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Abstract

Polygenic risk scores (PRS) are increasingly used to estimate the personal risk of a trait based 

on genetics. However, most genomic cohorts are of European populations, with a strong under-

representation of non-European groups. Given that PRS poorly transport across racial groups, 

this has the potential to exacerbate health disparities if used in clinical care. Hence there is a 

need to generate PRS that perform comparably across ethnic groups. Borrowing from recent 

advancements in the domain adaption field of machine learning, we propose FairPRS - an 

Invariant Risk Minimization (IRM) approach for estimating fair PRS or debiasing a pre-computed 

PRS. We test our method on both a diverse set of synthetic data and real data from the 

UK Biobank. We show our method can create ancestry-invariant PRS distributions that are 

both racially unbiased and largely improve phenotype prediction. We hope that FairPRS will 

contribute to a fairer characterization of patients by genetics rather than by race.
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1. Introduction

Genome wide association studies (GWAS) were developed for finding statistical associations 

between single nucleic polymorphisms (SNPs) and phenotype traits. Later, these 

associations were then aggregated into a score – a polygenic (risk, for diseases) score (PRS) 

– for predicting traits.1 PRS became extremely popular due to its promise of harnessing 
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one’s genome to act as a biomarker for personalizing medical risk estimation. This capacity 

for personalization can also translate to heterogeneity on the population level with PRS 

helping to identify subpopulations that are at higher risk of disease.2

Unfortunately, PRSs are plagued by many issues. Primarily GWAS cohorts strongly suffer 

from a lack of sample diversity. For example, 79% of all participants in the NHGRI-EBI 

GWAS catalog3 are of European descent despite being only 16% of the global population.4 

The under-representation of minority groups in cohorts leads to inferior PRS because PRS 

derived from European ancestry tend to perform poorly in genetically diverse populations 

and even within other admixed European populations.5 As a simple example, polygenic 

scores for height predict all Africans to be shorter than Europeans, contrary to empirical 

evidence.6 Thus, using PRS for precision medicine in its current form may exacerbate health 

disparities until the lack of representation is solved.4

Reducing racial bias in genomic prediction may contribute to more equitable healthcare for 

all. But to establish health equity in precision medicine we require better genetic cohorts 

whose multi-ethnic representation matches real life. This solution, however, is resource 

heavy and is long-term. Meanwhile, we can apply advances in machine intelligence to 

mitigate bias in trait prediction from PRS.

There is prior work on using computational frameworks for making PRS generalize better 

across subgroups. These include deconvoluting ancestry and partial PRS computation,7 

computing ancestry-specific PRS to showcase their utility as predictors across different 

populations,8 or enabling more accurate effect size estimation by leveraging linkage 

disequilibrium diversity with GWAS summary statistics.9 Advances in machine learning 

such as using transfer learning-based methods10 and deep learning based methods have 

been applied to make PRS more portable across ancestries.11 However, either some of 

these methods assume part of the background genome is still of European origin7,10 or 

consider pre-computed associated markers as input to reduce search space which can contain 

significant bias or spurious associations.

In this work, we apply a domain-adaptation-based paradigm called Invariant Risk 

Minimization (IRM)12 in the context of PRS. We consider the problem of generalizability of 

PRS as an out of distribution generalization problem, a common machine learning problem 

where models are developed in one domain but are deployed in another.13 IRM’s goal is to 

generate invariant predictors given multiple training domains. In our context, these different 

domains are adapted to be the different ancestry groups, therefore allowing for race-invariant 

phenotype prediction from PRS. Our goal is then to learn a generalizable PRS that contains 

as little ancestry information as possible, while still accurately predicting the phenotype of 

interest.

We present FairPRS, a framework for finding and mitigating bias in PRS which improves 

generalizability across populations and make it portable while increasing the prediction 

accuracy of the phenotype of interest. FairPRS is robust across both rigorous simulation 

studies involving arbitrary population structure and pre-computed PRS obtained from UK 

Biobank (UKB).14
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2. Methods

FairPRS offers an entire pipeline from genetic data to trait prediction. It has three possible 

access points for input: genotypes, genotypes with summary statistics, or a pre-computed 

PRS. We will explain the FairPRS framework herein, followed by the autoencoder 

architecture, training, and evaluation phases of the pipeline. Thereafter, we will discuss the 

simulation and real data used in the study for evaluating FairPRS including computational 

details.

2.1. FairPRS framework

The FairPRS pipeline is designed for ease and customization with multiple access points 

based on the user needs. Moreover, the pipeline can be run for a user-determined number 

of iterations for all or specific portions. The first stage focuses on processing the genotype 

data towards PRS computation. It allows to calculate the summary statistics, from GWAS, 

and principal components (PCs) of the genotype data. The PCs can be used as covariates for 

the GWAS and as input to the FairPRS model. The summary statistics are computed using 

PLINK v2.015 and the PCs are efficiently calculated for large scale data using TeraPCA.16 

Next, the pipeline allows starting at the PRS computation step if the user has previously 

calculated the summary statistics. The betas are extracted from the summary statistics and 

used for PRS computation through PRSice217 in the validation cohort.

