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ABSTRACT
This review provides an overview of the application of artificial intelligence (AI) in radiation therapy (RT) from a
radiation oncologist’s perspective. Over the years, advances in diagnostic imaging have significantly improved the
efficiency and effectiveness of radiotherapy. The introduction of AI has further optimized the segmentation of tumors
and organs at risk, thereby saving considerable time for radiation oncologists. AI has also been utilized in treatment
planning and optimization, reducing the planning time from several days to minutes or even seconds. Knowledge-
based treatment planning and deep learning techniques have been employed to produce treatment plans comparable
to those generated by humans. Additionally, AI has potential applications in quality control and assurance of treatment
plans, optimization of image-guided RT and monitoring of mobile tumors during treatment. Prognostic evaluation
and prediction using AI have been increasingly explored, with radiomics being a prominent area of research. The
future of AI in radiation oncology offers the potential to establish treatment standardization by minimizing inter-
observer differences in segmentation and improving dose adequacy evaluation. RT standardization through AI may
have global implications, providing world-standard treatment even in resource-limited settings. However, there are
challenges in accumulating big data, including patient background information and correlating treatment plans with
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disease outcomes. Although challenges remain, ongoing research and the integration of AI technology hold promise
for further advancements in radiation oncology.
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INTRODUCTION
Radiotherapy has a history of improvement along with the advances in
diagnostic imaging. With the advent of computed tomography (CT),
the ability to depict tumors not as shadows but as 3D structures has
advanced radiotherapy from 2D to 3D [1]. Furthermore, the diagnosis
of tumor spread and boundaries was made by contrasting preopera-
tive images with surgical pathology [2–5]. As the boundary between
tumors and normal organs has become clearer and with improved com-
putational power, intensity-modulated radiotherapy (IMRT) technol-
ogy has enabled the reduction of the radiation dose to normal organs,
while delivering a high dose to the entire tumor, even for more complex
tumor shapes. The improved spatial positioning accuracy of images and
the capability to capture tumor motion during treatment have made it
possible to further lower the dose to normal organs while administering
a very high dose to the tumor, thus enabling stereotactic radiotherapy,
even at metastatic sites if feasible [6–10]. However, as the treatment
plan becomes more precise, the standardization of contouring becomes
more critical. Although contouring atlases have been created in various
countries to standardize contouring [11–19], treatment plans are sub-
ject to the preferences and styles of planners [20]. Therefore, there are
several problems with standardizing the segmentation and treatment
plans. Several attempts have been made to reduce the time required for
treatment planning while promoting standardization by incorporating
artificial intelligence (AI)-based automation [21–24]. Over the past 5
years, numerous studies on AI-adapted radiation therapy (RT) have
been published. RT consists of three crucial steps: preparation, delivery
and evaluation. If we want to apply AI in these three steps, they all start
with ‘segmentation’. After appropriate segmentation, we can proceed
further with planning, optimization and online adaptive radiotherapy
and then evaluate and predict the outcome (Fig. 1).

This review summarizes the use of AI in RT, focusing on the
clinician’s perspective rather than on the technical aspects of AI
development. First, we summarize how auto-segmentation has
progressed, followed by the current trends in the use of AI for planning,
optimization and prognostic evaluation and prediction, and our
expectations that AI will benefit both patients and medical staff.

For the literature review, we searched the PubMed database
through 30 June 2023 for studies related to radiotherapy evalu-
ation using AI. As a basic policy, we extracted reports from the
most recent 5 years. For each section, ‘radiotherapy’ and ‘artificial
intelligence’ were used as keywords, with ‘segmentation’, ‘quality
assurance’, ‘optimization’, ‘planning’, ‘adaptation’ and ‘radiomics
and/or prognosis’ added. The citations and references of the retrieved
studies were used as additional sources of information for this narrative
review and were manually searched.

SEGMENTATION AND DEFORMABLE MEDICAL
IMAGE REGISTRATION

One of the most important steps in the preparation, delivery and
evaluation of radiotherapy, as well as the time-consuming tasks in
radiotherapy planning, is the segmentation of the target and organs

at risk (OARs). Since the advent of CT and its use in treatment plan-
ning, radiation oncologists have spent a lot of time contouring targets
and OARs. In the past, auto-segmentation was used with intensity
thresholds; however, this method was inadequate because it could only
automatically segment the lungs, intracranial and spinal canal. Subse-
quently, atlas-based segmentation methods were introduced [25–27]
wherein a mono- or multi-atlas is used, and segmentation is performed
through an installed atlas using the deformable medical image registra-
tion (DIR) technique.

