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ABSTRACT

A combination of limited tryptic proteolysis, reverse phase-
high performance liquid chromatography, Edman degradative
sequencing, amino acid analysis, and fast-atom bombardment
mass-spectrometry was used to remove and identify the first 14
to 18 N-terminal amino acid residues of the large subunit of higher
plant-type ribulose-1,5-bisphosphate carboxylase/oxygenase
(Rubisco) from Chlamydomonas relnhardtii, Marchantia polymor-
pha, pea (Pisum satvum), tomato (Lycoperskon esculentum),
potato (Solanum tuberosum), pepper (Capskum annuum), soy-
bean (Glycine max), petunia (Petunia x hybrida), cowpea (Vigna
sinensis), and cucumber (Cucumis sativus) plants. The N-terminal
tryptic peptide from acetylated Pro-3 to Lys-8 of the large subunit
of Rubisco was identical in all species, but the amino acid se-
quence of the penultimate N-terminal tryptic peptide varied. Eight
of the 10 species examined contained a trimethyllysyl residue at
position 14 in the large subunit of Rubisco, whereas Chlamydo-
monas and Marchantla contained an unmodified lysyl residue at
this position.

Rubisco (EC 4.1.1.39) is a large hexadecameric protein,
with 8 large and 8 small subunits, that catalyzes the fixation
of atmospheric CO2 during photosynthesis (2). The large
subunit is encoded by chloroplast DNA (8) and the small
subunit by nuclear DNA (13). The small subunit is synthe-
sized as a precursor with an N-terminal transit sequence that
targets the polypeptide for import into the chloroplast. The
transit sequence is proteolytically removed pnor to assembly
ofsmall subunits with large subunits by chloroplast chaperon-
ins (9). Synthesis of the large subunit in the chloroplast is also
followed by posttranslational processing (16, 25). The N-
terminal Met- and Ser-2 are removed and Pro-3 acetylated
in Rubisco from spinach (Spinacia oleracea L.), wheat (Tri-
ticum aestivum), tobacco (Nicotiana tabacum), and musk-
melon (Cucumis melo). Additionally, the tobacco and musk-
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melon large subunits contain a Me3lys3 residue at position 14,
demonstrating additional posttranslational processing by a
chloroplast localized S-adenosylmethionine:protein (lysine)
EN-methyltransferase ( 15).

In this report we describe the N-terminal sequence of the
large subunit ofRubisco from several additional plant species.
This structural information broadens the knowledge of both
the species invariance of acetylated Pro-3, and the species
variation of Me3lys- 14, as two posttranslational modifications
that occur in the large subunit of higher plant-type Rubisco.

MATERIALS AND METHODS

Rubisco was purified from pea (Pisum sativum), tomato
(Lycopersicon esculentum), potato (Solanum tuberosum),
pepper (Capsicum annuum), soybean (Glycine max), petunia
(Petunia x hybrida), cowpea (Vigna sinensis), cucumber
(Cucumis sativus), Marchantia polymorpha, and Chlamydo-
monas reinhardtii by (NH4)2SO4 precipitation followed by
gel-permeation (Sepharose 4B) and anion-exchange (What-
man DE-52) chromatography (24). C. reinhardtii cells were
ruptured prior to purification of Rubisco as described previ-
ously (14). The purified enzyme was activated with 20 mm
MgCl2 and 10 mm NaHCO3 for 30 min and subsequently
proteolyzed with 0.5% (w/w) trypsin for 2 to 3 h at 30°C.
Rubisco activity was determined before and after proteolysis
as previously described (16, 25). Peptides were purified (16,
25), and 1 to 10 nmol were sequenced with a gas-phase
sequencer (Applied Biosystems 470A ) or hydrolyzed with 6
N HCI for 22 h at 110C before amino acid analysis with a
Beckman system 6300 analyzer. In some cases, peptide iden-
tity was confirmed by FAB-MS and CAD using a JEOL
HX 1 1OHF/HX 1 I0HF tandem mass spectrometer as previ-
ously described (16, 25). When possible, sequences were com-
pared against known DNA sequences or previously published
amino acid sequences. Protein was determined by a modified
Lowry procedure (4). Discontinuous SDS-PAGE on 10 to
20% linear gradient gels was as described by Laemmli (20).