Lastly, the third stage is the FairPRS model which uses the pipeline-computed or user-

provided PRS and PCs as input, while the phenotype and the PRS will be used for the 

training supervision. The model is implemented as a dual task autoencoder and MLP as 

shown in Figure 1. Briefly, first, the data is encoded into a shared latent representation. 

The latent representation is then fed into two tasks in parallel: decoding the PRS input and 

predicting the phenotype. The losses are then combined with the ancestry information to 

obtain the IRM loss. The fair PRS estimates are obtained from the PRS decoder output. 

A key point in this step is the automatic multi-thread hyperparameter tuning per iteration 

with allows the pipeline to train high-performing models in an efficient manner. After the 

model training and evaluation, the average performance over the iterations is reported and a 

dictionary with all the results per iteration is saved for further analysis and reproducibility 

purposes.

2.1.1. Implementation and Evaluation

Detailed architecture: The encoder is a single layer with ReLU activation, and latent space 

size determined as a hyperparameter. Both the PRS decoder and the phenotype prediction 

head perform a 10% dropout and then apply a single linear layer. The ERM loss is obtained 

by adding the two MSE losses with equal weight. The final loss is a weighted sum of the 

ERM and IRM losses, with the weight being a hyperparameter. Adam method was used for 

optimization.18 The framework is implemented using PyTorch 1.11.19

Training: The proposed model allows using regression losses for the double task network 

and employs multiple environments corresponding to the number of populations present in 

the PRS data. An automatic hyper-parameter search with parallel trials is used while training 
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to fine-tune the model in a more efficient manner. The random search of hyperparameters 

was done for the learning rate (log-uniform [10−5,0.1]), the dimension of the latent space 

(uniform from 2i : i ∈ [2,9]), and the relative weight of the IRM loss (uniform [0.5,1.5]). 

The search space was defined based on preliminary experiments allowing for a wide search 

without a prohibitively computationally expensive search space. Tuning was done using Ray 

Tune.20 UK Biobank data was also randomly split to train (70%), validation (20%), and test 

(10%) sets. The best hyperparameter configuration was selected based on a validation set 

and was subsequently used for evaluation.

Evaluation: To test the model against a baseline in a fair way, both the original PRS and 

those resulting from the model were regressed separately against the outcome using ordinary 

least squares. The covariate-adjusted coefficients of determination (adjustedR2 scores) for 

both models are reported. Regression was done in Python using statsmodels.21 Results per 

iteration are computed to finally report the mean performance across all iterations.

2.2. Data

FairPRS was evaluated on multiple simulated and real datasets. The simulated datasets 

included a wide array of configurations and were generated using the data simulator in 

a previous work.22 Additionally, UK Biobank enhanced PRS (ePRS-UKB) for multiple 

phenotypes were used to further evaluate the model in real-world scenarios across different 

disease outcomes.

Simulated data—Three models for simulating genetic datasets with arbitrary population 

structure: Balding-Nichols (BN), Prichard-Stephens-Donelly (PSD), and 1000 Genomes 

Project (TGP) with 3 variance proportion configurations for genetic, environment and 

noise, vgen, venv, vnoise , totaling in 9 different simulation scenarios were used to evaluate 

FairPRS. We used three populations for BN and PSD and ten populations for TGP. For 

each, model we generated 10 iterations resulting in 90 different datasets. The 3 proportions 

configurations used were vgen : venv : vnoise = {5 : 5 : 90, 10 : 20 : 70, 20 : 40 : 40}. The 

number of causal SNPs was set at 5% for all simulated datasets. Moreover, for all 

configurations the simulated datasets included 100,000 SNPs, 10,000 samples for GWAS, 

1000 for PRS training and 400 for PRS testing.

Real data—PRS and ancestry data were obtained from the UKB for further model 

validation.23 ePRS-UKB for 6 different conditions across 104,231 multi-ethnic individuals 

were used in our analysis, these are height, body mass index (BMI), glycated hemoglobin 

(HBA1C), high-density lipoprotein cholesterol (HDL), and low-density lipoprotein 

cholesterol (LDL).

