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• We assessed personal, household, and 
community level PM2.5 in 1 urban and 2 
rural regions in China. 

• We estimated adjusted seasonal and 
annual mean PM2.5 levels by key char-
acteristics (e.g. fuel use). 

• Solid fuel use for cooking and heating 
were related to markedly higher per-
sonal and household PM2.5 exposure. 

• Solid fuel users had >15 times higher 
annual PM2.5 exposure than the WHO 
Air Quality Guideline level. 

• Household PM2.5 was a better proxy of 
personal exposure than community 
PM2.5, especially in solid fuel users.  
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A B S T R A C T   

Background: Cooking and heating in households contribute importantly to air pollution exposure worldwide. 
However, there is insufficient investigation of measured fine particulate matter (PM2.5) exposure levels, vari-
ability, seasonality, and inter-spatial dynamics associated with these behaviours. 
Methods: We undertook parallel measurements of personal, household (kitchen and living room), and community 
PM2.5 in summer (May–September 2017) and winter (November 2017-Janauary 2018) in 477 participants from 
one urban and two rural communities in China. After stringent data cleaning, there were 67,326–80,980 person- 
hours (ntotal = 441; nsummer = 384; nwinter = 364; 307 had repeated PM2.5 data in both seasons) of processed data 
per microenvironment. Age- and sex-adjusted geometric means of PM2.5 were calculated by key participant 
characteristics, overall and by season. Spearman correlation coefficients between PM2.5 levels across different 
microenvironments were computed. 
Findings: Overall, 26.4 % reported use of solid fuel for both cooking and heating. Solid fuel users had 92 % higher 
personal and kitchen 24-h average PM2.5 exposure than clean fuel users. Similarly, they also had a greater in-
crease (83 % vs 26 %) in personal and household PM2.5 from summer to winter, whereas community levels of 
PM2.5 were 2–4 times higher in winter across different fuel categories. Compared with clean fuel users, solid fuel 
users had markedly higher weighted annual average PM2.5 exposure at personal (78.2 [95 % CI 71.6–85.3] μg/ 
m3 vs 41.6 [37.3–46.5] μg/m3), kitchen (102.4 [90.4–116.0] μg/m3 vs 52.3 [44.8–61.2] μg/m3) and living room 
(62.1 [57.3–67.3] μg/m3 vs 41.0 [37.1–45.3] μg/m3) microenvironments. There was a remarkable diurnal 
variability in PM2.5 exposure among the participants, with 5-min moving average from 10 μg/m3 to 700–1200 
μg/m3 across different microenvironments. Personal PM2.5 was moderately correlated with living room 
(Spearman r: 0.64–0.66) and kitchen (0.52–0.59) levels, but only weakly correlated with community levels, 
especially in summer (0.15–0.34) and among solid fuel users (0.11–0.31). 
Conclusion: Solid fuel use for cooking and heating was associated with substantially higher personal and 
household PM2.5 exposure than clean fuel users. Household PM2.5 appeared a better proxy of personal exposure 
than community PM2.5.   

1. Introduction 

The continued reliance on fossil fuels to meet the growing energy 
demand from a rapidly urbanised population, combined with limited 
and inadequate regulatory regimes for environmental protection and 
poor enforcement, have worsened ambient air pollution in many low- 
and middle-income countries (LMICs). Additionally, about 3 billion in-
dividuals still rely on solid fuels (e.g. coal, wood) for cooking and 
heating, leading to intensive household air pollution (Health Effect 
Institute, 2020; Stoner et al., 2021). Fine particulate matter (PM2.5) from 
domestic use of solid fuels and ambient sources together constitute the 
top environmental risk factor of disease burden globally, estimated to 
account for >6 million premature deaths in 2019 (Health Effect Insti-
tute, 2020). Despite the global health significance, substantial un-
certainties persist in understanding the exposure-disease relationships 
and, subsequently, disease burden estimation. This is mainly due to the 
reliance on exposure proxies, namely modelled ambient air pollution 
levels around residential addresses and self-reported fuel use for indoor 
or household air pollution exposure in most existing epidemiological 
studies (Chan et al., 2020; Morawska et al., 2018). 