3Abbreviations: Me3lys, N-trimethyllysine; Ribulose-P2, D-ribu-
lose-1,5-bisphosphate; FAB-MS, fast-atom bombardment mass spec-
trometry; CAD, collisionally activated dissociation; u, atomic mass
unit(s).
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Figure 1. SDS-PAGE analysis of Rubisco from several plant species
before and after tryptic proteolysis. Lanes 1 and 20 are molecular
mass standards with kDa shown to the left. Lanes 2 to 19 contain
0.5 to 1.5 ,ug of Rubisco before (even lanes) and after (odd lanes)
proteolysis with 0.5% trypsin. Proteins were visualized by silver-
staining.

RESULTS AND DISCUSSION

Limited tryptic proteolysis decreased the molecular mass of
the large subunit of Rubisco by approximately 1 to 2 kD as
determined by SDS-PAGE (Fig. 1). With the conditions de-
scribed, only the large subunit of Rubisco was proteolyzed,
with the exception of Rubisco from C. reinhardtii, which also
showed a molecular mass decrease in the small subunit as has
been recently observed (5). Proteolysis also decreased the
catalytic activity of Rubisco from all species by 60 to 70%, in
agreement with reports that the penultimate N-terminal re-

Table I. Amino Acid Composition of the N-Terminal Tryptic
Fragment from the Large Subunit of Cucumber Rubisco

Approximately 3 nmol of HCI-hydrolyzed peptide were analyzed
for amino acid composition. Molar ratio was calculated with proline
equal to 1. All other residues were less than 0.2 nmol. Variation in
the molar ratio of amino acid residues from other Rubisco prepara-
tions was ± 10%.

Residue Amount Molar Ratio

nmol

GIx 7.7 2.1
Lys 3.2 0.9
Thr 7.2 2.0
Pro 3.7 1.0

gion of the large subunit of Rubisco is essential for maximum
catalytic activity (12, 16, 18).
The N-terminal peptide from the large subunit of Rubisco

in all species examined was blocked and could not be se-
quenced. An amino acid composition for the N-terminal
peptide from cucumber Rubisco shown in Table I is essen-
tially identical to the amino acid composition obtained for
the large subunit N-terminal tryptic peptides from all other
Rubisco preparations. The N-terminal tryptic peptides from
the large subunit of M. polymorpha, C. reinhardtii, pepper,
and pea Rubisco were also subjected to FAB-MS and CAD
analysis, all of which yielded a Figure 2 molecular mass (M
+ H+ = 745.2 u) and sequence (Fig. 2) identical with that
previously reported for spinach, muskmelon, tobacco, and
wheat (16). Based on HPLC retention times during purifica-
tion, inability to sequence, and similar amino acid composi-
tions, we conclude that the N-terminal sequence of the large
subunit of Rubisco from the preparations examined in this
study up to Lys-8 is acetyl-Pro-Gln-Thr-Glu-Thr-Lys-COOH.
The penultimate N-terminal tryptic peptides from the large

subunit of Rubisco vary in length depending on the presence
or absence of a Me3lys residue at position 14 (16), which has
been reported as not susceptible to tryptic proteolysis (16, 27).
Thus, in species where the large subunit of Rubisco contains
Me3lys-14, the penultimate N-terminal tryptic peptides end
with Lys- 18 as the C-terminal residue.
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Figure 2. CAD daughter spectrum of the N-
terminal tryptic peptide from the large subunit of
pea Rubisco (M + H' = 745.2 u). Peaks are
labeled according to Johnson et at. (17). The
CAD daughter spectra were identical for the N-
terminal tryptic peptides from the large subunit
of M. polymorpha and C. reinhardtii Rubisco.
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Table II. Amino Acid Composition of the Penultimate N-Terminal
Tryptic Fragment from the Large Subunit of Cucumber Rubisco

Approximately 3 nmol of HCI-hydrolyzed peptide were analyzed
by amino acid composition. Molar ratio was calculated with glycine
equal to 2. All other residues were less than 0.2 nmol. Variation in
the molar ratio of amino acid residues from other Rubisco prepara-
tions was ± 8%.

