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1  |  INTRODUC TION

Periodontal ligament stem cells (PDLSCs) derive from the periodon-
tal ligament, which belongs to the group of mesenchymal stem 
cells (MSCs).1,2 PDLSCs are capable of regenerating lost periodon-
tal tissues.3–5 The comparison between the osteogenic potential 
of PDLSCs in basal and differentiating culture media is of great 

benefit in exploring the mechanism of human periodontal disease.6 
Previous studies have demonstrated that exogenous additives can 
induce osteogenic differentiation of PDLSCs, such as short pep-
tides,7 which can be used for future regenerative cell therapy. In 
addition, the repairing ability of PDLSCs has been reported in the 
orthodontic tooth movement progress8,9 and periodontitis-induced 
bone destruction10 and bone defect.11,12 Studies on the molecular 
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Abstract
Periodontal ligament stem cells (PDLSCs) are important mesenchymal stem cells con-
tributing to regenerating lost periodontal tissues and repairing bone defects. Studies 
on the molecular mechanism affecting the osteogenic differentiation of PDLSCs are 
necessary. Scopolamine (SCO) is known as a regulator of neural cell damage. The 
focus of the current study is on unveiling the role of SCO-mediated molecular mech-
anism in the osteogenic differentiation of PDLSCs. Through CCK-8 assay and LDH 
detection, we confirmed that SCO enhanced the viability of PDLSCs. Moreover, we 
determined that SCO induced the PDLSCs osteogenic differentiation, according to 
data of ALP activity measurement and ARS staining. Mechanistically, we performed 
western blot and identified that SCO could promote the lactylation of runt-related 
transcription factor 2 (RUNX2). We also found through rescue assays that knockdown 
of RUNX2 could reverse the effect of SCO treatment on the osteogenic differentia-
tion of PDLSCs. Further mechanism investigation revealed that lactylation of RUNX2 
at K176 site enhances the protein stability of RUNX2 through deubiquitination. 
Collectively, our present study unveils that SCO stabilizes RUNX2 to promote the 
osteogenic differentiation of PDLSCs through the lactylation modification of RUNX2.
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mechanism underlying the osteogenic differentiation of PDLSCs are 
needed.13

Scopolamine (SCO) is widely used as an inducer of nerve system 
damage for in vivo animal models, causing memory loss and cogni-
tive impairment.14–16 Functionally, SCO can regulate PC12 cell dam-
age and energy metabolism16; moreover, it can inhibit alveolar bone 
loss in rats.17 However, the specific role of SCO in modulating the 
osteogenic differentiation of PDLSCs is rarely reported. The focus 
of the current study is on the regulating functions of SCO in the 
osteogenic differentiation of PDLSCs as well as the corresponding 
regulatory mechanism.

Lactylation modification is known as a post-translational reg-
ulatory mode, altering the protein stability.18 Runt-related tran-
scription factor 2 (RUNX2) is an osteogenic gene, involving in the 
osteogenic differentiation of PDLSCs.19–21 To date, it remains un-
clear whether SCO affects the lactylation-mediated stability of 
RUNX2 in PDLSCs.

To summarize, the current study makes an investigation on the 
role of SCO-mediated lactylation of RUNX2 in the osteogenic differ-
entiation of PDLSCs.

2  |  MATERIAL S AND METHODS

2.1  |  Cell culture and treatment

Human PDLSCs were procured from BeNa culture collection 
(Beijing, China). For cell culture, PDLSCs were placed in Dulbecco's 
modified Eagle medium (DMEM) (Sigma, USA) containing 10% FBS 
(Hyclone, Logan, UT, USA). For incubation, the culture dishes were 
maintained in an incubator at 37°C and 5% CO2.

PDLSCs were treated with low (25 nM), middle (50 nM), or high 
(100 nM) concentrations of scopolamine (SCO, Sigma-Aldrich, St. 
Louis, MO, USA) to screen for suitable concentration.

For protein stability detection, PDLSCs were treated with 50 μg/
mL of CHX (MedChemExpress, NJ, USA) for 0, 6, 12, and 24 h.

2.2  |  Cell transfection

Short hairpin RNAs (shRNAs) targeting RUNX2 (sh-RUNX2#1, sh-
RUNX2#2) and corresponding negative control shRNA (sh-NC) 
were synthesized by RiboBio (Guangzhou, China). PDLSCs with 
confluence reached to 50%–60% were transfected with shRNAs 
for 48 h by using the Lipofectamine 2000 reagent (Invitrogen, CA, 
USA).

