information should be obtained experimentally [9,36,75], but this requires 

special equipment, is very time-consuming and technical, and is generally not feasible 

for large specimen numbers. To compensate for this, we allowed the orientation of the 

specimen to vary. Due to the heterogeneity of the tissue, it can be challenging to align the 

specimen perfectly using visual cues alone. However, this can have a significant effect on the 

quality of the fit and the estimation of viscoelastic properties since poor fit quality naturally 

also affects the viscoelastic response. For example, over-estimating the maximum stress 

will result in a higher viscoelastic constant so that the stress will decay faster toward the 

experimental data. In addition, based on previous hyperelastic models [9], where the relative 

orientation of collagen fibers can vary significantly, the parameter α was also necessary. To 

alleviate the ambiguity of these parameters, we added small penalty terms for θ and α.

Lastly, it is likely that the three layers of the arterial wall: intima, media, and adventitia 

affect the overall viscoelasticity of the tissue differently, and their separation may provide 

additional in-sights into the viscoelastic FPA behavior. We did not perform this separation 

for two main reasons: (i) it would have disrupted tissue integrity and residual stresses, 

which could also contribute to viscoelastic effects, and (ii) such a separation is technically 

challenging (and often not feasible) in many healthy FPA tissues. Nevertheless, our approach 

allowed us to analyze the contributions of individual intramural components to the overall 

viscoelastic behavior, and we hope to be able to apply this methodology to a larger number 

of specimens in our future studies.
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5. Conclusions

We have introduced a fractional nonlinear viscoelastic constitutive model for human FPAs 

and the methodology necessary for the high-throughput analysis of their biaxial mechanical 

responses. Our model enhances current hyperelastic formulations by facilitating the 

discernment of the individual properties of collagen and SMCs. Tested on 10 FPA specimens 

from individuals aged 57 to 65, our approach consistently produced high-quality fits and 

stable viscoelastic constants. Our results demonstrate that the values of the viscoelastic 

parameters for SMCs were twice as high as those for collagen, with SMCs contributing 81% 

to the circumferential response and elastin influencing 31% of the longitudinal behavior. 

As the fiber families’ angles varied across each specimen, collagen’s contribution exhibited 

greater variability. The algorithmic implementation of this model bolstered the consistency 

and speed of parameter estimation, facilitating the creation of an effective pipeline for 

large-scale arterial data set analysis. This approach will enable further exploration of the 

influence of demographics and vascular pathology on tissue viscoelasticity.
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Appendix A.: Hermite filtering

Sudden and instantaneous data changes, such as high-frequency noise and data outliers 

due to sensor errors, pose a challenge for viscoelastic models, whose stress is directly 

proportional to the rate of deformation. An automatic algorithm is required to filter the 

input data while preserving the underlying response. Common filters in signal processing are 

usually not sufficient, as they significantly alter the data in the event of sudden changes, e.g., 

in the area of the transition between loading and unloading. For this reason, an interpolation 

strategy is generally more appropriate. Here, we need C 0 continuity throughout the 

entire test and C 1 continuity within each loading cycle. Under these conditions, Hermite 

polynomials are a natural choice. One way to express this is

f(s) = p0ϕ0
p(s) + q0ϕ0

q(s) + p1ϕ1
p(s) + q1ϕ1

q(s) if s ∈ 0, 1 ,
0, otherwise,

ϕ0
p(s) = 2s3 − 3s2 + 1, ϕ0

q(s) = s3 − 2s2 + s,
ϕ1

p(s) = − 2s3 − 3s2, ϕ1
q(s) = s3 − s2,

(A.1)

where p0 and p1 are the nodal values and q0 and q1 are the derivatives at the nodes. 

Neighboring Hermite elements share the nodal values p. If these neighboring elements are 

also in the same loading cycle, they share the same derivative values q.

