
Wu et al. Cancer Drug Resist 2023;6:805-27
DOI: 10.20517/cdr.2023.77

Cancer 
Drug Resistance

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, 
adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as 

long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

www.oaepublish.com/cdr

Open AccessReview

Supramolecular host-guest nanosystems for 
overcoming cancer drug resistance
Sha Wu1, Miaomiao Yan1, Minghao Liang1, Wenzhi Yang1, Jingyu Chen1, Jiong Zhou1,2

1Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China.
2Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, 
Guangzhou 510632, Guangdong, China.

Correspondence to: Prof. Jiong Zhou, Department of Chemistry, College of Sciences, Northeastern University, NO. 11, Wenhua 
Road, Lane 3, Heping District, Shenyang 110819, Liaoning, China. E-mail: zhoujiong@mail.neu.edu.cn

How to cite this article: Wu S, Yan M, Liang M, Yang W, Chen J, Zhou J. Supramolecular host-guest nanosystems for
overcoming cancer drug resistance. Cancer Drug Resist 2023;6:805-27. https://dx.doi.org/10.20517/cdr.2023.77

Received: 7 Jul 2023  First Decision: 17 Oct 2023  Revised: 31 Oct 2023  Accepted: 15 Nov 2023  Published: 22 Nov 2023

Academic Editors: Godefridus J. Peters, Jong Seung Kim  Copy Editor: Pei-Yun Wang  Production Editor: Pei-Yun Wang

Abstract
Cancer drug resistance has become one of the main challenges for the failure of chemotherapy, greatly limiting the 
selection and use of anticancer drugs and dashing the hopes of cancer patients. The emergence of supramolecular 
host-guest nanosystems has brought the field of supramolecular chemistry into the nanoworld, providing a 
potential solution to this challenge. Compared with conventional chemotherapeutic platforms, supramolecular 
host-guest nanosystems can reverse cancer drug resistance by increasing drug uptake, reducing drug efflux, 
activating drugs, and inhibiting DNA repair. Herein, we summarize the research progress of supramolecular host-
guest nanosystems for overcoming cancer drug resistance and discuss the future research direction in this field. It 
is hoped that this review will provide more positive references for overcoming cancer drug resistance and 
promoting the development of supramolecular host-guest nanosystems.
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INTRODUCTION
With the number of cancer cases increasing each year, cancer has become the second leading cause of death 
worldwide[1]. Although chemotherapy remains the primary method of cancer treatment, its effectiveness is 
severely limited by cancer drug resistance[2-5]. The occurrence of cancer drug resistance is associated with 
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multiple factors, including the overexpression of multidrug resistance gene (MDR1), anti-apoptotic protein
(BCL-2), multidrug resistance-associated protein (MRP), and the enhanced activity of glutathione S-
transferase (GST) and DNA repair enzyme[6-8]. These factors can lead to decreased drug uptake, increased
drug efflux, DNA damage repair, abnormal drug metabolism, and dysfunctional apoptosis, resulting in
cancer drug resistance[9,10]. Nanosystems have been widely used to overcome cancer drug resistance due to
their ability to alter the way drugs enter cells, increase drug uptake, and improve drug stability[11,12].
Common nanosystems used to overcome cancer drug resistance include liposomes, polymeric
nanoparticles, and metal nanoparticles. However, there are still some problems in the application of these
nanosystems. For example, drugs loaded in liposomes tend to leak in the circulatory system before reaching
the tumor; polymeric nanoparticles have a high burst release effect; and metal nanoparticles have poor
biocompatibility. These problems have led to the limited role of these nanosystems in overcoming cancer
drug resistance[13,14]. Therefore, it is urgent to develop a class of novel nanosystems to reverse cancer drug
resistance.

Supramolecular chemistry is “chemistry beyond the molecule”[15]. Supramolecules generally refer to
organized aggregates formed by non-covalent interactions of two or more molecules, including electrostatic
interaction, hydrogen bond, van der Waals force, and π-π interaction[16-21]. By introducing supramolecules
into the nanosystem, it is possible to construct a more promising new drug delivery system, supramolecular
host-guest nanosystem, which provides a potential solution for cancer drug resistance[22-28]. Compared with
traditional nanomaterials constructed by covalent interactions, supramolecular host-guest nanomaterials
constructed by non-covalent interactions have excellent dynamic reversibility and responsiveness to various
stimuli (such as weak acidity, specific enzymes, and different redox environments)[29-33]. Based on these
advantages, supramolecular host-guest nanosystems can increase drug uptake, accurately release drugs,
inhibit drug efflux, and protect the activity of drugs, which provide great possibilities for eliminating cancer
drug resistance and promoting the progress of cancer treatment[34-37].

In this review, we summarize the research progress of supramolecular host-guest nanosystems for
overcoming cancer drug resistance over the past few years, including cyclodextrins, calixarenes,
cucurbiturils, and pillararenes [Scheme 1]. Moreover, the challenges and prospects of supramolecular host-
guest nanosystems for overcoming cancer drug resistance are discussed extensively. This review aims to
provide valuable insights and contribute to the development of more effective ways to reverse cancer drug
resistance.