Segmentation of OAR
DIR has been widely used and validated in commercial and open-
source applications, and various algorithms are currently in use. The
most common DIR method is intensity-based DIR, which enables
the segmentation of organs with similar intensities, such as the liver
and kidneys. To improve the accuracy of multi-atlas-based auto-
segmentation, it is recommended that more atlases be read to select
those that are similar to the target image. Therefore, one approach
to improve the accuracy of multi-atlas-based auto-segmentation is to
have the system select atlases that are similar to the target case by
reading more data. Schipaanboord et al. reported that auto-contouring
performance of a level corresponding to clinical quality could be
consistently expected with a database of 5000 atlases, assuming perfect
atlas selection [28].

The number of patients newly treated with radiotherapy in Japan in
2019 was reported to be 237 000, and 3D conformal RT using CT, or
an even more precise treatment, is currently being implemented [29].
If contour data from all patients in Japan could be centrally collected,
it would be possible to create a highly accurate contour atlas; however,
this method may be more time-consuming.

DIRs are most effective when used to change plans for patients.
Ideally, DIRs in the same patient should be perfectly matched, but this
is not always possible due to organ motion and deformation. In particu-
lar, organs such as the bladder and intestines are highly deformed, both
intra- and inter-operatively. This deformation necessitates adaptation
during treatment, but it also makes automatic contouring challenging.
This could be best described with prostate cancer, a common cancer
with a high incidence rate, which has been the focus of extensive
research in recent years [30–35]. During prostate cancer radiotherapy,
it is difficult for therapists to control the rectum, which is located on the
dorsal side of the prostate. Maintaining the same bladder volume and
rectal condition at the time of treatment planning remains a persistent
challenge for those involved in radiotherapy. However, with the advent
of adaptive radiotherapy, it may be possible to auto-contour the rectum,
which changes daily, rather than adjusting the bowel and bladder to the
planned CT and to instantaneously change the irradiation plan [36–
39]. Takayama et al. compared the accuracy of DIR for the prostate,
rectum, bladder and seminal vesicles between intensity-based and
hybrid-based DIR using Dice and a shift of emphasis. They reported
that the accuracy of DIR for the prostate was 0.84 ± 0.05 and that
for the rectum was 0.75 ± 0.05, relatively high agreement rates, even
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Fig. 1. Number of publications on AI in RT since 2010.

with intensity-based DIR [30]. The same report showed that using the
hybrid-based method with an anatomically constrained deformation
algorithm resulted in a dice similarity coefficient (DSC) of 0.9 or
higher for all organs. However, the hybrid-based method requires
contour creation for both DIR images, making it unsuitable for creating
deformation plans during irradiation, although it is very useful for the
dosimetry assessment of plans irradiated at different body positions.
In recent years, there have been several reports on segmentation using
deep learning (DL) methods. Highly applied methods include the
encoder–decoder-type convolutional neural network (CNN) and 2D
U-net or 3D U-net [40–42]. Xiao et al. described the usefulness of new
2D and 3D automatic segmentation models based on Refine Net for
the clinical target volume (CTV) and OARs for postoperative cervical
cancer based on CT. Their generated RefineNetPlus3D demonstrated
good performance with a DSC of 0.97, 0.95, 0.91, 0.98 and 0.98
for the bladder, small intestine, rectum, and right and left femoral
heads, respectively. Furthermore, the average manual CTV and OAR
contouring time for one patient with cervical cancer patient was 90–
120 min, and the mean computation time of RefineNetPlus3D for
these OARs was 6.6 s [43, 44]. These results show great potential
for the development of adaptive radiotherapy. However, the major

limitation of this report is that the patient underwent postoperative
irradiation for cervical cancer: that is, there was no gross tumor
volume (GTV), and the bowel bag, space potentially occupied by
the small and/or large bowel at any time during the treatment or at
the time of imaging [45], was contoured, not the intestine itself. They
described the difficulty in achieving a good DSC for the rectum owing
to its small volume and unclear outline. Because the gastrointestinal
tract is constantly moving, the ultimate goal is to transform the
dose distribution according to movement while monitoring during
irradiation; however, there are still issues to be solved. A recent report
by Liao et al. also demonstrated the successful segmentation of 16
OARs in the abdomen using the DL technique (3D U-Net was used
as the baseline model). They reported perfect contouring of the liver,
kidneys and spleen. The most common achievement of their algorithm
was its robustness. Their results were acquired from heterogeneous
CT scans and patients, whereas most previous studies have used more
homogeneous data. However, they failed to achieve satisfactory results
in the duodenum (DSC < 0.7) [46]. Although auto-segmentation
of OAR does have room for improvement, it can be inferred with a
reasonable degree of confidence that OAR segmentation is nearing
completion.
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The attainment of targets is promising; however, more research is
needed to determine its full potential. As described previously, post-
operative adjuvant radiotherapy is typically applied to the CTV, where
bone structures and other indices are targeted. A typical example is
postoperative radiotherapy for cervical or head-and-neck cancers [47–
49]. The advent of automated segmentation and planning techniques
for these domains is imminent, and their successful implementation is
anticipated in the near future given the trajectory of advancements.