Until recently, directly measured air pollution exposure data were 
uncommon in large (n > 100,000) population-based epidemiological 
studies. Most measurement studies had relatively small sample sizes, 
assessed primarily kitchen PM2.5 levels, and focused on rural commu-
nities (Balakrishnan et al., 2018; Benka-Coker et al., 2020; Ni et al., 
2016; Shupler et al., 2018; Shupler et al., 2020; Sidhu et al., 2017; Snider 
et al., 2018; Tong et al., 2018; Ye et al., 2020). The largest relevant study 
to date (PURE-Air) collected 48-hour aggregated kitchen and personal 
PM2.5 data in 2365 households and 910 individuals, respectively, in 
rural areas from eight LMICs (Shupler et al., 2020; Shupler et al., 2022). 
They found substantial variability in kitchen and personal PM2.5 levels 
by cooking fuel types and across countries, with solid fuel users tending 
to show significantly higher exposure (Shupler et al., 2020; Shupler 
et al., 2022). However, due to the relatively short measurement window, 
limited repeated seasonal measurements, and inadequate coverage of 
heating season exposure, there remains ambiguity regarding both 
within-week and seasonal exposure variability within and between in-
dividuals. There is also a need of time-resolved data and parallel 

assessment of not only personal and kitchen PM2.5 but also living room 
and ambient levels to better understand the spatial-temporal dynamics 
of PM2.5 exposure. Data from urban areas will also offer additional in-
sights into the urban-rural contrast in PM2.5 exposure patterns. 

Here we report detailed analyses of questionnaire data on personal 
characteristics, fuel use, and time-resolved PM2.5 exposure data at per-
sonal, household, and community levels from one urban and two rural 
areas in the China Kadoorie Biobank (CKB), across the warm and cool 
seasons (Chan et al., 2021). The present report aims to i) examine both 
aggregated and time-resolved PM2.5 levels by fuel use and other key 
characteristics; and ii) clarify personal-household-community gradient 
of PM2.5 exposure. 

2. Materials and methods 

2.1. Study design and sample 

CKB is an ongoing prospective cohort study of ~512,000 adults aged 
30–79 years recruited from ten diverse areas of China during 2004–2008 
(Chen et al., 2005; Chen et al., 2011). The CKB-Air study was nested 
within CKB, and details of the design, data collection procedures, data 
cleaning and processing, and participant characteristics have been 
published previously (Chan et al., 2021). Briefly, 477 participants (mean 
age 58 years, 72 % women) were recruited via convenient sampling 
from two rural (Gansu, Henan) and one urban (Suzhou) CKB study sites 
(eFigure 1), selected to capture a diverse range of fuel use patterns (Chan 
et al., 2017). The study involved repeated assessment of air pollution 
and time-activity in the warm (May–September 2017; hereafter referred 
to as ‘summer’) and cool (November 2017–January 2018; ‘winter’) 
seasons, with a household questionnaire on participant characteristics 
and usual fuel use patterns administered in the winter (Chan et al., 
2021). In particular, 452 and 450 individuals participated in the summer 
and winter assessments, respectively (37 participants were not available 
in winter and were replaced by 35 other eligible CKB participants in the 
same community). The participants included in the two seasons were 
similar in their socio-demographics and lifestyle characteristics docu-
mented in 2004–2008 during the baseline assessment (Chan et al., 
2021). 
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The study was approved by the Oxford University Tropical Research 
Ethics Committee, Oxford, UK (Ref: 5109-17) and the institutional re-
view board of Fuwai Hospital, Chinese Academy of Medical Sciences, 
Beijing, China (Ref: 2018-1038). All participants provided written 
informed consent upon recruitment. 