2.3  |  Reverse transcription and real-time 
quantitative polymerase chain reaction (RT-qPCR)

Total RNA extracted from indicated PDLSCs using Trizol Reagent 
(Invitrogen) was subjected to reverse transcription by using 

PrimeScript RT Reagent Kit (Takara, Tokyo, Japan) for complemen-
tary DNA (cDNA) generation. qRT-PCR was conducted by using the 
SYBR Prime Script RT-PCR Kit (Takara), as instructed by the manu-
facturer's protocol. The relative mRNA expression was calculated 
with the 2−ΔΔCt method by taking GAPDH as the internal control.

2.4  |  Immunoprecipitation (IP)

PDLSCs treated with or without SCO were lysed with RIPA buffer. 
Next, the lysates were pretreated with 50 μL of protein A/G im-
mune magnetic beads (Bimake, Houston, TX, USA) and were immu-
noprecipitated with antibodies obtained from Abcam (Cambridge, 
MA, USA), including anti-RUNX1, anti-RUNX2, anti-Osx, anti-ONT, 
anti-OPN, anti-OCN, anti-OPG, anti-BMP2, anti-BMP7, and anti-
COL1A1. Finally, the lactylation level of RUNX2 was detected 
with western blot using an l-lactyllysine (PTM Biolabs, Chicago, IL) 
antibody.

2.5  |  Western blot

Total protein was isolated from indicated PDLSCs using RIPA buffer 
(Beyotime, China). Protein samples were loaded on a 10% sodium 
dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) 
and then transferred to a polyvinylidene fluoride (PVDF) membrane. 
After washing, the membrane was incubated overnight with primary 
antibodies against OCN (1/1000, Abcam), OPG (1/1000, Abcam), 
RUNX2 (1/1000, Abcam), and the internal control anti-GAPDH 
(1/1000, Abcam) at 4°C. Next, the membrane was further incubated 
at room temperature with the second antibody (1/2000, Abcam) for 
2 h. Finally, blots were visualized and photographed with an optical 
luminescence instrument (GE, USA).

2.6  |  Ubiquitination assay

PDLSCs with or without RUNX2 mutation of K176 site (WT or 
K176R) were lysed with RIPA buffer. Next, the lysates were pre-
treated with 50 μL of protein A/G immune magnetic beads (Bimake, 
Houston, TX, USA) and were immunoprecipitated with anti-RUNX2 
antibody. The ubiquitinated RUNX2 was detected with western blot 
using an anti-ubiquitin antibody (1:1000, Abcam).

2.7  |  Cell counting kit-8 (CCK-8) assay

The effect of SCO on the viability of PDLSCs was evaluated by the 
CCK8 (Dojindo Laboratories, Kumamoto, Japan) assay, as instructed 
by the manufacturer's protocol. In brief, PDLSCs were incubated in 
96-well plates at a density of 3 × 103 cells/well along with low, mid-
dle, or high concentrations of SCO. Forty-eight hours later, each well 
was added with 10 μL CCK8 solution for 2 h incubation. Finally, a 
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microplate reader was used to measure the absorbance at a wave-
length of 450 nm.

2.8  |  Detection of lactate dehydrogenase 
(LDH) release

To detect the effect of SCO on the necrotic cell death condition of 
PDLSCs, the LDH level was measured. Briefly, PDLSCs were seeded 
into 96-well plates at a density of 5 × 104 cells/well and then incu-
bated for 24 h. After that, the supernatant was collected and incu-
bated with an LDH cytotoxicity assay kit. Results were obtained 
by measuring the absorbance at 560 nm with a microplate reader. 
Finally, the percentage of LDH release of treated PDLSCs was calcu-
lated and compared with the control group.

2.9  |  Detection of alkaline phosphatase 
(ALP) activity

PDLSCs (2 × l05 cells) were seeded in each well of 6-well plates 
and incubated in the osteogenic inductive medium that con-
sisted of DMEM, 10% FBS, 10 mM β-glycerophosphate, 10 mM 
dexamethasone, and 50 mg/L ascorbic acid. Meanwhile, each 
well was added with the middle concentration of SCO or specific 
shRNAs. Two weeks later, cells were treated with 1% TritonX-100 
(Solarbio). And then, cells were subjected to centrifugation 
at 12000g for 10 min. The ALP activity assay kit (Jiancheng 
Bioengineering Institute, Nanjing, China) was applied to meas-
ure ALP activity, according to the manufacturer's instructions. 
Finally, a microplate reader was used to monitor the absorbance 
at 520 nm wavelength.