Segmentation of the tumor
The segmentation of GTVs themselves has also been studied. Many
reports have been on the auto-segmentation of GTVs [50–55].
Although most of these were small internal cohort studies, one
interesting observational study performed external validation [56].
The participants were patients with lung cancer who typically had
relatively clear primary tumor boundaries. In this study, 3D U-Net
models were employed to segment lungs, primary tumors and involved
lymph nodes. The architecture and model hyperparameters were fine-
tuned using nnU-Net, a deep-learning-based segmentation method
that does not create a new network architecture, loss function or
training scheme (hence its clever name: ‘no new net’), including
preprocessing, network architecture, training and postprocessing for
any new task [57, 58]. An expert radiation oncologist delineated
the target to create discovery data, and validation was performed
using external sources. Volumetric dice and surface dice were used
for the assessment. Although the models demonstrated enhanced
performance compared to the inter-observer benchmark and achieved
results within the intra-observer benchmark during internal data
validation (performed by the same expert), their performance did not
surpass the benchmark when evaluated using external data (segmented
by different experts). This outcome may indicate the presence of
variations in segmentation styles and preferences among experts, as
substantial variability exists in the manual delineation of tumors [20].
However, AI assistance leads to a 65% reduction in segmentation time
(5.4 min) and a 32% reduction in inter-observer variability. Therefore,
it may be very useful in helping residents create segmentations that
are satisfactory to senior radiation oncologists at the facility where the
residents work or at a satellite hospital where experts are not always
present.

RADIOTHERAPY PLANNING
AI has long been widely used in RT planning. Second-generation AI, a
system that responds to conditioned reflexes by teaching AI knowledge
in the form of rules, called an expert system, has allowed the widespread
use of IMRT. Treatment planning for IMRT involves inverse planning,
in which dose distribution (or fluence map) optimization calculations
are performed to determine the behavior of the multi-leaf collima-
tor and to calculate the final dose distribution [59]. However, this
optimization process requires repeated trial and error by the treat-
ment planner and a treatment planning time of several hours. Another
drawback is that the quality of treatment planning is influenced by
the planner’s skill level [60]. Knowledge-based treatment planning, a
machine learning model, has been implemented in commercial treat-
ment planning systems (TPSs) since 2014 and is widely used today
[61]. Knowledge-based treatment planning is a system that registers

past treatment planning data with the TPS and creates a semiautomatic
treatment plan. This technology has significantly reduced the plan-
ning time from days to hours. Then, DL emerged as a promising new
approach to treatment planning. In the past 5 years, there have been
257 reports, including 26 reviews, on DL optimization. DL methods
learn the contour and dose distribution inputs to the CT for treatment
planning and automatically generate dose distributions by inputting
new contours [62, 63]. DL methods have been reported to generate
treatment plans comparable to knowledge-based treatment planning
[64]. Therefore, DL has the potential to fully automate planning from
segmentation to optimization in hours, minutes or even seconds.

Quality control and quality assurance
The next step in planning is the quality control (QC) and quality
assurance (QA) of the treatment plan. Once IMRT treatment planning
is complete, dose verification is required. Currently, this is performed
by actual measurements using dosimeters, films or multidimensional
detectors, which can take a few hours for staff [65]. Recently, research
was conducted to predict the results of gamma analysis results for
IMRT QA using machine learning of the gamma analysis results mea-
sured using a 2D detector [66]. This shortens the QA time, and the
results suggest that QA using DL is a promising direction for clinical
radiotherapy.