Multiple Hermite elements are required for each loading curve to maintain the underlying 

response, and the length of each Hermite element needs to be sufficient not to be affected 
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by noise. In this study, we used 12 Hermite elements per loading or unloading curve. Let 

x = ge(t) for each element e and ξ = p0, q0, p1, q1, …, pm, qm  be the collection of nodal values, 

the full interpolation function with m elements is then given by

Y(t) = ∑
e = 1

m
ξ2e − 2ϕ0

p(ge(t)) + ξ2e − 1ϕ0
q(ge(t))

+ ξ2eϕ1
p(ge(t)) + ξ2e + 1ϕ1

q(ge(t)) .

(A.2)

Fig. A.1. 
Flowchart of the algorithm for filtering data. Y tj  is the interpolation of yj at tj.

Given the data ti, yi  for i ∈ 0, 1, …, n  then the Hermite parameters ξ can be determined by 

solving yi = Aijξj (summation over j is implicit here), where the interpolation matrix A can be 

determined from Eq. (A.2). Assuming that the rank of A is m, i.e., there are sufficient data 

points within the range of each Hermite element, then there exists a Moore-Penrose inverse 

A+, where A+A = I so that

ξj = Aji
+yi .

(A.3)

Considering that A only depends on ti, the same A+ can be used to determine the Hermite 

element parameters for all components of the displacements and forces and A can be used to 

interpolate for the filtered outputs.

Let ξj
c = Ac

ji

+
yi

c be the Hermite system for each curve c and let ξl = Alk
+yk be the generalization 

of one loading curve to the global system for the entire data set. Assuming that there are 

N loading curves, the cost of computing Alk
+ from Akl has a time complexity of O N3m3 , 

which could become intractable. As an alternative strategy, note that the interpolation of 
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each curve is independent except at the junctions. Let ki
c and lj

c be the mapping of the local 

curve index to the global index and m be the number of Hermite elements per curve, as 

above. At the junctions, ξ0
c = ξ2m + 1

c − 1 , i.e., Ac
0, i

+
yi

c = Ac − 1
2m + 1, i

+
yi

c. For N loading curves, the 

global Moore-Penrose inverse can be assembled by

Aljc, kic
+ =

1
2 Ac

0, i

+
+ Ac − 1

2m + 1, i

+
if j = 0 ∨ j = 2m + 1,

Ac
j, i
+

otherwise.

(A.4)

Assembling Alk
+ this way has a time complexity of only O Nm3 , where m is also capped.

For filtering, we assume that outliers in the data are the points that are more than 2.5 times 

the RMSE of the best fit of the Hermite elements. Thus, the filter can be applied through the 

following steps:

1. Fit data to Hermite elements

2. Compute root mean squared error

3. Find outliers that are more than 2.5×RMSE away from the interpolation

4. Remove outliers and their neighbors from the data set

5. Repeat step 1 for a set number of times

6. Return data

a. Remove outliers only: fill missing values with interpolated values

b. Remove outliers and noise: return interpolated values

An example algorithm is illustrated in Fig. A.1. Outliers can have a significant effect on 

the RMSE. By nesting the filter, we converge to the true RMSE resulting from the noise. 

Typically, we observed that the RMSE does not change significantly after three repetitions. 

This approach is very effective. Fig. A.2 A shows the filtered marker position versus the 

raw measured data in an example where the tracking of a marker was temporarily lost. The 

underlying data and noise were well preserved, with all outliers gone. Fig. A.2 B shows an 

example of noise removal. Here, the properties of the data are retained.
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Fig. A.2. 
A) Filtered results for data with outliers. B) Filtered results for noisy data.

Appendix B.: The form of the objective function

In developing the objective function presented in Section 2.9, our focus was on robustness 

(in terms of tolerating errors in the data), repeatability, convergence rate, and physiological 

accuracy. There were several methods we considered for achieving these goals, including 

the parameter estimation algorithm, changing the model form, changing the residual norm, 

changing the stress weighting, applying additional penalties on the material parameters, and 

incorporating multiple data sources. The optimization algorithm, the scaled model form, and 

the incorporation of hysteresis and relaxation data are presented in Sections 2.10, 2.5, and 

2.9, respectively, and are discussed in the discussion. We have done extensive testing of 

various residual norms and various combinations of parameter penalties prior to arriving at 

the final form.