2.10  |  Alizarin Red S (ARS) staining

An ARS staining kit (Solarbio, Beijing, China) was applied to moni-
tor the mineral deposition of indicated PDLSCs, as instructed by 
the manufacturer's protocol. Briefly, PDLSCs were fixed in 4% para-
formaldehyde for 10 min and washed thrice with PBS. Next, PDLSCs 
were stained for 30 min by 40 mM ARS (Sigma-Aldrich). The reac-
tion was terminated by adding the distilled water. Finally, the results 
were observed and photographed.

2.11  |  Statistical analysis

All data were presented in the form of mean ± standard deviation 
(SD) by processing with GraphPad Prism 8 (GraphPad Software Inc., 
CA, USA). The comparison for two groups or more than two groups 
was performed by student's t-test or one-way ANOVA using SPSS 
v22.0 statistical analysis tool (IBM, CA, USA). p < .05 is a symbol for 
a statistically significant difference.

3  |  RESULTS

3.1  |  SCO enhances the viability of PDLSCs

In order to detect whether SCO affected the functions of PDLSCs, 
we used three different concentrations of SCO (low, middle, and 
high) to treat PDLSCs and measured cell viability through the CCK-8 
assay. According to the CCK8 data shown in Figure 1A, after 48 h 
culture, the viability of PDLSCs was significantly enhanced by treat-
ment with middle or high concentration of SCO (SCO-M or SCO-
H). Additionally, LDH detection indicated that the LDH release of 
PDLSCs was suppressed efficiently by treatment with low or mid-
dle concentration of SCO (SCO-L or SCO-M) (Figure 1B). All these 
results indicated that middle concentration of SCO had a greater 
effect on cell viability and have the best inhibitory effect on cyto-
toxicity. Therefore, SCO-M was selected for the next experiments.

3.2  |  SCO promotes the osteogenic 
differentiation of PDLSCs

Subsequently, we explored whether SCO could regulate the osteo-
genic differentiation of PDLSCs. Since the middle concentration 
of SCO could most efficiently alter cell viability, we chose it for all 
subsequent experiments. We first measured the protein levels 
of two osteogenic genes (OCN and OPG) in PDLSCs treated with 
SCO or without SCO (the control group; CON). It was found that 
both levels of OCN and OPG were increased a lot by SCO treat-
ment (Figure 2A). Next, the ALP activity of PDLSCs was strength-
ened by SCO treatment (Figure 2B), indicating that SCO promoted 
in PDLSCs. Furthermore, the result of ARS staining showed that the 
mineral deposition was accumulated in PDLSCs after being treated 
with SCO (Figure 2C). Therefore, we conclude that SCO treatment 
induces the osteogenic differentiation of PDLSCs.

F I G U R E  1 SCO enhances the viability of PDLSCs. (A) CCK-8 
assay was applied to measure the viability of PDLSCs treated 
with low, middle, or high concentrations of SCO (SCO-L, SCO-M, 
or SCO-H). p = .002, p = .008 indicated data were statistically 
significant. p = .1213 indicated data were not statistically 
significant. (B) LDH release of PDLSCs was measured in PDLSCs 
treated with three different concentrations of SCO through LDH 
detection. p = .0104, p = .0003 indicated data were statistically 
significant. p = .0799 indicated data were not statistically 
significant.
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3.3  |  SCO induces the lactylation of RUNX2 
protein in PDLSCs

Lactylation is a post-translational modification, exerting functions 
in various biological processes.22,23 Here, we investigated whether 
the SCO altered protein lactylation in PDLSCs. Through western 
blot analysis of IP results, we determined that total lactylation levels 
were elevated in SCO-treated PDLSCs compared with the control 
group (Figure 3A). Since osteogenic genes and proteins are essential 
to osteogenic differentiation,24 we measured the lactylation levels 
of osteogenic proteins in SCO-treated PDLSCs. It was uncovered 
that the lactylation level of RUNX2 was significantly increased in 
PDLSCs after SCO treatment (Figure 3B). The results suggest that 
SCO can promote the lactylation of RUNX2 in PDLSCs.

