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ABSTRACT
Background  Automated measurement of the 
Alberta Stroke Program Early Computed Tomography 
Score (ASPECTS) can support clinical decision making. 
Based on a deep learning algorithm, we developed an 
automated ASPECTS scoring system (Heuron ASPECTS) 
and validated its performance in a prespecified clinical 
trial.
Methods  For model training, we used non-contrast 
computed tomography images of 487 patients with 
acute ischemic stroke (AIS). For the clinical trial, 326 
patients (87 with AIS, 56 with other acute brain diseases, 
and 183 with no brain disease) were enrolled. The results 
of Heuron ASPECTS were compared with the consensus 
generated by two stroke experts using the Bland–Altman 
agreement. A mean difference of less than 0.35 and 
a maximum allowed difference of less than 3.8 were 
considered the primary outcome target. The sensitivity 
and specificity of the model for the 10 regions of interest 
and dichotomized ASPECTS were calculated.
Results  The Bland–Altman agreement had a mean 
difference of 0.03 [95% confidence interval (CI): −0.08 
to 0.14], and the upper and lower limits of agreement 
were 2.80 [95% CI: 2.62 to 2.99] and −2.74 [95% CI: 
−2.92 to −2.55], respectively. For ASPECTS calculation, 
sensitivity and specificity to detect the early ischemic 
change for 10 ASPECTS regions were 62.78% [95% CI: 
58.50 to 67.07] and 96.63% [95% CI: 96.18 to 97.09], 
respectively. Furthermore, in a dichotomized analysis 
(ASPECTS >4 vs. ≤4), the sensitivity and specificity were 
94.01% [95% CI: 91.26 to 96.77] and 61.90% [95% CI: 
47.22 to 76.59], respectively.
Conclusions  The current trial results show that Heuron 
ASPECTS reliably measures the ASPECTS for use in 
clinical practice.

INTRODUCTION
With the advent of mechanical thrombectomy 
(MT), various advanced neuroimaging tech-
niques, such as multiphase computed tomog-
raphy collaterals1 or core-penumbra mismatch 
utilizing perfusion imaging2 have been used 
for patient selection for reperfusion therapy.3 
However, the pretreatment ischemic core 
volume remains a strong independent predictor 
of clinical outcome in acute ischemic stroke 
(AIS) with occlusion of the proximal arteries.4 
The concept of the late window paradox further 
helped reveal that the ischemic core volume 

can also represent progression speed.5 It is also 
well known that intravenous thrombolysis can 
be harmful in patients with large infarct cores.6 
Thus, the pretreatment ischemic core volume is 
arguably the most important clinical and imaging 
parameter that may predict response to reperfu-
sion therapy.

The Alberta Stroke Program Early Computed 
Tomography Score (ASPECTS) can be obtained 
using non-contrast computed tomography 
(NCCT) and has good predictive power for 
treatment outcomes.7 It is strongly predictive of 
clinical outcomes for thrombolysis8 and standard 
time window MT.9 It may also be utilized in late 
window MT.10 Thus, a minimum ASPECTS score 
of ≥6 is suggested as an infarct volume crite-
rion in international thrombectomy guidelines.11 
Recent trials have further extended the ASPECTS 
limit for thrombectomy efficacy to ≥3.12

However, because ASPECTS is based on 
NCCT, which has low sensitivity to early isch-
emic change (EIC), it is criticized for its low 
inter-rater reliability.13 This may be a greater 
issue for less experienced practitioners with 
low-volume exposure to AIS. Accordingly, auto-
mated evaluation of the ASPECTS may guide 
clinicians in decision making. Two commercially 
available software programs exist for automated 
evaluation of ASPECTS: the e-ASPECTS soft-
ware (Brainomix, Oxford, United Kingdom)14 
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and RAPID ASPECTS program (iSchemaView, Menlo Park, 
Calif).15 However, no study has validated the predictive 
ability of automated ASPECTS programs in a situation highly 
resembling ischemic stroke identification in the emergency 
department, in which there is a significant rate of other 
acute brain diseases, such as hemorrhage, or no acute brain 
disease.16