In summary, there are 3 main components in the objective function (Eq. (19)): the residual, 

the hysteresis, and the penalties,

ℱ ξ = χ ξ + ϕ ξ 1 + P ξ ,

(19 revisited)

The hysteresis data are incorporated as a separate sum to the stress residuals. The relaxation 

data, on the other hand, are incorporated indirectly into the stress residuals and hysteresis, 

and directly as terms in the penalty for the viscoelastic constants. As such, the weights of 

these penalty terms are 2 to 3 magnitude greater than the penalty terms on the orientation of 

the specimen, θ, and the orientation of the collagen fiber families, α.
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Fig. B.1. 
Example best fit A) without the weights in Eq. (21) and B) with only the protocol-specific 

part of the weights.

Zhang et al. Page 23

Acta Biomater. Author manuscript; available in PMC 2024 January 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. B.2. 
Example showing discrepancy occurring in the data from testing. A) Shows the full 

protocol over time; the redundant equibiaxial loading curves at B) and C) are used to show 

differences in the curves. Weights are used to bias the fit to curve C).

Table B.1

Comparing best-fit values with different residual norms (Eqs. (B.1)–(B.3)).

Hyperelastic Viscoelastic

μg(kPa) μc
*(kPa) bc μe

*(kPa) be μs
*(kPa) bs yc vs R2 Niter

Quadratic 
(B.1)

4.87 35.02 12.40 25.36 0.00 88.35 11.13 0.016 0.032 0.996 747

Absolute 
(B.2)

4.32 39.25 13.73 23.01 0.00 93.25 12.34 0.014 0.034 0.988 1161

Cubic 
(B.3)

4.75 42.88 11.22 24.53 0.00 75.62 10.40 0.017 0.029 0.998 1620
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Fig. B.3. 
The number of specimens that converged to the best-fit values. The scaled fiber model 

(Eq. (12)) is shown in blue, and the normal fiber model (Eq. 8) is shown in red. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.)

P(ξ) = 0.001θ2 + 0.01 α − π
4

2

+ vc − vlong
2 + 1

2 vc + vs − vcirc
2

.

(24 revisited)

We are only applying generic penalties to the two parameters θ and α. The penalties are also 

sufficiently small, i.e., approximately 1% of the total objective function value, so they do not 

play a major role in determining the parameters with the exception of when there is a lack 

of uniqueness, i.e., the objective function is relatively flat. For this reason, the penalties are 

applied as a multiplier to the sum of the residuals and the difference in hysteresis to avoid 

the need to scale and normalize the penalties to the data. The weights are further chosen 

such that they have the smallest base power of 10 such that the penalties still produce the 

desired effect.

The weight introduced in Eq. (21) looks complex, but the idea behind it is simple.

Wii
p = 1 + 1

4( p
np

)
2 ∑

k = N0
p

Ne
p

Sii
k + 1

np
∑

k = 0

Ne
np

Sii
k

−1
.

(21 revisited)
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These are loading-cycle-specific weighting that has two aims: 1) recalibrate the importance 

of each loading cycle to the overall fit and 2) robustness and protection against errors 

during testing. Fitting the sum of squares error carries the inherent assumption of the 

data being random Gaussian distributed errors about a curve. However, we do not have 

perfect constitutive descriptions of biological materials. Idealization, homogenization, and 

utilization of a continuum approach are necessary. This means the errors are biased. 

Although there are theories for tackling this problem in maximum likelihood estimation, 

they require significantly more data that are often not obtainable – playing a part in the lack 

of their popularity. Because the true errors are biased, this places undue weight on the high-

stress data in determining the overall fit. The equibiaxial loading cycle and other loading 

cycles that are nearly equibiaxial are therefore disproportionately weighted in comparison 

to the low-ratio loading cycles. However, the entire spectrum of loading ratios is important 

for describing the axial coupling of the material, e.g., the orientation of the collagen fibers. 