DELIVERING THE PLAN
Image-guided radiation therapy

AI has also been studied in the irradiation process in radiotherapy treat-
ment rooms. Before irradiation with the treatment beam, the patient’s
position is verified using an image-guided radiation therapy (IGRT)
system. Cone-beam computed tomography (CBCT) images used for
IGRT have a lower soft tissue contrast and a higher noise ratio than CT
images, which affects the accuracy of image registration [67]. Recent
studies have been conducted to improve CBCT image quality using U-
Net and CycleGAN [68, 69]. Generating CT-like images from CBCT
by learning the conversion between treatment-planning CT images and
CBCT images has been proposed. In addition, dynamic tumor-tracking
irradiation is sometimes used for moving tumors, such as lung or liver
cancer. To date, irradiation has been performed while observing a gold
marker placed near the target, or using a correlation model created
from the movement of an external marker placed on the abdominal wall
[70–73]. However, these methods have some limitations, such as being
invasive and not always correlating the external marker with the tumor
position [74]. Consequently, research is underway to achieve real-
time image tracking using X-ray projection images without markers,
and to improve the accuracy of tumor position prediction using AI to
compensate for the time delay of the device [75, 76].

Adaptive radiotherapy
Finally, a technology called online adaptive radiotherapy, which com-
pletes image acquisition, treatment planning (modification) and irra-
diation of the treatment beam while the patient lies on the treatment
bed, is currently in practical use. There are two major methods for
implementing adaptive radiotherapy: using magnetic resonance imag-
ing (MRI)-equipped equipment and using CT (or CBCT)-equipped
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equipment [77–79]. The former method was initially put into practical
use through an MR-Linac, which can accurately obtain MRI images of
tumors and soft tissues prior to treatment. However, CT value data is
essential for dose calculation, and technology to generate virtual CT
images from MRI scans using AI has been developed and implemented
in clinical settings [80]. Although the conversion is limited to certain
areas and the accuracy is not perfect, this technology has significant
future potential. On the other hand, in the latter method, CBCT is used
for adaptation; however, dose calculation cannot be performed directly
on the CBCT images acquired on the treatment table either, because
CBCT has a limited field of view, incorrect CT value, or increased
amount of image artifact. At present, the system generates virtual CT
image by deforming the pretreatment planning CT to the CBCT using
mutual information, and AI support segmentation and adaptive plan-
ning workflow to shorten the time. Over the past 5 years, 257 papers
have been published in this area, including 15 reviews, showing high
expectations for the future development of this technology (Fig. 1).

Predicting prognosis with AI
Reports on radiomics and prognostication have increased considerably
in recent years, and many reports have been published in the field of
radiotherapy. Although numerous studies have addressed lung cancer
and head and neck cancer, in comparison to overall survival (OS), rec-
tal cancer has been the most widely reported [81–86]. This trend may
be due to the National Comprehensive Cancer Network guidelines
that recommend concurrent chemoradiotherapy followed by surgical
resection for locally advanced rectal cancer after a systematic review
by the Colorectal Cancer Collaborative Group revealed that preop-
erative radiotherapy reduces the risk of local recurrence and death
from rectal cancer, especially in young, high-risk patients [87, 88].
Due to this approach, patients with locally advanced rectal cancer usu-
ally have pretreatment and posttreatment MRI scans and pathological
results. The overall trend is to examine whether pathologic complete
response at surgery can be predicted using pre- or post-CRT images
[42, 89, 90].

Numerous studies have constructed prediction models using textu-
ral features within a retrospective single-institution analysis, utilizing
T2W images or DWI/ADC map in MRI and employing a training
and validation set. Although some highly promising outcomes have
been reported, the regions of interest are typically contoured manu-
ally; the single-center nature with no external validation means that
their versatility is limited, and it is not yet possible to advocate a
standardized radiomics efficacy assessment with the data currently
available [91–93]. However, manual segmentation can be replaced by
auto-segmentation. A recent report by Li et al. constructed an auto-
matic pipeline from tumor segmentation to outcome prediction using
pretreatment MRI. U-Net with a codec structure was used for seg-
mentation, and a three-layer CNN was used to build the prediction
models and achieve a DSC segmentation accuracy of 0.79, complete
clinical response (cCR) prediction accuracy of 0.789, specificity of
0.725 and sensitivity of 0.812 [94]. With the recent introduction of
total neoadjuvant therapy for rectal cancer and the ability to watch and
wait for surgery in cCR cases, prognostication in this area is expected
to become even more important in the future. Conversely, although

there are many reports on OS prediction models and a subset of these
yield promising results, it is difficult to predict OS only from image data,
as it is significantly affected by treatment methods and patient-specific
factors. Therefore, big data processing, which includes data other than
images, is necessary for prediction.

Future perspectives of AI in radiation oncology: What
will AI bring and what is required?