This study aimed to develop and validate an automated 
ASPECTS scoring system (Heuron ASPECTS version 1.0.0.0, 
Heuron Co., Ltd., Incheon, Republic of Korea) based on a 
deep-learning algorithm. Model learning was based on NCCT 
of patients with AIS with consecutive magnetic resonance 
imaging (MRI). A clinical validation trial was performed 
in patients presenting to the emergency department with 
suspected ischemic stroke. The diagnostic accuracy of 
Heuron ASPECTS was evaluated by analyzing the agreement 
between Heuron ASPECTS and the ASPECTS consensus of 
experts. Diagnostic accuracy was validated using a prespeci-
fied endpoint.

METHODS
The study protocols of the current clinical trial were approved 
by the Ministry of Food and Drug Safety of the Republic of 
Korea (KFDS-1233). Data collection and evaluation were 
approved by the Institutional Review Board of Gachon 
University Gil Medical Center (GDIRB2021-234) and Ajou 
University Medical Center (AJOUIRB-MDB-2020–189), 
respectively. Ethical standards of the 1964 Declaration of 
Helsinki and its later amendments were implemented. The 
need for written informed consent was waived owing to the 
retrospective data collection method of this study.

Designing the clinical trial
The primary endpoint of the clinical trial was generated 
based on the results of a previously reported study and the 
internal test results of Heuron ASPECTS.17 In the reference 
study, the agreement between automated ASPECTS soft-
ware, such as e-ASPECTS, Frontier ASPECTS (prototype v2, 
Siemens, Germany), and RAPID ASPECTS, was compared 
with the expert consensus as a reference standard, and it was 
concluded that reasonable performance was confirmed for all 
three programs. In the current study, the target mean differ-
ence of the Bland-Altman plot was determined to be 0.35, 
which was the average performance of the three reported 
ASPECTS software programs and the internal test perfor-
mance of Heuron ASPECTS. The standard deviation of the 
difference was determined to be 1.54, which is the lowest 
value among the results from the reference study. In addition, 
based on the results of the reference study and internal test 
performance of Heuron ASPECTS, 95% confidence inter-
vals (CIs) for the upper and lower limits of agreement were 
calculated, and the maximum allowed difference between the 
reference standard and Heuron ASPECTS was set at 3.8. A 
sample size (N) of 326 was calculated based on a significance 
level of 0.05, power of 80%, and dropout rate of 10%.18

Study population and data collection
The study population was generated according to the 
proportion of patients presenting to the emergency depart-
ment, based on a previous study that reported 24% AIS, 
19% other (acute) brain diseases, and 57% no brain disease, 
with an allowable difference range of±10% (figure  1).16 

Figure 1  Workflow of the clinical test, including data collection. Flowchart shows patient selection with criteria and workflow to the clinical test for 
Heuron ASPECTS evaluation.
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Group-to-group randomized data selection was performed 
in patients aged ≥19 years with thrombolysis code activa-
tion due to suspected ischemic stroke who presented to the 
emergency department of Gachon University Medical Center 
between 2010 and March 2021. The final diagnosis of AIS 
was confirmed using diffusion-weighted MRI. Patients were 
excluded if cerebral infarction occurred in the posterior 
circulation, there was loss of information during anonymiza-
tion, or CT (computed tomography) images had severe noise. 
Patients who presented with other acute brain diseases were 
classified as having other (acute) brain diseases. A detailed 
analysis of the final diagnoses is presented in table  1. The 
no brain disease group included those in whom a thrombol-
ysis code was activated due to suspected ischemic stroke, but 
finally concluded that there was no organic brain disease. 
Cases were randomly collected from each group until the 
target number of cases was obtained for each group. All demo-
graphic information was anonymized and an independent ID 
was provided for this study. In the CT images of registered 
cases, slight differences were observed in the scanning model 
of the device, scanning protocol, or parameters depending on 

the scan date, but all were taken using devices from the same 
vendor (Siemens Healthineers, Erlangen, Germany), and the 
slice thickness varied from 3 to 5 mm.