2.2. Questionnaire data 

Trained health workers administered a laptop-based household 
questionnaire in the cool season, to assess personal characteristics (age, 
sex, household income, occupation, active and passive smoking) and 
exposure to household air pollution (cooking and heating patterns and 
all fuel types used) (Text S2). For those who reported different cooking 
patterns or fuel use in summer, additional questions on exposure during 
summer were asked. While many previous studies focused on a single 
primary cooking or heating fuels, we attempted to capture ‘fuel stacking’ 
by assessing all fuel types used (Chan et al., 2017). Cooking fuel com-
binations were derived based on all fuel types reported to be ‘used in 
most meals’ or ‘sometimes’ (among those who did not report any fuel 
‘used in most meals’). A similar approach was undertaken to derive 
‘heating fuel combination’ based on the duration of heating fuel use 
during winter. Clean fuels include gas, electricity, solar, and city-wide 
district heating (for heating only); solid fuels include coal (smoky/ 
smokeless), coal briquette, charcoal, wood, and crop residue. The elec-
tronic questionnaire have built-in error and logic checks to minimise 
missing data and human errors. 

2.3. Air pollution data 

2.3.1. Air pollution monitors 
The study aimed to obtain 120 consecutive hours (from Thursday to 

Tuesday, covering weekdays and weekend) of measurements (at 1-min 
resolution) of fine particulate matter (PM2.5; μg/m3) levels, tempera-
ture, and relative humidity (%) in three different microenvironments 
(personal, kitchen, and living room) for each participant, covering both 
summer and winter except for those who only participated in one season 
(n = 72). The measurements were taken using PATS (Particle and 
Temperature Sensor; Berkeley Air Monitoring Group, CA, USA), an 
internationally validated low-cost nephelometer-based device (R2 

range: 0.90–0.99 with reference to both with well-established time- 
resolved instruments [e.g. TSI DustTrak] and gravimetric measure-
ments) developed for high household air pollution settings (PM2.5 
detection range: 10–30,000 μg/m3) (Pillarisetti et al., 2017). At each 
study site, community air pollution (PM1, PM2.5, PM10, carbon monox-
ide, ozone, and nitrogen oxides) was measured on the roof top of a 
building in a fixed central location away from any proximal sources of 
pollution throughout the individual-level data collection periods for 
each study site, using two tailor-made research instruments (NAS- 
AF100; Sapiens Environmental Technology, Hong Kong, China). 

Details of quality control and device calibration and validation have 
been described previously (see also Text S3 for details) (Chan et al., 
2021). In brief, all devices were factory-calibrated against wood smoke 
by the manufacturers, and the two NAS-AF100 and nine (about 10 % of 
all) randomly selected PATS were further calibrated and validated via 
24-h co-location with filter-based and time-resolved personal and static 
samplers (DustTrak DRX 8533 [TSI, MN, USA], MicroPEM [RTI Inter-
national, NC, USA], and Mini-Vol portable sampler [Airmetrics, OR, 
USA]) for PM measurements, following standardised procedures 
described previously (Cao et al., 2005; Chan et al., 2021; Tong et al., 
2018). Fifteen randomly selected PATS were also tested for consistency 
through co-location comparison tests in controlled settings for 24 h, with 
good agreement demonstrated (correlation coefficients: 0.85–0.99). 
Before and after each deployment, the PATS devices were calibrated 
against HEPA-filtered air for 10 min, following the manufacturer's 
standardised procedures. 