Due to the lack of shear stress, these low-ratio loading cycles should not be neglected (Fig. 

B.1 A). Thus, we introduced a balancing weight, ∑k = N0
p

Nep Ŝii
k
, that scales by the total stress of 

each loading path. On the other hand, the low-ratio loading cycles are usually also the most 

error-prone and can negatively affect the overall fit (Fig. B.1 B). To mitigate this, the weight 

was balanced with the average stress of all cycles, 1
np

∑k = 0
Ne

np
Ŝii

k
.

The second part of the weight establishes a slight bias to the weights, i.e., the last loading 

cycle, the relaxation curve, can weigh 25% more than the first cycle. Most often, we do not 

observe a difference in the best-fit parameters with this value. However, the testing protocol 

(Section 2.2, Fig. 2) for the data sets is very long, sometimes over an hour. Within this 

period, there can sometimes be a slight shift in the grip of the attachment or a change in load 

cell voltage. While the overall mechanical response does not change significantly, it can shift 

and become somewhat inconsistent, thereby introducing multiple local minima. To resolve 

this, we introduced a bias in the selection of local minima. Because the relaxation data was 

from the last loading cycle, this weight was more favorable to the later loading cycles. Fig. 

B.2 B illustrates the equibiaxial behavior before such an event, and Fig. B.2 C illustrates the 

equibiaxial behavior after this event. The value of 25% may not be optimal but through our 

preliminary testing, it was found sufficient.

We also examined multiple residual norms used for the objective function,

χ(ξ) = ∑
i ∈ 1, 2

∑
p = 1

np
Wii

p ∑
k = N0

p

Ne
p

(Sii
k(ξ) − Sii

k)2,

(B.1)

χ(ξ) = ∑
i ∈ 1, 2

∑
p = 1

np
Wii

p ∑
k = N0

p

Ne
p

Sii
k(ξ) − Sii

k ,

(B.2)
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χ(ξ) = ∑
i ∈ 1, 2

∑
p = 1

np
Wii

p ∑
k = N0

p

Ne
p

Sii
k(ξ) − Sii

k 3,

(B.3)

These produced slight differences in the final parameters (Table B.1) due to the bias towards 

the high-stress data for the cubic, Eq. (B.3), and low-stress data for the absolute value, Eq. 

(B.2). The magnitude of the corresponding parameters did not change significantly, but the 

number of iterations to converge was clearly favorable for the quadratic norm. Because we 

are already using weights to balance the high-stress data, the quadratic form was chosen.

Finally, we investigated the uniqueness and reproducibility of the material fits. Some of the 

work on examining the parameter correlation and the quality of the global minimum was 

shown in Fig. 3. In general, we found sufficiently low parameter correlations to find the 

minimum. We also conducted a trial of 100 runs with randomized initial parameter seeds, 10 

per specimen, and checked how many converged to the global minimum. Here, we assume 

that the global minimum is the parameter set with the best R2 value for each specimen. 

Although not perfect, only 4 of 100 runs failed to converge to the optimal values (Fig. 

B.3). In comparison, 10 of 100 failed without implementing the scaling approach. Also, 

specimens with more linear behavior subjected to low stresses were more difficult to fit.
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Statement of significance

The demanding biomechanical environment of the femoropopliteal artery (FPA) 

necessitates complex interactions with repair devices and materials, but the viscoelastic 

properties of these muscular arteries remain poorly understood with the constitutive 

model describing their time-dependent behavior being absent. We hereby introduce the 

first viscoelastic constitutive model for the human FPA grounded in its microstructures. 