CYCLODEXTRINS-BASED HOST-GUEST NANOSYSTEMS FOR OVERCOMING CANCER
DRUG RESISTANCE
Cyclodextrins (CDs), a class of natural oligosaccharides obtained from the degradation of starch, are linked
by glucopyranose units through α-1,4-glycosidic bonds [Figure 1][38,39]. The most common CDs contain six,
seven, and eight glucopyranose units, respectively, known as α, β, and γ-CDs[40,41]. CDs have hydrophobic
cavities, which can encapsulate hydrophobic drug molecules to form host-guest complexes[42-45]. In addition,
these complexes can self-assemble into nanoparticles, greatly improving the efficiency of the drug (such as
good water solubility, high stability, and low physiological toxicity)[46-48]. Therefore, CDs-based host-guest
nanosystems have the potential to reverse cancer drug resistance by increasing drug uptake and decreasing
drug efflux[49-51]. For example, Yang et al. constructed three nanomedicines based on β-CDs that enhanced
the drug uptake and the toxicity of drug-resistant cells[52]. Das et al. prepared a dual-responsive nanocarrier
by embedding carbon nanotubes into β-CDs-based polymers, enabling the combination of cocktail
chemotherapy with photothermal therapy, which was conducive to multidrug resistance reversal[53].
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Scheme 1. Supramolecular host-guest nanosystems for overcoming cancer drug resistance. GSH: Glutathione; GST: glutathione S-
transferase.

Figure 1. Schematic illustration of structures of (A) CDs; (B) calixarenes (C[n]As); (C) cucurbiturils (CB[n]s); and (D) pillararenes 
(P[n]As).

P-glycoprotein (P-gp) is an energy-dependent efflux pump located on the cell membrane[54,55]. P-gp depends 
on the energy produced by ATP hydrolysis within the mitochondria to keep intracellular drug 
concentrations low by transporting drug molecules outside the cell, resulting in drug resistance[56-58]. 
Therefore, drug resistance can be effectively reversed by inducing mitochondrial dysfunction. Wang et al. 
constructed a nanosystem (Aa-DOX + ADD@PC) based on a pH-sensitive graft copolymer (PBAE-g-β-CD) 
to achieve co-loading of the anticancer drug doxorubicin (DOX) and mitochondrial inhibitor (ADD) 
[Figure 2A][59]. When Aa-DOX + ADD@PC was endocytosed by tumor cells, DOX and ADD were released 
in the acidic environment for combined chemotherapy. Western blot assay was used to study the expression 
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Figure 2. (A) Schematic illustration of dual-drug co-loaded nanoparticle (Aa-DOX + ADD@PC) for overcoming cancer drug resistance; 
The expression levels of (B) P-gp and (C) XIAP in MCF-7/ADR cells with different treatments; (D) Tumor growth inhibition curves of 
tumor-bearing mice after various formulations. (*P < 0.05) This figure is quoted with permission from Wang et al.[59]. ADD: 
Mitochondrial inhibitor; DOX: doxorubicin; XIAP: X-linked inhibitor of apoptosis protein.

levels of P-gp and X-linked inhibitor of apoptosis protein (XIAP), and it was found that Aa-DOX + 
ADD@PC showed the best inhibitory effect on P-gp and XIAP [Figures 2B and C]. Moreover, the 
therapeutic effect of Aa-DOX + ADD@PC was better than that of free DOX, significantly inhibiting the 
growth of drug-resistant tumors [Figure 2D]. In this work, the effective loading of mitochondrial inhibitors 
by CDs was used to successfully reverse drug resistance by decreasing drug efflux, providing a new 
therapeutic platform for overcoming multidrug resistance (MDR).

Furthermore, compared with free drugs, tumor cells can effectively take up nanomedicine, which is 
conducive to the reversal of drug resistance caused by low intracellular drug concentration[60,61]. Liu et al. 
developed pH/redox dual-responsive DOX delivery nanosystems (DOX@RPMSNs) based on cationic 
β-cyclodextrin-PEI (PEI-β-CD) to overcome drug resistance of tumor cells [Figure 3A][62]. The poly 
(ethylene glycol) amine derivative shell (PEG-b-PLLDA) of DOX@RPMSNs could protect DOX@RPMSNs 
from safely reaching the vicinity of tumor cells, increasing the absorption of drugs by tumor cells. PEI-β-CD 
and DOX were sequentially released in response to the action of acid and glutathione (GSH) in tumor cells. 
DOX was used to kill tumor cells, and PEI-β-CD acted as an inhibitor to downregulate the expression of 
drug resistance-related P-gp by reducing ATP [Figure 3B]. Compared with other formulations, 
DOX@RPMSNs significantly inhibited tumor growth [Figures 3C and D]. These results indicated that 
DOX@RPMSNs successfully improved drug resistance reversal.