Generation of the ASPECTS reference standard
Two experts with more than 10 years of clinical experience 
generated the ASPECTS reference standard. The two experts 
independently evaluated the presence of EIC at each region of 
interest (ROI) using NCCT images and then calculated the total 
score of the ASPECTS. If the results for each ROI evaluated by 
the two experts were different, the reference standard was deter-
mined by consensus between the two experts.

Automatic ASPECTS scoring by Heuron ASPECTS
The Heuron ASPECTS automated software is a solution devel-
oped to automatically calculate ASPECTS from NCCT images 
scanned for suspected acute ischemic stroke patients. As shown 
in online supplemental figure 1, the scanned NCCT images can 
be directly transmitted from the CT device to Heuron ASPECTS. 
Therefore, it is possible to receive and analyze CT images imme-
diately after scanning, and the analyzed results are uploaded to 
PACS in the form of a report. It takes less than 5 minutes to 
complete the analysis after the NCCT image input, and the time 
required for data transmission varies depending on the environ-
ment of each institution.

Based on the deep learning technique of a convolutional 
neural network (CNN), it was trained using NCCT images of 
557 patients with ischemic stroke collected from a single insti-
tution (Ajou University Medical Center). The ground truth for 
learning was derived by evaluating the presence of EIC and old 
infarction (OI) based on NCCT, MR-DWI, ADC, and FLAIR 
images taken within 1 hour of NCCT. The CNN model was 
trained and tested with fivefold cross-validation, and the EIC 
and OI probability values for each ROI for ASPECTS were 
assembled with the outputs of the five trained models. The EIC 
and OI classifications based on the ensemble probability values 
were determined based on the specific threshold values for each 
ROI. For classifying EIC or OI, the threshold was determined by 
finding the optimal correlation that satisfied the basic criteria of 
≥90% specificity between inferenced ASPECTS and the refer-
ence standard.

As shown in figure 2A,B, NCCT images input into Heuron 
ASPECTS were initially pre-processed (such as noise and 
skull removal), and the ROI was automatically segmented 
for ASPECTS evaluation. The presence of EIC or OI in each 
ROI was independently classified. Basically, the ASPECTS is 
derived by deducting a point for each ROI evaluated as an EIC 
based on 10 points in each hemisphere. In Heuron ASPECTS, 
however, the ROI classified as OI was also deducted to derive 
the ASPECTS if there was at least one ROI classified as EIC in 
the same hemisphere.

For Heuron ASPECTS calculation for the clinical trial, an 
evaluator trained to use Heuron ASPECTS (a radiologist at the 
clinical trial institution blinded to the clinical data) imported the 
data into Heuron ASPECTS. After the generation of the refer-
ence standard and derivation of Heuron ASPECTS results for all 
cases, an independent statistical analyst collected and analyzed 
the results.

Statistical analysis
The primary outcome of this study was the performance 
of Heuron ASPECTS, which was the degree of agreement 
with the reference standard. It was evaluated by systematic 

Table 1  Demographics of the included patients

Acute ischemic 
stroke group 
(n=87)

Other brain 
disease group 
(n=56)

No brain disease 
group (n=183)

Baseline characteristics

 � Age, years (Mean±SD) 67±11 66±16 57±14

 � Male, n (%) 51 (58.6) 30 (53.6) 94 (51.4)

 � Smoker, n (%) 31 (36) 11 (19.6) 41 (22.4)

 � Hypertension, n (%) 53 (61.6) 32 (57.1) 80 (43.7)

 � Diabetes mellitus, 
n (%)

26 (30.2) 19 (33.9) 48 (26.2)

 � Hyperlipidemia, n (%) 12 (14) 2 (3.6) 37 (20.2)

 � Atrial fibrillation, n (%) 38 (44.2) 0 (0) 1 (0.5)

 � Cardiac disease, n (%) 33 (38.4) 4 (7.1) 25 (13.7)

 � Previous stroke, n (%) 13 (15.1) 6 (10.7) 10 (5.5)