This model was tested using biaxial mechanical data collected from 10 healthy human 

subjects between the ages of 57 to 65. It can detail the contributions of each intramural 

component to the overall viscoelastic response, showing that the contribution of passive 

smooth muscle cells to viscoelasticity is twice that of collagen fibers. The usefulness of 

this model as tool to better understand arterial mechanophysiology was demonstrated.
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Fig. 1. 
Structural composition of the human femoropopliteal artery (FPA) from a representative 

middle-aged subject with longitudinally-oriented elastic fibers in the external elastic lamina 

(first row, Verhoeff-Van Gieson stain, elastin is black) and circumferential smooth muscle 

cells (SMCs) in the media (second row, Masson’s Trichrome stain, SMCs are red), 

surrounded by medial collagen (blue) and two diagonally-oriented families of collagen type 

I fibers in the adventitia (third row, multiphoton microscopy, second harmonic generation 

signal (blue)). (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.)
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Fig. 2. 
Graphical representation of the loading protocols showing the stretch λl in the longitudinal 

direction and λc in the circumferential direction of each cycle. There are four 

phases: preconditioning, decreasing ratios of circumferential stretch, decreasing ratios of 

longitudinal stretch, and stress relaxation. Black curves are simulated, but only the blue 

curves are used in parameter estimation. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.)
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Fig. 3. 
An illustration of the material axes of the smooth muscle cells (ms), elastin (me), and 

collagen (mc) used in the model: A) relative to the intact specimen, B) showing the tissue 

components, and C) relative to the Cartesian coordinate for mechanical testing ê. The color 

and subscript correspond to the components: collagen (green, c), elastin (blue, e), and SMCs 

(red, s). (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.)
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Fig. 4. 
Illustration of how varying the modulus μk  and exponent bk  of the fiber model (Eq. (8)) 

changes after applying the scaling (Eq. (14)). A) Changes in the stress-strain curve as the 

modulus (μk and the equivalent scaled modulus μk
*) is varied. B) Changes in the stress-strain 

curve as the exponent bk is varied. The local contours for the objective function with C) the 

original (Eq. (8)) and D) the scaled models (Eq. (14)) are also shown.
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Fig. 5. 
Representative fit of the experimental data: A) Data versus fit over time for all loading 

cycles after preconditioning, including the unfitted cycles. B) Best fit for the last equibiaxial 

loading cycle (blue shaded curve in A) illustrating the hysteresis and contribution of each 

tissue component. Sl is the second Piola-Kirchhoff stress in the longitudinal direction, and 

Sc is the stress in the circumferential direction, while λl and λc are the stretches in the 

longitudinal and circumferential directions, respectively.
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Fig. 6. 
Individual fits for individual loading curves with different axial strain ratios: A) Phase 2 

with decreasing circumferential strain. B) Phase 3 with decreasing longitudinal strain. Sl

is the second Piola-Kirchhoff stress in the longitudinal direction, while El and Ec are the 

Green-Lagrange strains in the longitudinal and circumferential directions, respectively.
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Fig. 7. 
Best-fit stress-strain curve of the last equibiaxial protocol with separate contributions, if the 

reference state is assumed to be A) before preconditioning, B) before the first equibiaxial 

protocol, and C) before the second equibiaxial protocol. Sl is the second Piola-Kirchhoff 

stress in the longitudinal direction, and Sc is the stress in the circumferential direction, while 

El and Ec are the Green Lagrange strains in the longitudinal and circumferential directions, 

respectively. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.)
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Fig. 8. 
The root mean squared error (RMSE) of the individual loading cycles for the representative 

specimen in Fig. 5: A) RMSE for the loading cycles in phase 2 of Fig. 2, where the 

circumferential strain decreases cycle by cycle. B) RMSE for the loading cycles in phase 3, 

where the longitudinal strain decreases. C) RMSE for the loading cycles in phase 4, where 

the relaxation testing was performed. Red bars represent the RMSE for the longitudinal 

stress, while blue bars represent the circumferential stress. The blue-shaded loading curves 

were not used for fitting. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.)
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Table 1

Specimen age, biological sex (M for male, F for female), and intimal thickening determined using histology.

ID Age Sex Intimal Thickening

1 64 M Moderate

2 59 M Low

3 61 M Low

4 65 M Moderate

5 60 M Moderate

6 61 F None

7 62 F Moderate

8 60 F Low

9 62 F Moderate

10 57 F Moderate
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