Residue Amount Molar Ratio

nmol

Ala 7.2 1.9
Gly 7.5 2.0
Lys 3.0 0.8
Me3lys 2.8 0.8
Phe 4.0 1.1
Ser 3.9 1.0
Val 7.8 2.1

All of the penultimate N-terminal tryptic peptides from the
large subunit ofRubisco could be sequenced. However, stand-
ard sequencing by Edman degradation does not result in an
identifiable amino acid residue at position 14 if this residue
is Me3lys. Therefore, amino acid analysis following HCI hy-
drolysis was used to confirm the presence of Me3lys-14.
A representative amino acid composition of the penulti-

mate N-terminal fragment derived from the large subunit of
cucumber Rubisco is shown in Table II. All of the Rubisco
preparations examined except M. polymorpha and C. rein-
hardtii contained a Me3lys residue at position 14 in the large
subunit. In the large subunit of pea Rubisco, position 10 is a
lysyl residue (33). Therefore, the tryptic peptide bearing
Me3lys- 14 contains Val-l 1 as the N-terminal residue. The
dipeptide Ala-9 to Lys-10 was not recovered after limited
tryptic proteolysis of pea Rubisco.
Although limited tryptic proteolysis of pea Rubisco yielded

a large subunit penultimate N-terminal peptide from Val-l 1
to Lys-18 that contained a Me3lys residue at position 14,
another penultimate N-terminal peptide was recovered in
equal proportions that corresponded to Val- 1 to Lys- 14, but
with a C-terminal lysyl residue that was modified in a manner
indicative of methylation based on amino acid analysis. This

Figure 3. CAD daughter spectrum of the penul-
timate N-terminal tryptic peptide from the large
subunit of pea Rubisco (M+ = 492.4 u). The
peaks are labeled according to Johnson et al.
(17) except all peaks are 1 u lower in mass
because the ions are not protonated but rather
contain a fixed charge.
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was unexpected since Me3lys has been reported not to be a
site for tryptic proteolysis (27). The identity of this peptide
was established by FAB-MS. The parent ion for this peptide
(M+ = 492.4 u), and the CAD daughter spectrum, revealed a
C-terminal Me3lys (Fig. 3). We do not have an explanation
for this observation; none of the other Rubiscos with Me3lys-
14 in the large subunit yielded a similar tryptic peptide after
proteolysis.
The N-terminal sequence of the large subunit of Rubisco

from 14 plant Fig. 4 species has been directly determined and
compared (Fig. 4). The amino acid sequences determined for
petunia, Chiamydomonas, Marchantia, and pea are in agree-
ment with previously reported DNA-deduced sequences (1,
7, 26, 33, respectively). The posttranslational removal ofMet-
1 and Ser-2 followed by acetylation of Pro-3 was common to
all 14 Rubisco preparations examined. The EN-methylation of
lysyl residue 14 was restricted to 10 of the Rubisco prepara-
tions. However, there does not appear to be any obvious
correlation between the occurrence of Me3lys-14 and other
biochemical or physiological traits.
N-Terminal acetylation is a common protein modification