2.3.2. Data cleaning and processing 
Participants with corrupted data files due to human or device error 

were excluded from the PM2.5 analyses (Fig. 1). Twenty-nine and 115 
participants in the warm and cool seasons, respectively, had no com-
munity air pollution data from NAS-F100 due to delays in deployment or 
other logistical challenges (Fig. 1). The time-resolved PM2.5 data from 
each PATS and NAS-F100 were then inspected and processed by i) 
downsizing to 5-min moving averages time-series to facilitate compu-
tation, ii) applying 20-min moving median smoothing to replace spo-
radic extreme spikes, and iii) adjusting data points at persistently high or 
low (i.e. at the lower limit of detection of 10 μg/m3) levels by cross- 
device calibration. Specifically, the persistently high or low data from 
one device were replaced by imputed data based on levels recorded in 
the other devices using generalised linear regression. The persistently 
high levels were likely caused by particles lodged inside the nephe-
lometer or sustained direct light impact; whereas the persistently low 
levels, most of which were found in the personal PATS data during 
winter, are likely due to an obstructed air inlet (e.g. covered by clothing) 
or that the PATS was placed inside an enclosed environment (e.g. in a 
drawer when participants took it off during bathing or sleep). Overall, 
only <5 % of the raw PM2.5 data recorded were flagged as persistently 
high or low, indicating generally high data quality (eTable 1). 

Taking a conservative approach, we first removed data from the first 
and last hour of the measurement period when participants' behaviour 
(and hence exposure) was likely affected by the household visits and 
study procedures. We then removed participants with <24 h of effective 
data, which could happen due to battery failure. Subsequently, each of 
the remaining participants had at least 24 h' worth of data per PATS per 
season (mediansummer [Q1-Q3]: 117 [105–119] hours, medianwinter [Q1- 
Q3]: 113 [94–117] hours) (eTable 2). To further enhance the quality of 
the analytical dataset, we undertook a conservative approach to remove 
participants (n = 36) with >50 % data flagged as persistently high or 
low in any one PATS (regardless of the quality of the other two device) 
and remove participants with missing PATS data at any one location, 
thereby restricting the analyses to participants with the same amount of 
data of satisfactory quality (after imputation) across all three PATSs 
(nsummer = 419 [92.7 %]; nwinter = 365 [81.1 %]). Thirty-five partici-
pants in summer who did not provide household questionnaire data 
were further excluded. For heating fuel related analyses, two partici-
pants who reported un-specified “other” fuel type were further excluded. 

The numbers of participants excluded at each stage of data analysis 
are shown in Fig. 1. After data cleaning, the primary analyses on PM2.5 
included 384 and 364 participants in the summer and winter, respec-
tively (307 participated in both seasons), with a total of 80,980 person- 
hours of PM2.5 data each at the personal, kitchen, and living room, and 
67,326 person-hours of data at the community level (eTable 2). The 
analytical dataset contains only 483 person-hours of imputed data, all of 
which were in the winter subset. 

2.4. Data analysis 

Using linear regression, we estimated season-specific age- and sex- 
adjusted (where appropriate) geometric means and 95 % confidence 
intervals (CI) of personal and household (kitchen and living room) PM2.5 
concentrations levels, by demographic characteristics (age, sex, study 
area, education, occupation, active/passive smoking, household size) 
and household air pollution-related exposures (cooking frequency, self- 
reported ‘smoky home’ while cooking or heating, and cooking and 
heating fuel combinations). For each level of microenvironment (per-
sonal, kitchen, living room, community), we aligned the time-series data 
(time-resolution: one reading per 5 min) for up to five 24-hour periods 
(totalling 120 h) during each measurement campaign and took an 
average across up to five values for each 5-min period from 00:00 to 
24:00 for each participant, and estimated adjusted means across par-
ticipants by cooking and heating fuel use categories by season. 

We obtained regional temperature data during 2005–2017 (corre-
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sponding to the follow-up period of the CKB cohort up till the 
commencement of CKB-Air) from local meteorological offices and 
calculated the proportion of months with an average temperature <
10 ◦C in each region (0.25 for Suzhou, 0.42 for Gansu, 0.33 for Henan), 
which was used as a weighting coefficient to approximate heating fuel 
usage. We then estimated microenvironment-specific annual PM2.5 
exposure levels as a weighted average of exposure levels across summer 
and winter, by cooking and heating fuel combinations: 
annual averageij = wij*(1 − pk)+ cij*pk, where wij is the summer average 
and cij the winter average for microenvironment i (personal, kitchen, 
living room, or community) among participants in category j of cooking 
and heating fuel combination (no cooking or heating, clean fuels only, 
any solid fuels), and pk is a region-specific weighting coefficient of 
heating fuel usage described above. These analyses were restricted to 
307 participants with exposure assessment in both summer and winter. 