 � NIHSS on admission 
(Mean±SD)

12±6 – –

 � Time from onset to CT 
scan, min

84±50 – –

Proportion of diseases in the other brain disease group (n=56)

 � C79.30 (Secondary malignant neoplasm of brain) 1 (1.79)

 � D18.01 (Hemangioma of intracranial structures) 1 (1.79)

 � D43.2 (Brain, unspecified) 1 (1.79)

 � G91.9 (Hydrocephalus, unspecified) 1 (1.79)

 � I60.9 (Subarachnoid hemorrhage, unspecified) 2 (3.57)

 � I61.0 (Intracerebral hemorrhage in hemisphere, subcortical) 31 (55.36)

 � I61.1 (Intracerebral hemorrhage in hemisphere, cortical) 5 (8.93)

 � I61.3 (Intracerebral hemorrhage in brain stem) 7 (12.50)

 � I61.4 (Intracerebral hemorrhage in cerebellum) 2 (3.57)

 � I61.5 (Intracerebral hemorrhage, intraventricular) 2 (3.57)

 � I67.1 (Cerebral aneurysm, non-ruptured) 1 (1.79)

 � Q04.6 (Congenital cerebral cysts) 1 (1.79)

 � S06.5 (Traumatic subdural hemorrhage) 1 (1.79)

CT, computed tomography; NIHSS, National Institute of Health Stroke Scale; SD, 
standard deviation.

https://dx.doi.org/10.1136/jnis-2022-019970


4 of 7 Lee S-J, et al. J NeuroIntervent Surg 2024;16:61–66. doi:10.1136/jnis-2022-019970

Ischemic stroke

differences between the experts’ read and Heuron ASPECTS 
using the Bland–Altman plot, with prespecified study goals. 
Next, the performance of Heuron ASPECTS was assessed 
using the intraclass correlation coefficient (ICC), one-way 
random-effects, absolute agreement, and single-rater/measure-
ment model, with the reference standard. ICC values less than 
0.4 were deemed to have poor reliability, values between 0.4 
to 0.59 to have fair reliability, values between 0.60 to 0.74 
to have good reliability, and values greater than 0.75 to have 
excellent reliability.19

The secondary outcome of the current study was region-
based analysis and analysis using dichotomized cut-off values. 
The sensitivity, specificity, and area under the receiver-operating 
characteristic curve (AUC) were analyzed to determine the 
performance of infarction discrimination at each ROI level. 
In addition, the ASPECTS-based dichotomized classification 
performance was analyzed, and both classification performances 
were dichotomized according to high (ASPECTS >6 vs. ≤ 6) and 
low (ASPECTS >4 vs. ≤ 4) cut-off values.

Bootstrapping with at least 2000 resamplings was used to 
calculate the CIs of sensitivity, specificity, and AUC for each 
variable. All statistical analyses were performed using MATLAB 
2020b (MathWorks Inc., Natick, Massachusetts).

RESULTS
Demographics
In the clinical trial, 333 cases were collected through primary 
screening, and seven cases were excluded. Thus, 326 cases were 
enrolled in this study. All excluded cases presented with isch-
emic stroke in the posterior circulation. Of the 326 cases that 
were finally registered, 87, 56, and 183 were in the ischemic 
stroke, other brain disease, and no brain disease groups, respec-
tively. The other brain disease group consisted of diseases such 
as subcortical intracerebral hemorrhage (ICH) (55.36%), ICH of 
the brainstem (12.5%), and cortical ICH (8.93%). There were 
no dropouts (figure 1).

The mean age of each group was 67±11, 66±16, and 57±14 
years, and the proportion of males was 58.6%, 53.6%, and 
51.4%, respectively. In the ischemic stroke group, baseline 
NCCT was performed within 84±50 min from the last normal 
time, and the mean National Institute of Health Stroke Scale 
(NIHSS) was 12±6. The detailed participant characteristics are 
shown in table 1.