(6). Although the functional significance of this covalent
modification is not firmly established, several lines ofevidence
suggest a possible role in protein stability (3). In pea chloro-
plasts, imino-peptidases have been reported that could possi-
bly act on the large subunit of Rubisco were it not acetylated
(21). In specific cases, such as for a-melanocyte-stimulating
hormone (31) and (3-endorphin (30), N-terminal acetylation
has direct effects on biological activity. However, to date,
there is no evidence for N-terminal acetylation regulating the
activity or stability of Rubisco.
The role of WN-methylation of lysyl residues in proteins is

also not clear (19, 22, 23). The methylation of Lys-l 15 in
calmodulin has dramatic effects on its ability to activate NAD-
kinase (28), but no effect on its ability to activate phospho-
diesterase (29). Some studies suggest that the methylation of
Lys- 115 in calmodulin serves a protective role against ubi-
quitination and subsequent proteolytic degradation (10, 1 1).
The occurrence of ubiquitin in C. reinhardtii chloroplasts has
been demonstrated by immunoelectron microscopy (32).
How the posttranslational acetylation and methylation of the
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RUBISCO LARGE SUBUNIT N-TERMINAL AMINO ACID SEQUENCE

8 14 18

Acetyl-Pro-Gln-Thr-Glu-Thr-Lys-Ala-Ser-Val-Gly-Phe-Lys

Acetyl-Pro-Gln-Thr-Glu-Thr-Lys-Ala-Gly-Val-Gly-Phe-Lys

Acetyl-Pro-Gln-Thr-Glu-Thr-Lys-Ala-Ser-Val-Gly-Phe-Mejys-Ala-Gly-Val-Lys

Acetyl-Pro-Gln-Thr-Glu-Thr4-ys-Ala-Ser-Val-Gly-Phe-Mejys-Ala-Gly-Val-Lys

Acetyl-Pro-Gln-Thr-Glu-Thr-Lys-Ala-Ser-Val-Gly-Phe-MeJys-Ala-Gly-Val-Lys

Acetyl-Pro-Gln-Thr-Glu-Thrtys-Ala-Ser-Val-Gly-Phe-Mejys-Ala-Gly-Val-Lys

Acetyl-Pro-Gln-Thr-Glu-Thr-Lys-Ala-Lys-Val-Gly-Phe-M.3ys-Ala-Gly-Val-Lys

Acetyl-Pro-Gln-Thr-Glu-Thr-Lys-Ala-Ser-Val-Gly-Phe-MeJys-Ala-Gly-Val-Lys

Acetyl-Pro-Gln-Thr-Glu-Thr4-ys-Ala-Ser-Val-Gly-Phe-MeJys-Ala-Gly-Val-Lys

Acetyl-Pro-Gln-Thr-Glu-Thr-Lys-Ala-Ser-Val-Gly-Phe-Mejys-Ala-Gly-Val-Lys

Acetyl-Pro-Gln-Thr-Glu-Thr-Lys-Ala-Ser-Val-Gly-Phe-Mejys-Ala-Gly-Val-Lys

Acetyl-Pro-Gln-Thr-Glu-Thr-Lys-Ala-Ser-Val-Gly-Phe-Mejys-Ala-Gly-Val-Lys

Figure 4. Summary of the amino acid se-
quences and posttranslational modifications in
the N terminus of the large subunit of Rubisco
from several plant species. Data for spinach,
wheat, tobacco, and muskmelon are from Houtz
etal. (16).

Chlamydomonas Acetyl-Pro-Gln-Thr-Glu-Thr-Lys-Ala-Gly-Ala-Gly-Phe-Lys

Marchantia Acetyl-Pro-Gln-Thr-Glu-Thr-Lys-Ala-Gly-Val-Gly-Phe-Lys

large subunit of higher plant-type Rubisco relates to func-
tional aspects of the enzyme remains to be shown. However,
those preparations of Rubisco where the large subunit is not
modified at lysyl residue 14 are in vitro substrates for the
recently isolated tobacco S-adenosylmethionine:Rubisco large
subunit (lysine) N-methyltransferase (15). Thus, in vitro
methylation of Lys-14 in the large subunit of Rubisco and
subsequent comparative enzymological studies may enable
identification of the functional aspects of this covalent
modification.
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