3.4  |  Knockdown of RUNX2 reverses the  
effect of SCO treatment on the osteogenic 
differentiation of PDLSCs

To validate the involvement of SCO-induced RUNX2 in the osteo-
genic differentiation of PDLSCs, rescue assays were carried out. 
Before that, RUXN2 expression was knocked down through exog-
enously transfecting shRNAs targeting RUNX2 (Figure  4A). Next, 
we detected the protein levels of OCN and OPG and identified that 
the increased levels of both OCN and OPG caused by SCO treat-
ment were decreased again by RUNX2 knockdown (Figure  4B). 
Additionally, the ALP activity of PDLSCs strengthened by SCO 
treatment was weakened after knockdown of RUNX2 (Figure 4C). 
Meanwhile, the mineral deposition accumulated in SCO-treated 
PDLSCs was reduced after knockdown of RUNX2 (Figure  4D). 
Hence, we confirm that SCO promotes the osteogenic differentia-
tion of PDLSCs through RUNX2.

3.5  |  Lactylation of RUNX2 at K176 site enhances  
the protein stability of RUNX2 through 
deubiquitination

To identify the functional site, we mutated two potential lactyla-
tion sites (K176R and K141R) for further western blot analysis. The 
results showed that mutation of K176 site decreased the lactyla-
tion level and total protein level of RUNX2 while mutation of K141 
site had no significant effects on both levels (Figure 5A). Studies 
have shown that the lactylation modification can enhance protein 
stability.25 Hence, we analyzed whether the lactylation of RUNX2 
altered its stability. We treated PDLSCs with or without RUNX2 
mutation of K176 or K141 site with CHX for half-life profile of 
RUNX2. The results indicated that mutation of K176 site short-
ened the half-life time of RUNX2 (Figure 5B), suggesting that the 
lactylation of RUNX2 at K176 site affected the stability of RUNX2. 
Subsequently, we analyzed whether the lactylation of RUNX2 at 
K176 site could change the ubiquitination of RUNX2. We next ana-
lyzed the potential ubiquitination sites of RUNX2 (Figure 5C) and 

F I G U R E  2 SCO promotes the osteogenic differentiation of 
PDLSCs. (A) The protein levels of two osteogenic genes (OCN 
and OPG) were measured by western blot in PDLSCs treated with 
SCO or control (CON). (B) ALP activity of PDLSCs was measured 
in PDLSCs treated with or without SCO. p = .0048 indicated data 
were statistically significant. (C) The mineral deposition of PDLSCs 
treated with or without SCO was detected by ARS staining. 
p = .0005 indicated data were statistically significant.

F I G U R E  3 SCO induces the lactylation 
of RUNX2 protein in PDLSCs. (A) 
Total lactylation levels were measured 
in PDLSCs treated with or without 
SCO through IP-western blot. (B) The 
lactylation levels of osteogenic proteins 
were evaluated in PDLSCs treated with or 
without SCO through IP-western blot.
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F I G U R E  4 Knockdown of RUNX2 reverses the effect of SCO treatment on the osteogenic differentiation of PDLSCs. (A) RUXN2 
expression was knocked down through exogenously transfecting shRNAs targeting RUNX2. The transfection efficiency was identified by 
RT-qPCR analysis. p = .0015, p = .0005 indicated data were statistically significant. (B) The protein levels of OCN and OPG were detected 
by western blot in SCO-treated PDLSCs after knockdown of RUNX2. (C) The ALP activity of SCO-treated PDLSCs was evaluated after 
knockdown of RUNX2. p = .0036, p = .0120 indicated data were statistically significant. (D) The mineral deposition of SCO-treated PDLSCs 
was evaluated by ARS staining after knockdown of RUNX2. p < .0001 indicated data were statistically significant.