As a preliminary investigation to understand the relationships be-
tween PM2.5 levels across microenvironments and by season, we 
examined the season-specific Spearman correlation of log-transformed 
PM2.5 levels across the four microenvironments overall and by cook-
ing and heating fuel combinations. 

2.5. Role of the funding source 

The study funders had no role in study design, data collection, 
analysis, interpretation, or writing of the report. KHC, XX, KH, KBHL, 
and ZC had access to all data and had final responsibility for the decision 
to submit for publication. 

3. Results 

3.1. Basic characteristics and PM2.5 levels 

Of the 384 participants included in the main analyses on the summer 
data, the mean age was 58.2 [SD 6.6] years, 74.7 % were women, 64.8 % 
were rural residents, 14.6 % were current smokers, 47.9 % were exposed 
to passive smoking, and 34.1 % and 52.2 % used solid fuels for cooking 
and heating, respectively. Those who used solid fuels for cooking were 
more likely to be women, from rural areas, less educated, agricultural 
workers or home-makers, and to use solid fuel for heating (eTable 3a). 
Moreover, substantially more solid fuel users reported observing a 
smoky home while cooking or heating compared to clean fuel users. 
Participants included in the analyses on the winter data (n = 364) had 
similar characteristics (eTable 3b). 

Overall, levels of personal and household exposure to PM2.5 were 
generally higher in younger (<65 years) participants, women, rural 
residents, and those with lower education, with markedly higher levels 
in winter than in summer (Table 1). Agricultural workers, active 
smokers, and those exposed to passive smoking exposure and smoky 
homes while cooking exhibited higher PM2.5 exposure, most notably at 
personal and kitchen levels, both in summer and winter. For example, 
during the summer, participants observing smoky home while cooking 
(n = 120) had an average kitchen PM2.5 of 53.7 [95 % CI 49.7–58.0] μg/ 
m3, whereas those without such observation had 40.9 [38.5–43.5] μg/ 
m3. In winter, the contrast was even larger, being 119.5 [107.7–132.5] 
μg/m3 compared to 61.8 [56.6–67.6] μg/m3. Participants who reported 
smoky home while heating in winter (nsummer = 85; nwinter = 101) had 

Fig. 1. Flowchart of PATS data exclusion by season and device location. *To remove data likely to be influenced by the initial device deployment and final device 
collection work. 
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somewhat lower personal and living room PM2.5 levels in summer, but 
significantly higher personal (82.0 [74.9–89.7] vs 55.3 [51.2–59.8] μg/ 
m3), kitchen (127.9 [114.8–142.4] vs 72.6 [66.2–79.6] μg/m3), and 
living room (72.5 [66.4–79.2] vs 54.2 [50.2–58.4] μg/m3) levels in 
winter. There was no clear pattern by household size. For community 
PM2.5, younger (<65 years) participants, women, and those with higher 
education had consistently higher exposure across both seasons. In 
contrast, urban residents and factory workers had higher exposure in the 
summer and lower in the winter than rural residents and agricultural 
workers, respectively (eTable 4). 