Histone-acetyltransferase (GCN5) is a silencing protein closely related to drug-resistance genes. Drug 
resistance caused by efflux can be reversed by down-regulating the expression of GCN5[63,64]. RNA 
interference (RNAi) is a therapeutic technique that specifically targets mRNA and regulates the expression 
of silencing proteins[65-67]. Yuan et al. exploited a nanosystem (DOX/siRNA@HPMSNs) to combine RNAi 
and DOX, which could knockout drug-resistance genes (Figure 3E)[68]. The hyaluronan (HA) shell of DOX/
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Figure 3. (A) Schematic illustration of the construction of sequentially responsive nanosystem (DOX@RPMSNs) and dual-responsive 
drug release; (B) Total ATP concentrations of MCF7/ADR cells treated with H2O2 and different doses of RPMSNs; (C) The expression 
levels of P-gp in tumor cells with different treatments; (D) Changes of tumor volume in tumor-bearing mice with different treatments 
(*P < 0.05, **P < 0.01, ***P < 0.001). This figure is quoted with permission from Liu et al.[62]; (E) Schematic illustration of the construction 
of co-delivery nanosystem (HPMSNs) and dual-responsive drug release; (F) The expression levels of P-gp and GCN5 in tumor cells 
with different treatments; (G) Changes of tumor weight in tumor-bearing mice with different treatments (*P < 0.05, **P < 0.01). This 
figure is quoted with permission from Yuan et al.[68]. DOX: Doxorubicin; PEG-b-PLLDA: poly (ethylene glycol) amine derivative shell.

siRNA@HPMSNs could prolong the circulation time of DOX/siRNA@HPMSNs in vivo and target tumor
cells, which promoted the accumulation of antitumor drugs. In the microenvironment of tumor cells, the
effective release of siRNA could downregulate the expression of GCN5 to reduce the efflux of DOX caused
by P-gp [Figure 3F]. Additionally, the inhibition rate of DOX/siRNA@HPMSNs on the growth of drug-
resistance tumors was higher than DOX by evaluating the chemotherapeutic effects of different drug
delivery systems [Figure 3G]. The two pH/redox dual-responsive nanosystems reduced drug efflux caused 
by the overexpression of P-gp in different ways, providing more possibilities for reversing MDR.

The acidic tumor microenvironment commonly found in solid tumors can reduce the endocytosis of free
drugs and dissociate drug molecules[69,70]. Therefore, pH-responsive supramolecular host-guest nanosystems
have been widely developed to enhance cell internalization and protect drugs from dissociation[71-73]. He
et al. prepared a pH-responsive nanoparticle (Ac-α-CD NP) based on acetylated α-CD (Ac-α-CD), which
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Figure 4. (A) Schematic illustration of the formation of pH-sensitive nanosystems (Ac-α-CD NP); (B) The cell viability of MDA-MB-231 
cells treated with different doses of PTX, PLGA NP, and Ac-α-CD NP (**P < 0.01). This figure is quoted with permission from He 
et al.[74]; (C) Schematic illustration of the antitumor progress of Ac-α-CD NP in MCF-7/ADR cells; (D) The P-gp expression level; and 
(E) the accumulation of DOX with different doses of Ac-α-CD NP in MCF-7/ADR cells (*P < 0.05, **P < 0.01). This figure is quoted with 
permission from Shi et al.[75]. CD: Cyclodextrin; DOX: doxorubicin; NP: nanoparticle; PTX: paclitaxel.

could stably encapsulate paclitaxel (PTX) [Figure 4A][74]. Ac-α-CD NP had a stronger inhibitory effect on
the viability of breast cancer drug-resistant cells (MDA-MB-231) compared with free PTX and PLGA NPs
[Figure 4B]. Moreover, Ac-α-CD NP exhibited good drug activity at a low concentration (0.854 nM),
indicating its potential to kill drug-resistant cells.

Additionally, further studies showed that Ac-α-CD NP could also enhance the uptake and sensitivity of
drug-resistant cells to DOX [Figure 4C][75]. α-CD was released by pH-induced hydrolysis of Ac-α-CD NP to
inhibit the expression of P-gp and decrease the activity of ATPase, eliminating drug resistance caused by
drug efflux [Figure 4D]. The changes in drug concentrations indicated that the downregulation of P-gp
expression directly increased the accumulation of DOX in drug-resistant cells, thus achieving the purpose of
inhibiting cancer drug resistance [Figure 4E]. Such pH-responsive supramolecular nanoparticles could not
only inhibit the viability of drug-resistant cells at low concentrations but also increase the uptake and
sensitization of drug-resistant cells to DOX, successfully reversing drug resistance from multiple angles.

Various star-shaped polymers can be obtained by modifying β-CD with different polymer chains[76,77]. These
polymers can further self-assemble into stable supramolecular host-guest nanoparticles after loading
anticancer drugs[78-80]. Compared with free drugs, nanoparticles are more easily internalized by tumor cells,
reducing the efflux of drugs[81-83]. These factors work together to eliminate cancer drug resistance[84,85]. Chen
et al. constructed a cationic β-CD-based nanocarrier that co-delivered PTX and Nur77 gene (an orphan
nuclear receptor) to eliminate cancer drug resistance[86]. In addition, they reported a nanoparticle based on
a PEGylated star-shaped copolymer successfully reversed MDR1-induced drug resistance[87].