3. Results

3.1. Simulated data

FairPRS consistently achieved higher or comparable phenotype prediction accuracy with 

respect to the original PRS computed by PRSice2,17 measured in terms of adjusted 

R2 after correcting for top eight principal components (PCs) computed by TeraPCA16 
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(Supplementary Figure 1). FairPRS achieved better results on all models across all 

simulation scenarios (Figure 2), each run with 10 iteration for reproducibility. Kolmogorov-

Smirnov (KS) two-sample tests, a goodness of fit test of equality of the original vs. observed 

PRS distributions were done to test the null hypothesis of whether the two distributions 

were sampled from the same unknown distribution. This resulted in very low p-values (p < 

10−160) across all simulation scenarios which rejected the null hypothesis that the FairPRS 

distributions and the original PRS distribution were sampled from the same distribution (see 

Supplementary Table 1). The KS tests were done using SciPy package in python. The Net 

Reclassification Index (NRI), a percentage score reflecting the directional change and the 

difference in adjusted R2 by using FairPRS on top of pre-computed PRS using PRSice2 

shows that as the genetic variance (vgen) increases in contribution to the phenotype, the NRI 

also increases (Figure 3). Hence, when a pre-computed PRS is augmented with FairPRS 

not only do we observe a higher R2 across all the simulation scenarios, but we also obtain a 

relatively unbiased PRS estimate with negligible ancestry influence.

3.2. Real data

To demonstrate how FairPRS estimates real-world traits, we applied it on UKB-ePRS 

across six traits as mentioned above. FairPRS achieves considerably higher R2 compared to 

the pre-computed ePRS-UKB for all traits analyzed (Figure 4).

We compared FairPRS with another recent transfer learning approach, TL-PRS10 and found 

that on the demo data set made available by TL-PRS, FairPRS performed similarly in 

predicting the phenotype after correcting for covariates.

We further examined the variance explained within each ancestry group. Figure 5 shows 

that, for all traits, FairPRS achieves increased performances among white, mixed, black 

ancestry groups while performing marginally better in the Asian ancestry group. HDL 

cholesterol is decreased in black with marginal increase in other populations as it is known 

to have a protective effect on Black British.24

FairPRS was run 10 times for each ePRS-UKB trait analyzed for reproducibility and 

hyperparameter tuning. The NRI was computed by the percentage difference in R2 

when using FairPRS vs. pre-computed PRS. Maximum NRI was observed in glycated 

hemoglobin (HbA1c) which is a biomarker for Type 2 Diabetes and has been shown to 

have high predictive accuracy for PRS. This was followed by BMI and Height, respectively 

which are very well-studied in terms of phenotypic variance explained by PRS.25 KS test 

for the two PRS distributions, FairPRS and pre-computed ePRS-UKB also resulted in the 

rejection of the null hypothesis (see Supplementary Table 2) and demonstrated that FairPRS 

learns a domain invariant distribution different from its input. This shows how FairPRS can 

result in better predictive accuracy in large biobanks such as UKB and can be integrated into 

precision medicine efforts.

4. Discussion

In this work, we combined notions from classical genetics: the polygenic risk scores (PRS), 

with notions from machine learning and domain adaptation. We developed a model that 
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applies an Invariant Risk Minimization (IRM) approach to estimating PRS. Using both 

synthetic data and pre-computed PRS from the UK Biobank, we obtained PRS that are 

indistinguishable across races, while improving overall prediction accuracy in terms of 

adjusted R2 and NRI.

Our results show that performance also improved within ancestry groups in the UK Biobank 

data. Predictive performance improved for all ancestry groups, except Asians (east and 

south), for whom the performance was equivalent to the ePRS.23 The fact that improvement 

in accuracy did not come at the expense of either group is reassuring, suggesting FairPRS is 

safe in the sense it might not cause more harm than using regular PRS.

Despite their potential, GWAS are often plagued by the over-representation of European 

ancestry populations in their cohorts. If left uncorrected, this disproportional representation 

of population structure can lead to spurious associations and might only be able to explain 

a small fraction of heritability, among others issues.26 As PRS are computed from GWAS 

summary statistics, PRS inherits many of these drawbacks which contribute to its poor 

generalizability and transferability across populations due to the underlying influence of LD 

structure and environmental factors.2 Our method for finding fair estimates of PRS based 

on domain adaptation learns ancestry-invariant estimates which provide both qualitative and 

quantitative advantages.

Domain adaptation is a sub-field of machine learning focusing on model performance across 

multiple domains. The simplest driving example is when the distribution of data used for 

development, shifts during the deployment of the model. For example, using images of 

Swiss cows in the grassy Alps for training, while deploying the model to identify cows on 

the sandy beaches of Corsica.12,27 By having training data from multiple such sources and 

by training in an environment-aware approach - as with IRM, we can reduce the number of 

spurious correlations our model learns, like the grassy Alpine background.