The ability to significantly shorten the time from segmentation
to planning using AI is a major advantage, but efforts to address
inter-observer differences in tumor segmentation are still needed,
which persists as a challenge at the current stage. The ability to
use AI for OAR segmentation is a great advantage in daily practice;
however, it can also play a major role in standardizing treatment
when conducting large-scale clinical trials. In a study using data from
the RTOG0617 trial, which aimed to assess the impact of radiation
dose escalation on OS in patients with inoperable non-small cell
lung cancer, Thor et al. compared cardiac segmentation in patients
enrolled in a study with auto-segmentation using a DL algorithm and
found that cardiac doses calculated by auto-segmentation tended to be
higher and correlated more strongly with OS than those obtained in
clinical trials [95]. Radiotherapy planning attempts to standardize the
dose to the tumor while imposing dose constraints on the OAR, but
differences in segmentation at the initial stage can affect the evaluation
of the treatment. To conduct appropriate clinical trials, a considerable
amount of time is spent centrally evaluating treatment plans. If auto-
segmentation of OARs with dose constraints can be achieved, not only
will data collection be simplified, but it may also allow for the correct
evaluation of treatment efficacy. Finally, this approach could facilitate
an evaluation of the true dose adequacy and provide a foundation
for considering the appropriate prescribed dose corresponding to the
heterogeneity within the tumor.

The use of MRI for treatment planning not only avoids unnecessary
radiation exposure but also allows for precise contouring of the rectum
and uterus, which are difficult to isolate with CT. However, it is
necessary to convert MRI images to electron density because it is
not possible to create a simple conversion table between electron
density and signal intensity for MRI images. CT-MRI conversion
using AI is being promoted to overcome this challenge [96, 97].
Currently, many challenges need to be overcome, such as the fact
that bone density varies among individuals. However, as this, MRI to
CT conversion research progresses, clearly delineating the boundaries
of soft tissues like rectal and others from the subtle differences in
density in CT may become possible, as in MRI. This may enable
the same level of segmentation as with MRI, even in countries
with limited medical resources that do not have MRI and must use
only CT for treatment planning. The successful incorporation of AI
into radiotherapy has the potential to standardize cancer treatment
worldwide [98].

Another promising area is the development of large-scale language
models (LLMs) and their applications in RT. Language understanding
has been a central research topic in the field of AI for many years, with
its history taking many forms, from early rule-based systems to modern
highly sophisticated models. LLMs learn patterns from vast amounts of
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textual data to understand and generate natural languages. Significant
progress has been made in the development of LLMs, primarily in the
past few years. One example is the Generative Pretraining Transformer
(GPT) series trained using OpenAI. Since the introduction of the first
GPT, its successors have been rapidly scaled up, from GPT-3 to GPT-
4 [99, 100]. This rapid progress has given the models highly sophis-
ticated natural language understanding and generation capabilities,
resulting in diverse applications such as question-and-answer systems,
document creation, code generation and even the generation of poetry
and creative writing.

In the medical field, the potential of LLMs has been widely
recognized, and their range of applications has expanded. These
applications include diagnostic support, medical document generation
and organization, research support, drug selection, telemedicine
support, image analysis support, medical education, preventive
medicine, lifestyle improvement and clinical trial design and analysis
[101, 102]. These applications are made possible by combining
the ability to find patterns in large amounts of data with the ability
of the LLM to generate natural language. However, challenges
remain in the medical applications of LLMs, such as data privacy,
model interpretability, risk of misdiagnosis and misinformation and
consistency. Overcoming these ‘AI hallucinations’ and other challenges
requires not only technological advances but also the establishment of
appropriate regulations and guidelines.

In radiotherapy, further development of LLMs is expected to
make a significant contribution to the area of prognosis prediction,
where we must consider how to accumulate big data by integrating
data other than images, such as concomitant medications and
other patient background information. Furthermore, they may not
only predict adverse events and effects but may also be able to
conduct a preliminary consultation. LLMs have the potential to
encompass the dissemination of information to patients, elucidation
of terminology and addressing commonly posed patient inquiries
[103–105].

CONCLUSION
Although there are still many issues to be addressed regarding the
use of AI in RT, the introduction of AI in treatment is a step toward
standardizing RT. Auto-OAR segmentation is nearly complete and
DL has the potential to fully automate planning from segmentation
to optimization within very short time. Adaptive radiotherapy is now
available, and LLMs may guide patients with necessary information.
Once AI can help with planning, delivery and data collection, radiation
oncologists can devote more time to patient care. This will allow us to
have more meaningful conversations with patients, which will lead to
improved treatment outcomes.
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