Subsequently, they designed a new type of thermosensitive star-shaped polymer β-CD-g-(PEG-v-
PNIPAAm)7 with “V”-shaped arms, which encapsulated PTX through the cavity of β-CD [Figure 5A][88].
The drug-loaded polymer further self-assembled into a stable supramolecular host-guest nanomedicine at
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Figure 5. (A) Schematic illustration of supramolecular nanoparticle for inhibiting pump-mediated drug resistance; (B) Cell viability of 
HepG2/MDR1 cells treated with β-CD-g-(PEG-v-PNIPAAm) 7, PTX, and β-CD-g-(PEG-v-PNIPAAm)7/PTX at different temperatures; 
(C) Changes in cell viability of HepG2/MDR1 cells treated with different doses of PTX and β-CD-g-(PEG-v-PNIPAAm)7/PTX; (D) 
Tumor growth inhibition curves of tumor-bearing mice after various treatments (*P < 0.05). This figure is quoted with permission from 
Fan et al.[88]. CD: Cyclodextrin; MDR1: multidrug resistance gene; PEG: poly (ethylene glycol); PTX: paclitaxel.

37 °C, greatly enhancing the retention of drugs in cells. Compared with other drugs, this supramolecular 
host-guest nanomedicine was more sensitive to the change of temperature, causing a sharp decline in cell 
viability at 37 °C [Figure 5B]. When the drug-resistance tumor was transplanted into mice and treated with 
PTX and nanomedicine, respectively, β-CD-g-(PEG-v-PNIPAAm)7/PTX was more prominent in reducing 
cell viability [Figure 5C]. Additionally, there was no obvious change in tumor volume after treatment with 
β-CD-g-(PEG-v-PNIPAAm)7/PTX [Figure 5D]. These results indicated that β-CD-based temperature-
responsive nanomedicine had a good therapeutic efficacy against drug-resistant tumors.

Moreover, Li et al. constructed a unimolecular micelle based on a star-shaped polymer (β-CD-g-PCL-SS-
PEG-FA) that stably encapsulated DOX [Figure 6A][89]. The folic acid (FA) in the unimolecular micelle 
could target and penetrate tumor cells to increase the accumulation of DOX, inhibiting the cancer drug 
resistance caused by decreased drug uptake. The drug loaded in the unimolecular micelle could be released 
in response to GSH. MTT assay analysis indicated that β-CD-g-PCL-SS-PEG-FA had a better inhibitory 
effect on cell viability compared with free DOX [Figure 6B and C]. In addition, the overexpression of folate 
receptors on cervical cancer drug-resistant cells (HeLa/MDR1) accelerated the uptake of β-CD-g-PCL-SS-
PEG-FA, enhancing the therapeutic effect of DOX on drug-resistant cells. Such β-CD-based stimuli-
responsive supramolecular host-guest nanoparticles showed exciting results in overcoming cancer drug 
resistance due to the precise targeting, effective uptake, and controlled release of drugs.

CALIXARENES-BASED HOST-GUEST NANOSYSTEMS FOR OVERCOMING CANCER 
DRUG RESISTANCE
Calixarenes are a class of cyclic oligomers formed by methylene-bridging ortho-phenolic hydroxyl groups 
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Figure 6. (A) Schematic illustration of a unimolecular micelle for inhibiting pump-mediated drug resistance; Cell viability of (B) 
HepG2/MDR1 cells and (C) HeLa/MDR1 cells treated with different doses of DOX, β-CD-g-PLC-SS-PEG/DOX, and β-CD-g-PLC-SS-
PEG-FA/DOX. This figure is quoted with permission from Li et al.[89]. CD: Cyclodextrin; DOX: doxorubicin; FA: folic acid; GSH: 
glutathione; MDR1: multidrug resistance gene; PEG: poly (ethylene glycol).

[Figure 1B][90-92]. Due to their molecular shapes similar to the Sangreal, they are named calix[n]arenes
(C[n]As) by Gutsche[93]. By introducing hydrophilic and hydrophobic groups at the upper and lower rims of
C[n]As, respectively, amphiphilic C[n]As can be designed, which are easy to self-assemble into vesicles,
nanoparticles, or other aggregates[94-99]. Host-guest nanosystems based on C[n]As have low toxicity and good
biocompatibility, becoming a new research hotspot in the field of cancer drug resistance[100-102].

The close coordination between GSH and GST can initiate detoxification mechanisms within tumor cells,
leading to the formation of drug resistance[103-105]. For example, GST can catalyze the binding of GSH to
electrophilic antitumor drugs, accelerating the degradation of drugs[106-108]. Therefore, drug resistance can be
reversed by regulating the GST. Recently, Dai et al. designed a nanomedicine (Pt-cCAV5-FU) based on
sulfonatocalix[4]arene for overcoming GST-induced cancer drug resistance [Figure 7A][109]. The GST
regulator (5-FU) was encased into the hydrophilic core of Pt-cCAV5-FU self-assembled from a host-guest
complex of sulfonatocalix[4]arene with cisplatin. Pt-cCAV5-FU actively released cisplatin and 5-FU during
the hydrolysis process caused by esterase. 5-FU could downregulate GST activity, prompting cisplatin to
damage DNA rather than binding to GSH [Figure 7B]. In addition, the endocytosis of cisplatin resistance
cells A549/CDDP against Pt-cCAV5-FU was stronger than that of A549, which increased the accumulation of
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Figure 7. (A) Schematic illustration of Pt-cCAV5-FU for overcoming cisplatin resistance in A549/CDDP cells; (B) The GST activity of 
A549/CDDP cells with different treatments; (C) Platinum content in the genomic DNA of A549 and A549/CDDP cells after incubation 
with Pt-cCAV and Pt-cCAV5-FU for 12 h. This figure is quoted with permission from Dai et al.[109]. GSH: Glutathione; GST: glutathione S-
transferase.

