Skip to main content
. 2024 Jan 22;48(1):15. doi: 10.1007/s10916-023-02032-0

Table 3.

Hyper-parameters and value ranges

Hyper-parameters to optimize Value ranges
1 Number of Convoluiton layer [1, 2, 3, 4, 5, 6, 7, 8]
2 Number of Maxpooling layer [1, 2, 3, 4, 5, 6, 7, 8]
3 Number of FC layers [1, 2, 3, 4]
4 Number of filters [16, 24, 32, 48, 64, 96]
5 Filter sizes for conv and pooling [2, 3, 4, 5, 6, 7]
6 Padding [0, 1, Same]
7 Stride [1, 2, 3]
8 L2 regularization [0.0001, 0.0005, 0.001, 0.005]
9 Momentum [0.70, 0.75, 0.80, 0.85, 0.9, 0.95]
10 Mini-batch size [8, 16, 32, 64, 128]
11 Learning rate [0.0001, 0.0003, 0.0005, 0.001, 0.003, 0.005]
12 Activation function ReLu, Leaky Relu, ELU, SELU