Primary outcomes
Agreement was analyzed using the Bland–Altman plot and 
ICC between Heuron ASPECTS and experts’ consensus for 
total ASPECTS. As shown in figure 2C,D, the mean difference 
between two results was 0.03 [95% CI: −0.08 to 0.14], and the 
upper and lower limits of agreement were 2.80 [95% CI: 2.62 
to 2.99] and −2.74 [95% CI: −2.92 to −2.55], respectively, 
which satisfied the prespecified primary outcomes. The ICC was 
0.78 [95% CI: 0.73 to 0.83] between the results of individual 
ASPECTS, showing good-to-excellent agreement.

Secondary outcomes
The lesion classification performance was calculated at each 
ROI. As shown in table 2, the specificity was over 90% for all 
ROIs, and the sensitivity varied depending on the ROI. For all 
regions, Heuron ASPECTS yielded a sensitivity of 62.78% [95% 
CI: 58.50 to 67.07], specificity of 96.63% [95% CI: 96.18 to 
97.09], and an AUC of 0.88 [95% CI: 0.87 to 0.90]. For dichot-
omized ASPECTS, Heuron ASPECTS demonstrated a sensitivity 
of 94.01% [95% CI: 91.26 to 96.77], specificity of 61.90% 
[95% CI: 47.22 to 76.59], and an AUC of 0.89 [95% CI: 0.88 to 
0.90] in the dichotomized criteria of >4 vs. ≤ 4, and sensitivity 
of 95.42% (95% CI: 92.89 to 97.95), specificity of 76.56% 
(95% CI: 66.18 to 86.94), and AUC of 0.80 (95% CI: 0.80 to 
0.81) in the dichotomized criteria of >6 vs. ≤ 6.

DISCUSSION
The current clinical trial evaluated the reliability and consistency 
of the Heuron ASPECTS program in identifying EICs in NCCT 
images encountered in emergency department patients with 
suspected AIS. The Bland–Altman plot showed a comparable 
mean difference and maximum allowed difference with those 
of previously reported automated programs,14 fulfilling the 
prespecified study goal. Furthermore, the reliability and consis-
tency of the Heuron ASPECTS program was confirmed by ICC 
estimation. As a result of the reliability analysis, where the 95% 
CI of an ICC estimation was 0.73 to 0.83, the level of reliability 
was regarded as “good-to-excellent”.

The ASPECTS score is quantitative and the agreement 
between total scores is important for evaluating its performance. 
Thus, the Bland–Altman plot has been utilized in previous 
studies regarding automated ASPECTS analysis.14 17 20 21 As the 
current study was a clinical trial, we utilized pre-specified mean 

Figure 2  The automatic ASPECTS estimation based on the deep-
learning model and its performance. (A) progress in estimating the 
aspects, and (B) output of Heuron ASPECTS. The study results are 
shown as a Bland–Altman plot (C) of experts’ consensus and Heuron 
ASPECTS. The mean difference is 0.03, and the upper and lower limits 
of agreement are 2.80 and −2.74, respectively, satisfying prespecified 
primary outcomes. (D) The intraclass correlation coefficient (ICC) is 0.78 
(95% CI: 0.73 to 0.83), showing good to excellent agreement.
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difference and maximum allowed difference values of Bland–
Altman analysis as the primary outcome, which was bench-
marked from previous studies.22 In comparison, ICC values have 
been used for classification19 and comparison23 of reliability. A 
recent meta-analysis compared the performance of automated 
and manual ASPECTS predictions for early stroke changes. It 
reported good reliability between reference standards and both 
expert (ICC 0.62 [95% CI 0.52 to 0.71]) and automated predic-
tions (ICC 0.72 [95% CI 0.61 to 0.80]), while concluding that 
automated prediction may be superior, based on higher ICC 
values.23 The ICC in our study was 0.78 [95% CI: 0.73 to 0.82] 
showing good-to-excellent agreement, with results comparable 
to the meta-analysis.23 In clinical situations, however, ASPECTS 
is often used in a dichotomized fashion, for selection of patients 
for reperfusion treatments. Our study results show high sensi-
tivity and moderately high specificity, which is reasonable when 
we consider the role of automated ASPECTS to aid clinicians in 
selecting more patients to receive highly effective treatment.24