Figure 8. (A) Schematic illustration of TTNDV to overcome cancer drug resistance by killing n-DNA and Mt-DNA; (B) Tumor growth 
inhibition curves of tumor-bearing mice after different formulations (*P < 0.05). This figure is quoted with permission from Nair 
et al.[114]. DOX: Doxorubicin; FA: folic acid.

cisplatin in cancer cells [Figure 7C]. All of these factors ultimately made Pt-cCAV5-FU more toxic to drug-
resistance cells. This work developed a novel nanomedicine, laying the foundation for C[n]As-based host-
guest nanosystems to reverse cisplatin resistance.

Furthermore, although free DOX can kill the nuclear DNA (n-DNA) of tumor cells, the undamaged 
mitochondrial DNA (Mt-DNA) can trigger drug resistance[110-112]. Therefore, the design of a drug to destroy 
synchronously n-DNA and Mt-DNA can promote the reversal of drug resistance[113]. Nair et al. constructed 
a gold nanotherapy platform (TTNDV) based on sulfonatocalix[4]arene [Figure 8A][114]. The nanoplatform 
could encapsulate DOX and mitochondrion-targeted analogue (Mt-DOX) in an optimal ratio of 1:100 to 
reverse cancer drug resistance caused by mitochondrial escape. In vitro and in vivo experiments showed that 
TTNDV had less toxic side effects than free DOX. In addition, TTNDV had a stimulating response to 
temperature. Under near-infrared irradiation, drugs embedded in TTNDV were released simultaneously to 
kill n-DNA and Mt-DNA, successfully overcoming DOX resistance and improving the chemotherapeutic 
effect of DOX [Figure 8B]. This work solved the problem of DOX resistance by killing Mt-DNA to induce 
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apoptosis, providing a feasible strategy for reversing cancer drug resistance.

CUCURBITURILS-BASED HOST-GUEST NANOSYSTEMS FOR OVERCOMING CANCER 
DRUG RESISTANCE
Cucurbiturils (CB[n]s) are a kind of macrocyclic hosts constructed by condensation of glycoluril with 
formaldehyde under acid conditions, which are the fourth macrocyclic hosts after crown ethers, 
cyclodextrins, and calixarenes [Figure 1C][115-117]. According to the different number of glycoluril units, 
different types of CB[n]s can be obtained, and common cucurbiturils include CB[6], CB[7], and 
CB[8][118,119]. Due to their unique structures of hydrophobic cavity and hydrophilic port, CB[n]s are easy to 
form host-guest complexes with drug molecules and are promising materials for reducing side effects and 
enhancing the stability of antitumor drugs[120-124]. In addition, CB[n]s-based supramolecular nanosystems 
can be used to effectively reverse cancer drug resistance[125-128].

Cancer drug resistance is closely related to the inhibition of tumor apoptosis[129,130]. Mitochondria serves as 
the center for regulating tumor cell apoptosis[131,132]. Therefore, the destruction of mitochondria is also an 
effective way to overcome cancer drug resistance[133-135]. Recently, Dai et al. synthesized a multivalent 
supramolecular polymer (HABMitP) by modifying HA with mitochondrial targeting peptide and 4-
bromophenylpyridium [Figure 9A][136]. The combination of HABMitP, cisplatin, and CB[8] could promote 
mitochondrial aggregation, which led to the deterioration of mitochondria to release apoptosis-inducing 
factor (cytochrome C), thereby activating the apoptosis of tumor cells [Figure 9B and C]. Moreover, 
cisplatin-resistant tumors did not grow treated with CisPt + HABMitP + CB[8] for 14 days, indicating that 
assembly-induced mitochondrial aggregation significantly improved the antitumor efficacy of cisplatin 
[Figure 9D]. This study showed that the regulation of mitochondrial behavior was beneficial to the reversal 
of drug resistance, which provided a broad prospect for overcoming tumor drug resistance.

The inhibition of P-gp expression by reducing ATP concentration can reduce drug resistance in tumor 
cells[137,138]. Wang et al. reported nanoparticles (SCC-NPs) based on CB[7], which encapsulated the 
anticancer drug oxaliplatin (OxPt) and mitochondria-targeting peptide (N-Phe-KLAK) by the excellent 
host-guest properties of CB[7] [Figure 10A][139]. Due to the special acid responsiveness and competitiveness 
of the polymeric shell, SCC-NPs were used for self-motivated supramolecular combination chemotherapy. 
In acidic tumor environments, the amidomethyl phenylamine moieties on the polymeric shell were restored 
to form host-guest complexes with CB[7], competing to replace and release OxPt and N-Phe-KLAK. The 
released N-Phe-KLAK could effectively inhibit the production of ATP, resulting in the damage of energy-
dependent drug efflux pump [Figure 10B]. Additionally, the accumulation of OxPt in cells directly led to an 
increase in the number of apoptotic cancer cells, which successfully inhibited the viability of drug-resistance 
cells [Figure 10C and D). Self-motivated supramolecular combination chemotherapy provided a new 
strategy for addressing the issue of cancer drug resistance.