In this work, we extend the notion of “domains” to different population ancestries. We apply 

the IRM framework, a form of supervised domain adaptation, to adjust the pre-computed 

PRS scores to be ancestry ignorant. Intuitively, we try to learn the most phenotype-predictive 

PRS, while forcing ourselves to ignore (or “forget”) any residual race information. Using 

IRM means we encourage the model to learn only information that is shared across 

ancestries. By constraining the PRS distribution of ancestries to coalesce, we ensure that 

when using the PRS for phenotype prediction, we get equal performance across ancestries. 

Thus, leading to a fairer PRS.

Different ancestries do exhibit disparities in health-related measures, and, therefore, different 

phenotypic distributions. However, these differences are rarely inherently biological. More 

often they are the result of how different ethnic subgroups interact with the healthcare 

system differently.28,29 (More formally, race disparities are more of an acquisition shift, 

rather than population or prevalence shift30). Consequently, forcing to disentangle race 

information from genetic information will (at least partially) remove race bias and will lead 

to a fairer usage of genetic data when assessing genetic risk.
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Nonetheless, IRM is not limitations-free. First, more generally, IRM includes a challenging 

bi-level optimization that can fail if test data are too dissimilar to the training data.31 To 

counter that, more advanced flavors of IRM have been subsequently developed.32 In this 

work, we used the original formulation since we observe all environments (ancestries) 

during training, guaranteeing that test-time environments are indeed similar to training-time 

ones. Secondly, We also encountered difficulties when modeling binary traits, probably due 

to combining a cross-entropy loss for the classification task with a mean squared error for 

the continuous PRS reconstruction, which operate on different scales, requiring an additional 

hyper-parameter to weigh between them and further complicating the training process. 

Substituting the cross-entropy loss with an MSE, which is equivalent to a Brier score33 

objective, lead to smoother training, but not necessarily better performance. We aim to fix 

this part of the model in future to obtain similar performance in binary traits as we observed 

in continuous traits. Thirdly, we saw a performance deterioration after increasing the number 

of expected environments and having not all of these present in the dataset, e.g., when 

having six expected ancestries in UKB experiments. However, in the real world we usually 

only have two to four ancestries that present relevant population structure, so while this 

was observed, it might be less of concern. An exciting future research direction is delving 

deeper into the interplay of FairPRS with local-ancestry based methods which highlights 

population sub-structure.

Limitations notwithstanding, FairPRS can be used as a tool to find unbiased estimates 

of pre-computed PRS or from GWAS summary statistics which would better predict the 

phenotype of interest. Unlike other methods which adjusts for admixed populations or 

LD interactions in computing PRS9,10 and needs summary statistics, LD information, etc. 

FairPRS can work with pre-computed PRS as well as summary statistics, making it easier 

to work with.

FairPRS estimates can be used as a step forward to achieve equity in precision medicine 

and evaluating disease risk in large clinical cohorts. It can be extensively used for out-of-

sample prediction with pre-computed PRS to obtain ancestry-robust PRS which transport 

better across ancestries and datasets. In future work, we want to compare the performance of 

PRS computed by state-of-the-art methods and ancestry-robust FairPRS and evaluate their 

portability to other ancestries.

As the use of PRS is being advocated in clinical care, FairPRS can be an important tool to 

achieve equity in healthcare as well as further our understanding of true genetic causes of 

disease risk. We hope that FairPRS will contribute to a fairer characterization of patients by 

genetics rather than by race.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data Availability

Simulated data is made available upon request. UKB-ePRS are available from UK Biobank.
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Fig. 1. 
Pipeline of FairPRS outlining the input variables: pre-computed PRS and genetic structure 

as represented by PCs from test data, the autoencoder used with IRM loss for learning the 

fair PRS output estimates with negligible ancestry influence.
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Fig. 2. 
Simulation study results for three simulation models, BN, PSD and TGP. A. Distributions of 

ancestry-specific PRS computed by (i) PRSice2 and (ii) FairPRS. B. Box-and-whisker plot 

of adjusted R2 between the phenotype and PRS computed by PRSice2 and FairPRS across 

the variance proportions for vgen : venv : vnoise .
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Fig. 3. 
Box-and-whisker plot of NRI (%) between the phenotype and PRS after using FairPRS 

from pre-computed PRS, across the variance proportions for vgen : venv : vnoise .
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Fig. 4. 
Applying FairPRS on UKB-ePRS estimates. A. Box-and-whisker plot of adjusted R2 

between the UKB traits and PRS computed by PRSice2 and FairPRS. B. Box-and-whisker 

plot of NRI (%) of adjusted R2 between the phenotype and PRS after using FairPRS from 

pre-computed PRS.
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Fig. 5. 
Applying FairPRS on UKB-ePRS estimates. Box-and-whisker plot of NRI (%) of adjusted 

R2 between the phenotype and PRS after using FairPRS from pre-computed PRS per 

ancestry group.
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