In segmental analysis, Heuron ASPECTS showed accept-
able sensitivity, specificity, and high AUC (0.877–0.885) for 
all segments. A previous study reported a limited correlation 
between automated ASPECTS software (Brainomix e-ASPECTS, 
RAPID ASPECTS, and Frontier V2 [Siemens Healthcare GmbH, 
Forchheim, Germany]) and expert consensus, especially for the 
M3 segment (AUC, −0.027–0.693) and internal capsule (AUC, 
0.000–0.691).17 In a more recent study, the 3D-BHCA model, 
a deep-learning-based algorithm similar to Heuron ASPECTS, 
exhibited region-based ASPECTS analysis with better perfor-
mance than that of human readers in the early time window.25 
Thus, automated ASPECTS utilizing deep-learning algorithms 
such as Heuron ASPECTS may be advantaged, especially in the 
identification of segmental-level EIC. To our knowledge, among 
the previously reported automated ASPECTS, the eASPECTS,14 
the RAPID ASPECTS,15 and the method by Kuang et al21 used a 
machine-learning algorithm,17 while Frontier ASPECTS selects 
EIC based on brain densitometry.20 In machine-learning, prior 
knowledge is essential; a researcher extracts suitable features 
from the input data, such as Houndsfield unit (HU), density, and 
HU difference compared with the contralateral side. However, 
in medical images with large domain sizes and information, 

there are limits to the extractability of targeted features through 
machine-learning. It may also be limited when images have low 
signal-to-noise ratios and motion artifacts.21 In contrast, the 
deep-learning algorithm can identify suitable features in large-
sized domain data through the model itself with minimum infor-
mation. Therefore, as the data used for training increases, the 
accuracy of deep-learning based models is believed to be higher 
than that of representative machine-learning algorithms.26 To 
date, deep-learning methods of ASPECTS measurements have 
been reported,25 but no comparative study between machine-
learning and deep-learning has been performed.

Another strength of the current study is that it validated Heuron 
ASPECTS’ ability to correctly measure the ASPECTS in a hetero-
geneous disease identical to emergency department presenta-
tions. Previous reports on automated ASPECTS programs have 
not addressed these issues. In diseases such as hemorrhage, peri-
hematomal edema27 results in changes in parenchymal densities 
or loss of gray–white matter discrimination. Such changes may 
be incorrectly recognized as EIC; hence, incorrect ASPECTS 
may occur. Our results show that such patients can be effectively 
screened using Heuron ASPECTS. In real-world practice, there 
is also a high number of patients with negative brain disease. In 
these patients, incidental OI lesions28 may masquerade as EIC. 
We believe that the good predictive ability shown in the current 
study is partly due to the novel deep-learning algorithm design 
that discriminates between EIC and OI.

Apart from deep-learning analysis, the Heuron ASPECTS has 
some distinctive features. After preprocessing to remove the 
skull and artifacts, Heuron ASPECTS discriminated between 
OI and EIC. While some models exclude OI before the calcula-
tion of the ASPECTS,29 Heuron ASPECTS detects signs of EIC 
and OI concomitantly. If EIC is present ipsilateral to the OI, the 
program subtracts the suspected OI along with the EIC from the 
ASPECTS, while OI by itself is not subtracted (online supple-
mental figure 2A,B). This pattern, in our opinion, most closely 
represents the human calculation of the ASPECTS. Heuron 
ASPECTS also internally discriminates hemorrhage; when 
hemorrhage is detected, Heuron ASPECTS does not undergo 
further calculation, resulting in an ASPECTS of 10 (online 
supplemental figure 2C,D). This is especially important in cases 

Table 2  Sensitivity, specificity, and AUC of Heuron ASPECTS prediction in comparison with experts’ consensus in each region of interest and 
dichotomized cut-off points

ROI for ASPECTS Sensitivity, % (TP/TP+FN) (95% CI) Specificity, % (TN/TN+FP) (95% CI) AUC (95% CI)