The Fusobacterium nucleatum (F. nucleatum) with apoptosis-inhibiting effect can trigger drug resistance in 
colorectal cancer (CRC) cells[140-143]. To address this issue, Yan et al. constructed a CB[7]-based 
nanomedicine (PG-Pt-LA/CB[7]) by multiple assemblies to overcome drug resistance [Figure 11A][144]. PG-
Pt-LA/CB[7] targeted and penetrated cancer cells and released OxPt in response to the GSH. The efficient 
uptake and stable release of drugs increased the accumulation of OxPt in CRC cells. In addition, PG-Pt-LA/
CB[7] showed the best inhibition effect on F. nucleatum compared to OxPt and PG-Pt-LA, successfully 
overcoming the drug resistance of CRC cells caused by F. nucleatum [Figure 11B]. A negligible growth in 
tumor volume was observed after 18 d of incubating tumors with PG-Pt-LA/CB[7], showing that PG-Pt-
LA/CB[7] improved the chemotherapeutic effect of OxPt on CRC cells [Figure 11C]. PG-Pt-LA/CB[7] was 
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Figure 9. (A) Schematic illustration of mitochondrial aggregation progress after treatment with multivalent supramolecular polymer 
(HABMitP) and CB[8]; (B) The ratio of cytosol cytochrome C [Cyt C(cyto)] to mitochondrial cytochrome C [Cyt C(mit)] and (C) The 
apoptosis percentage of TUNEL-positive cells with different treatments; (D) Changes of tumor volume in tumor-bearing mice with 
different formulations (*P < 0.05). This figure is quoted with permission from Dai et al.[136].

Figure 10. (A) Schematic illustration of the preparation and mechanism of self-motivated nanoparticles (SCC-NPs) in overcoming drug 
resistance; (B) ATP levels in HCT116/OxPt cells treated with Ctr NPs and SCC NPs at different doses; (C) The number of apoptotic cells 
treated with different formulations; (D) Cell viability of HCT116/OxPt cells after incubating with different treatments (***P < 0.001). This 
figure is quoted with permission from Wang et al.[139]. PEG: Poly (ethylene glycol).



Page 816                                                  Wu et al. Cancer Drug Resist 2023;6:805-27 https://dx.doi.org/10.20517/cdr.2023.77

Figure 11. (A) Schematic illustration of the preparation and mechanism of CB[7]-based nanomedicine (PG-Pt-LA/CB[7]) in overcoming 
drug resistance of CRC cells; (B) Changes of F. nucleatum levels in CRC cells with different treatments; (C) Changes of tumor volume in 
tumor-bearing mice with different formulations (**P < 0.01, ***P < 0.001). This figure is quoted with permission from Yan et al.[144]. CRC: 
Colorectal cancer.

expected to be a good material for improving the effect of OxPt on CRC cells.

PILLARARENES-BASED HOST-GUEST NANOSYSTEMS FOR OVERCOMING CANCER
DRUG RESISTANCE
Pillararenes (P[n]As) are a new type of macrocyclic hosts that bridge hydroquinone units through
methylene discovered by Ogoshi et al. [Figure 1D][145]. These hydroquinone units are generally 5-10, with
P[5]A and P[6]A being the most common[146-151]. P[n]As are widely used in various fields such as drug
delivery, ion recognition, adsorptive separation, sensors, and optoelectronic materials due to the
characteristics of symmetrical rigid skeleton, adjustable electron-rich cavity,  and easy
functionalization[152-154]. In addition, because of the highly attractive host-guest properties of P[n]As, more
and more attention has been paid to the construction of P[n]As-based host-guest nanosystems to overcome
cancer drug resistance[155-157]. Liu et al. prepared a novel carboxylatopillar[5]arene-based supramolecular
quaternary ammonium nanoparticle to overcome the drug resistance generated during the chemotherapy of
CRC[158]. Chang et al. constructed a redox-responsive cationic vesicle based on amphiphilic pillar[5]arene,
successfully overcoming the drug resistance of tumors[159].

The water-soluble pillar[6]arene (WP6) not only forms stable host-guest complexes with a variety of guest
molecules but also exhibits good biocompatibility and stimuli-responsiveness, which offers the possibility
for constructing supramolecular host-guest nanoplatforms to reverse cancer drug resistance[160-166]. Shao
et al. reported a host-guest complex (AWP6�G) containing anionic WP6 (AWP6) and prodrug (G), which
further self-assembled to form nanovesicles for inhibiting cancer drug resistance [Figure 12A][167]. The
nanovesicles released camptothecin (CPT) and chlorambucil (Cb) under the action of GSH to achieve
combination chemotherapy. The dual-drug co-loaded nanovesicles showed a better inhibition effect on
drug-resistance cells compared to the single drug [Figure 12B]. This study showed that P[n]As-based
supramolecular host-guest nanosystems were expected to be ideal materials for inhibiting MDR.

