1 |
Number of Convoluiton layer |
7 |
6 |
2 |
2 |
Number of Maxpooling layer |
7 |
6 |
2 |
3 |
Number of FC layers |
2 |
2 |
2 |
4 |
Number of filters [Conv1, Pool1, Conv2, Pool2, Conv3, Pool3, Conv4, Pool4, Conv 5, Pool 5, Conv 6, Pool6, Conv7, Pool7…] |
[48, 48, 24, 24, 24, 24, 24, 24, 16 16,16, 16, 16, 16] |
[48, 48, 32, 32, 24, 24, 24, 24, 16, 16, 16, 16] |
[48, 48, 24, 24] |
5 |
Filter sizes [Conv1, Pool1, Conv2, Pool2, Conv3, Pool3, Conv4, Pool4, Conv 5, Pool 5, Conv 6, Pool6, Conv7, Pool7 …] |
[3, 4, 3, 3, 5, 4, 5, 5, 3, 3, 3, 3, 5, 4] |
[4, 3, 4, 3, 5, 4, 3, 5, 4, 4, 4, 4] |
[2, 4, 5, 4] |
6 |
Padding [Conv1, Pool1, Conv2, Pool2, Conv3, Pool3, Conv4, Pool4, Conv 5, Pool 5, Conv 6, Pool6, Conv7, Pool7 …] |
[0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1] |
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0] |
[0, same, 0, 0] |
7 |
Stride [Conv1, Pool1, Conv2, Pool2, Conv3, Pool3, Conv4, Pool4, Conv 5, Pool 5, Conv 6, Pool6, Conv7, Pool7 …] |
[1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1] |
[1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2] |
[2, 2, 2, 2] |
8 |
L2 regularization |
0.0001 |
0.0001 |
0.0001 |
9 |
Momentum |
0.9000 |
0.9000 |
0.9000 |
10 |
Mini-batch size |
32 |
32 |
32 |
11 |
Learning rate |
0.0001 |
0.0001 |
0.0002 |
12 |
Activation function |
ReLu |
ReLu |
ReLu |