M1 53.49 (23/43) (38.58 to 68.40) 98.85 (602/609) (98.00 to 99.70) 0.89 (0.83 to 0.94)

M2 56.25 (36/64) (44.10 to 68.40) 99.32 (584/588) (98.66 to 99.98) 0.89 (0.83 to 0.94)

M3 63.89 (23/36) (48.20 to 79.58) 96.10 (592/616) (94.58 to 97.63) 0.88 (0.83 to 0.93)

M4 45.16 (14/31) (27.64 to 62.68) 96.78 (601/621) (95.39 to 98.17) 0.88 (0.82 to 0.93)

M5 52.54 (31/59) (39.80 to 65.28) 98.82 (586/593)(97.95 to 99.69) 0.88 (0.83 to 0.94)

M6 58.06 (18/31) (40.69 to 75.44) 97.58 (606/621)(96.38 to 98.79) 0.88 (0.83 to 0.94)

Caudate 74.51 (38/51)(62.55 to 86.47) 94.84 (570/601)(93.07 to 96.61) 0.88 (0.83 to 0.94)

Lentiform 76.79 (43/56) (65.73 to 87.84) 94.46 (563/596) (92.63 to 96.30) 0.88 (0.83 to 0.93)

Insula 61.97 (44/71) (50.68 to 73.26) 97.25 (565/581) (95.92 to 98.58) 0.89 (0.83 to 0.94)

Int. Capsule 78.72 (37/47) (67.02 to 90.42) 92.40 (559/605) (90.28 to 94.51) 0.88 (0.83 to 0.94)

All ROIs 62.78 (307/489) (58.50 to 67.07) 96.63 (5828/6031) (96.18 to 97.09) 0.88 (0.87 to 0.90)

Dichotomized analysis Sensitivity, % (TP/TP+FN)(95% CI) Specificity, % (TN/TN+FP)(95% CI) AUC (95% CI)

> 4 vs. ≤ 4 94.01 (267/284) (91.26 to 96.77) 61.90 (26/42) (47.22 to 76.59) 0.89 (0.884 to 0.90)

> 6 vs. ≤ 6 95.42 (250/262) (92.89 to 97.95) 76.56 (49/64) (66.18 to 86.94) 0.80 (0.80 to 0.81)

AUC, area under the curve; FN, false negative; FP, false positive; ROI, region of interest; TN, true negative; TP, true positive.

https://dx.doi.org/10.1136/jnis-2022-019970
https://dx.doi.org/10.1136/jnis-2022-019970
https://dx.doi.org/10.1136/jnis-2022-019970
https://dx.doi.org/10.1136/jnis-2022-019970
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of subtle hemorrhage, where ASPECTS suggestive of early isch-
emia can be clinically misleading. The hemorrhage detection 
ability of Heuron ASPECTS is expected to be confirmed in 
future studies.

Some limitations of this study should be noted. First, images of 
the study population were acquired at a single institution using a 
single vendor. There is a chance that differences in CT scanners 
and reconstruction methods may influence the predictive ability 
of automated ASPECTS software.30 However, this effect is more 
pronounced in less experienced readers and less pronounced in 
automated software.30 It should also be noted that the learning 
dataset was from a different institution, utilizing a different 
vendor and reconstruction method. Second, while this study 
has a strength in that it implemented a larger sample of other 
brain diseases or no brain disease cases compared with the stroke 
sample, there is a chance that the predictive ability of the Heuron 
ASPECTS may have been overestimated by the higher number of 
patients with negative EICs. Further analysis involving a large 
number of patients with ischemic stroke is needed in future 
studies.

CONCLUSION
In conclusion, Heuron ASPECTS reliably measured the ASPECTS 
on NCCT scans of patients suspected of having ischemic stroke. 
This was significant in both region-based analysis and clinically 
important cut-off values, and its ability was noninferior to that 
of the automated ASPECTS methods previously published. 
These findings suggest that deep-learning algorithm software 
may provide a useful aid to physicians caring for patients with 
stroke. Future studies are needed to evaluate this further.
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