Subsequently, Liu et al. prepared a nanosponge (NS) based on AWP6 using a “bottom-up” template
preparation technique [Figure 12C][168]. Through the host-guest interaction, antitumor drugs and dyes were
stably encapsulated in AWP6 to overcome MDR. The IC50 of DOX@NS (3.4 μM) was significantly lower
than that of free DOX (34.4 μM) when different doses of free DOX and DOX-loaded NS were incubated in
drug-resistance cells [Figure 12D]. Mechanistic studies indicated that the effective loading and stable
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Figure 12. (A) Schematic illustration of the formation of nanovesicle and its internalization progress; (B) Cell viability of MCF-7 cells 
after incubation with Cb, CPT, Cb + CPT mixture, and vesicles for 24 h. This figure is quoted with permission from Shao et al.[167]; (C) 
Schematic illustration of water-solution pillar[6]arene nanosponges (NS) in overcoming MDR; (D) Cell viability of MCF-7/ADR cells 
after incubation with DOX and DOX@NS. This figure is quoted with permission from Liu et al.[168]; (E) Schematic illustration of the 
preparation of PIC micelles and their application in inhibiting drug e�ux; (F) Changes of extracellular fluorescence intensity after 
incubating with FA-PEG-b-PAA and di�erent concentrations of PIC micelles; (G) Cell viability of MCF-7/ADR cells after incubation with 
different treatments. This figure is quoted with permission from Yu et al.[170]. AWP6: Anionic WP6; CPT: camptothecin; DOX: 
doxorubicin; FA: folic acid; GSH: glutathione; MDR: multidrug resistance; NS: nanosponge; PEG: poly (ethylene glycol); PIC: polyion 
complex.

encapsulation of DOX based on host-guest interaction were the main reasons for overcoming MDR. This 
work showed that the delivery of anticancer drugs through host-guest interaction was a promising way to 
overcome MDR.

Additionally, cationic WP6 (CWP6) can encapsulate ATP, blocking the energy of drug efflux[169]. Yu et al. 
prepared a polyion complex (PIC) micelle by modifying CWP6 with functionalized diblock copolymer (FA-
PEG-b-PAA) [Figure 12E][170]. PIC micelles could specifically target and penetrate cancer cells overexpressed 
with FA receptors. The decrease in extracellular fluorescence intensity indicated that CWP6 successfully 
blocked the energy source of calcein (model drug) efflux [Figure 12F]. In addition, PIC micelles significantly 
enhanced the inhibitory effect of DOX·HCl on cell viability compared with free DOX·HCl [Figure 12G]. 
These results suggested that the supramolecular nanomicelle endocytosed by drug-resistance cells and 
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released CWP6 to selectively form a host-guest complex with ATP, which provided a new method for 
blocking the energy of drug efflux and was expected to become an ideal material for overcoming cancer 
drug resistance.

In addition to blocking the energy source of P-gp expression, nitric oxide (NO) can also downregulate the 
expression level of P-gp, reversing the drug resistance of cancer[171-173]. To achieve stable delivery and 
selective release of NO in tumor cells, Ding et al. designed supramolecular peptide nanomedicine (BPC/
DOX-ICG) based on the host-guest complexation of anionic water-soluble [2]biphenyl-extended-
pillar[6]arene (AWBpP6) with pyridinium-terminal-modified polypeptide (PPNC) [Figure 13A][174]. DOX 
and indocyanine green (ICG) loaded in BPC/DOX-ICG were used to simultaneously treat cancer cells with 
chemotherapy and photothermal therapy. S-nitrosothiol on PPNC released NO to downregulate the 
expression level of P-gp after near-infrared (NIR) irradiation. Western Blot analysis showed that the P-gp 
level in MCF-7/ADR cells was significantly reduced to 24.9% when treated with NIR irradiation and BPC/
DOX-ICG [Figure 13B]. The reduced P-gp could greatly enhance the efficacy of chemotherapeutic drugs, 
inhibiting tumor growth [Figure 13C]. Therefore, P[n]As-based nanocarriers could effectively deliver NO to 
downregulate P-gp expression, providing a promising approach to eliminate cancer drug resistance.

Chloride channel protein is highly expressed in various cancer cells and has a significant correlation with 
tumor drug resistance[175,176]. Yang et al. reported a supramolecular nanoprodrug (DOX@GP5�Pro-NFA) 
based on the host-guest complexation between galactose-modified pillar[5]arene (GP5) and chloride 
channel inhibitor prodrug (Pro-NFA) to reverse drug resistance [Figure 14A][177]. DOX@GP5�Pro-NFA 
was hydrolyzed under the action of esterase to release DOX and NFA, which could effectively block chloride 
ion channels, and reverse cancer drug resistance. Additionally, the inhibitory effect of DOX@GP5�Pro-
NFA on tumor cells, especially drug-resistance cells, was significantly higher than that of free DOX 
[Figure 14B]. Moreover, poly(ADP ribose)polymerase (PARP) can repair DNA to directly lead to drug 
resistance[178,179]. Yang et al. designed a nanoparticle (DOX@GP5�Pro-ANI) based on GP5 to load PARP 
inhibitor prodrug (Pro-ANI) that could inhibit DNA repair [Figure 14C][180]. DOX@GP5�Pro-ANI 
overcame tumor drug resistance by inhibiting the expression of PARP, effectively reducing the viability of 
drug-resistance cells [Figure 14D]. These studies showed that P[n]As could effectively load anticancer 
prodrugs, which opened up broad prospects for inhibiting the expression of proteins associated with drug 
resistance.

