Skip to main content
. 2024 Jan 22;48(1):15. doi: 10.1007/s10916-023-02032-0

Table 4.

Optimal hyper-parameters of the proposed CNN models

Value
Hyper-parameters Model 1 (Gender) Model 2 (Age) Model 3 (Both)
1 Number of Convoluiton layer 7 6 2
2 Number of Maxpooling layer 7 6 2
3 Number of FC layers 2 2 2
4 Number of filters [Conv1, Pool1, Conv2, Pool2, Conv3, Pool3, Conv4, Pool4, Conv 5, Pool 5, Conv 6, Pool6, Conv7, Pool7…] [48, 48, 24, 24, 24, 24, 24, 24, 16 16,16, 16, 16, 16] [48, 48, 32, 32, 24, 24, 24, 24, 16, 16, 16, 16] [48, 48, 24, 24]
5 Filter sizes [Conv1, Pool1, Conv2, Pool2, Conv3, Pool3, Conv4, Pool4, Conv 5, Pool 5, Conv 6, Pool6, Conv7, Pool7 …] [3, 4, 3, 3, 5, 4, 5, 5, 3, 3, 3, 3, 5, 4] [4, 3, 4, 3, 5, 4, 3, 5, 4, 4, 4, 4] [2, 4, 5, 4]
6 Padding [Conv1, Pool1, Conv2, Pool2, Conv3, Pool3, Conv4, Pool4, Conv 5, Pool 5, Conv 6, Pool6, Conv7, Pool7 …] [0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1] [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0] [0, same, 0, 0]
7 Stride [Conv1, Pool1, Conv2, Pool2, Conv3, Pool3, Conv4, Pool4, Conv 5, Pool 5, Conv 6, Pool6, Conv7, Pool7 …] [1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1] [1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2] [2, 2, 2, 2]
8 L2 regularization 0.0001 0.0001 0.0001
9 Momentum 0.9000 0.9000 0.9000
10 Mini-batch size 32 32 32
11 Learning rate 0.0001 0.0001 0.0002
12 Activation function ReLu ReLu ReLu