F I G U R E  5 Lactylation of RUNX2 at K176 site enhances the protein stability of RUNX2 through deubiquitination. (A) The lactylation level 
and total protein level of RUNX2 were measured in PDLSCs after the RUNX2 mutation of two potential lactylation sites (K176R and K141R). 
Results were obtained using western blot analysis. (B) The half-life profile of RUNX2 was performed in RUNX2 K176 or K141 site-mutated 
PDLSCs after being treated with CHX for different time intervals. p = .0006 indicated data were statistically significant. p = .6703 indicated 
data were not statistically significant. (C) The potential ubiquitination sites of RUNX2. (D) K176 site of RUNX2 protein might occur both 
ubiquitination and lactylation through intersection. (E) The ubiquitination assay was performed in PDLSCs with or without mutation of K176 
site to measure the ubiquitination level of RUNX2.
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found that K176 site might occur both the ubiquitination and lacty-
lation through intersection (Figure 5D). To validate the hypothesis, 
we performed the ubiquitination assay in PDLSCs with or with-
out mutation of K176 site. The result unveiled that mutation of 
K176 site increased the ubiquitination level of RUNX2 (Figure 5E). 
Therefore, we summarize that the lactylation of RUNX2 at K176 
site decreases the ubiquitination level of RUNX2 to stabilize 
RUNX2 protein.

4  |  DISCUSSION

Our current study firstly determined the promoting effect of SCO on 
the viability and osteogenic differentiation of PDLSCs. Furthermore, 
SCO treatment could elevate the total lactylation level in PDLSCs. 
Importantly, we analyzed and demonstrated that SCO induced the 
lactylation of RUNX2 in PDLSCs and thus promoted osteogenic dif-
ferentiation. And we also validated that the lactylation of RUNX2 
at K176 site was responsible for the stabilization of RUNX2 protein 
through deubiquitination.

Since MSCs can be found and isolated from various tissues, 
stem cell therapy has got increasing attention in all kinds of regen-
erative therapies. As a subgroup of MSCs, PDLSCs are proven to 
be the cell source that is best for the regeneration of periodontal 
tissues.26 Previous studies provided evidence to show the key role 
of PDLSCs osteogenic differentiation in periodontal tissue regen-
eration.2,27 According to the experimental data, we confirmed that 
SCO enhances the viability of PDLSCs, increased ALP activity and 
promoted mineral deposition. Therefore, our current study unveiled 
the promoting effect of SCO on PDLSCs osteogenic differentiation 
for the first time.

Lactylation is a post-translational modification, exerting func-
tions in various biological processes.28 Here, we investigated and 
firstly uncovered that SCO treatment led to the elevation of total 
lactylation levels in PDLSCs. As osteogenic differentiation is usu-
ally regulated by osteogenic genes and proteins,29–34 we made 
further detection and determined that the lactylation level of 
RUNX2 was significantly increased in PDLSCs after SCO treat-
ment. The changes of RUNX2 expression have been regarded 
to be an influence factor for the osteogenic differentiation of 
PDLSCs.35–37 We also performed rescue assays to validate the 
involvement of SCO-induced RUNX2 in the osteogenic differ-
entiation of PDLSCs. As indicated by the data of rescue assays, 
knockdown of RUNX2 reversed the effect of SCO treatment on 
the osteogenic differentiation of PDLSCs, suggesting that SCO 
promotes the osteogenic differentiation of PDLSCs through 
RUNX2.

In subsequence, we analyzed and identified the potential lactyl-
ation site K176. As shown by previous studies, the lactylation mod-
ification could enhance protein stability.18,38 Herein, we performed 
the half-life profile of RUNX2 and identified that mutation of K176 
site shortened the half-life time of RUNX2, indicating that the lac-
tylation of RUNX2 at K176 site affected the stability of RUNX2. 

Ubiquitination is a post-translational modification, which can regu-
late protein stability.39–42 Accordingly, we conducted the ubiquiti-
nation assay and validated that the lactylation of RUNX2 at K176 
site decreased the ubiquitination level of RUNX2 to stabilize RUNX2 
protein.

In conclusion, our study reveals the promoting effect of the 
SCO-mediated lactylation of RUNX2 on the osteogenic differ-
entiation. Our findings indicate that SCO may contribute to the 
regeneration of the periodontal ligament by regulating RUNX2-
mediated PDLSCs osteogenic differentiation. However, there was 
still a limitation in this study. In the process of periodontal liga-
ment regeneration, many other cells are involved, such as gingi-
val mesenchymal stem cells. Whether scopolamine has the same 
effect on gingival mesenchymal stem cells, thereby promoting 
periodontal ligament regeneration, requires further research to 
confirm in the future.
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