CONCLUSION
In summary, we reviewed the application of supramolecular host-guest nanosystems based on
cyclodextrins, calixarenes, cucurbiturils, and pillararenes in overcoming cancer drug resistance. Compared
with traditional small molecule drugs, nanosystems can effectively reduce the side effects of drugs and
improve the accumulation of drugs in tumors. However, traditional nanosystems also have some
drawbacks, such as lack of stimuli-responsiveness, difficulty in preparation and synthesis, and slow
degradation in vivo. The emergence of supramolecular nanosystems complements the drawbacks of these
traditional nanosystems. Due to their dynamic and reversible host-guest interactions, supramolecular
nanosystems are endowed with rich stimuli-responsiveness to release drugs within tumors. Furthermore,
supramolecular host-guest nanosystems have some advantages, such as high drug loading, low side effects,
and good biocompatibility, which can co-deliver multiple drugs to inhibit cancer drug resistance by
damaging mitochondrial function, blocking the energy source, inhibiting DNA repair, and reducing the
level of GSH. However, supramolecular host-guest nanosystems still face some challenges in overcoming
cancer drug resistance:
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Figure 13. (A) Schematic illustration of synergistic PTT and CT using supramolecular polypeptide nanomedicine (BPC/DOX-ICG); (B) 
The P-gp expression levels in MCF-7/ADR cells with different treatments; (C) Changes of tumor volume in tumor-bearing mice with 
different formulations (**P < 0.01, ***P < 0.001). This figure is quoted with permission from Ding et al.[174]. DOX: Doxorubicin; ICG: 
indocyanine green; MDR: multidrug resistance; NIR: near-infrared; PPNC: pyridinium-terminal-modified polypeptide.

(i) Further improve the targeting. Tumor cells differ from healthy cells in many ways, such as acidity,
hypoxia, and metabolism. Thus, more specific supramolecular host-guest nanosystems should be developed
by focusing on the tumor microenvironment to target and penetrate tumor cells, reversing cancer drug
resistance caused by drug uptake;
(ii) Optimize drug loading strategy. Although multidrug-loaded supramolecular host-guest nanosystems
can inhibit drug resistance, their effects are difficult to predict due to the different pharmacokinetics of each
drug. Therefore, it is necessary to optimize the combination and dosage of loaded drugs and design
supramolecular host-guest nanosystems with excellent performances;
(iii) Improve stability. Supramolecular host-guest nanosystems have rich stimuli-responsiveness, but at the
same time, there are problems of poor stability. In future studies, the stimuli-responsiveness of
supramolecule and the stability of macromolecule can be better combined to prepare supramolecular
polymeric nanosystems to overcome cancer drug resistance;
(iv) Promote the development of cancer synergistic therapy. At present, most supramolecular host-guest
nanosystems used to overcome drug resistance of tumors remain at the level of drug delivery, which greatly
limits the inhibitory effect on drug-resistance cells. Introducing other therapeutic methods (such as
photodynamic therapy, gene therapy, and immunotherapy) into supramolecular host-guest nanosystems
will help establish more accurate and personalized strategies to combat cancer drug resistance;
(v) Enhance the clinical translation. While some preliminary studies have shown that supramolecular host-
guest nanosystems can be used to overcome drug resistance in cancer, there is still a long way to go before
clinical translation. Firstly, the pharmacokinetics, biodistribution, metabolic behavior, and toxicological
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Figure 14. (A) Schematic illustration of the preparation of supramolecular nanoprodrugsDOX@GP5�Pro-NFA and their applications in 
overcoming cancer drug resistance; (B) Cell viability of HepG2 cells and HepG2/ADR cells treated with free DOX and DOX@GP5�Pro-
NFA, respectively. This figure is quoted with permission from Yang et al.[177]; (C) Schematic illustration of the preparation of 
supramolecular nanoprodrugs DOX@GP5�Pro-ANI and their applications in overcoming cancer drug resistance; (D) Cell viability of 
HepG2/ADR cells treated with free DOX and DOX@GP5�Pro-ANI (**P < 0.01). This figure is quoted with permission from Yang 
et al.[180]. DOX: Doxorubicin; GP5: galactose-modified pillar[5]arene.

characteristics of supramolecular host-guest nanosystems are still in the research stage, and there are still 
unpredictable risks to their safety. Secondly, in vitro and in vivo experiments of supramolecular host-guest 
nanosystems cannot completely mimic the complex microenvironment of tumors in the body, resulting in 
lower clinical therapeutic effects than expected. Thirdly, the large-scale production of supramolecular host-
guest nanosystems is a bottleneck in clinical applications, and small changes in the manufacturing process 
can cause significant changes in their physicochemical properties, which will affect their safety and 
biological effects. Therefore, more basic research and clinical trials are needed to assess their safety, efficacy, 
and feasibility.

The development of supramolecular host-guest nanosystems offers new hope to alleviate drug resistance in 
cancer, although innovation and progress are still required in many aspects. We believe that with continued 
research efforts, supramolecular host-guest nanosystems will make further progress in reversing cancer drug 
resistance, and bring new breakthroughs for cancer treatment and even human health.
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