3.2. PM2.5 levels by fuel use patterns 

Compared across different combinations of primary cooking and 
heating fuels, solid fuel users had higher personal and kitchen PM2.5 
levels than those who used clean fuels (personal: by 57 % in summer and 
115 % in winter; kitchen: by 60 % in summer and 136 % in winter) and 
those who did not cook or heat (personal: 48 % in summer and 55 % in 
winter; kitchen: 83 % in summer and 35 % in winter), respectively 
(Fig. 2A). In winter, solid fuel users had significantly (57–101 %) higher 

personal and household PM2.5 levels, whereas the increase was less 
pronounced for clean fuel users (14–37 %). In contrast, community 
levels were consistently 2–4 times higher across different fuel combi-
nations. Broadly similar patterns were observed when examining 
cooking and heating fuel combinations separately (Fig. 2B and C). 
Sensitivity analyses restricting to participants who cooked regularly by 
themselves (eFigure 2) and excluding participants with any imputed 
data (eFigure 3) showed similar patterns. 

Consistently, participants who had used solid fuels for cooking or 
heating had the highest weighted average annual PM2.5 exposure at the 
personal (78.2 [71.6–85.3] μg/m3; 70 % higher), kitchen (102.4 
[90.4–116.0] μg/m3; 84 % higher), and living room (62.1 [57.3–67.3] 
μg/m3; 50 % higher) microenvironments, compared to those who re-
ported using clean fuels or not cooking or heating (Table 2). There was 
no statistically significant difference in annual community PM2.5 levels 
across these groups, although solid fuel users tended to have slightly 
higher exposure. Similar patterns were observed when examining 
cooking and heating fuel combinations separately. Additional adjust-
ment for active and passive smoking did not alter the findings mean-
ingfully (eTable 5). 

Table 1 
Age- and sex-adjusted 24-hour geometric mean (95 % CI) PM2.5 concentrations (μg/m3) recorded in the personal, kitchen, and living room monitors by season and key 
characteristics.  

Characteristics Summer (N* = 384) Winter (N* = 364) 

N* Personal Kitchen Living room N* Personal Kitchen Living room 

Personal characteristics 
Age†

< 65 years  323 42.0 (40.2–43.9) 43.9 (41.8–46.2) 33.5 (32.1–34.9)  305 59.5 (56.2–63.1) 82.8 (77.2–88.8) 56.1 (52.9–59.4) 
≥ 65 years  61 33.5 (30.7–36.5) 43.0 (39.0–47.5) 31.9 (29.4–34.6)  59 48.9 (43.6–54.9) 62.9 (54.7–72.2) 49.2 (43.9–55.1) 

Sex‡

Female  287 40.9 (39.3–42.6) 44.4 (42.4–46.5) 32.7 (31.4–33.9)  267 66.1 (62.6–69.8) 87.6 (82.1–93.5) 61.1 (57.9–64.5) 
Male  97 39.8 (37.2–42.7) 43.3 (40.1–46.9) 33.7 (31.6–36.0)  97 50.2 (45.8–55.0) 72.0 (64.5–80.4) 49.4 (45.1–54.1) 

Region         
Rural  249 36.3 (34.7–38.0) 53.4 (50.7–56.3) 48.9 (46.7–51.1)  251 66.5 (62.7–70.7) 107.7 (100.3–115.6) 74.5 (70.2–79.0) 
Urban  135 28.2 (26.6–29.8) 30.7 (28.7–32.8) 28.6 (26.9–30.3)  113 36.8 (33.9–40.0) 42.1 (38.1–46.5) 33.7 (31.0–36.6) 

Education         
No formal education  97 48.9 (45.1–53.1) 52.3 (47.6–57.5) 38.2 (35.3–41.3)  92 75.8 (67.9–84.7) 112.6 (98.7–128.5) 70.2 (62.9–78.3) 
Primary & middle school  133 38.8 (36.5–41.4) 42.8 (39.8–46.0) 30.4 (28.7–32.3)  125 58.5 (53.8–63.5) 84.0 (76.1–92.8) 58.4 (53.8–63.4) 
High school or above  154 38.4 (36.3–40.7) 41.6 (39.0–44.4) 33.3 (31.5–35.1)  147 50.9 (47.1–55.0) 66.0 (60.2–72.4) 47.4 (44.0–51.2) 

Occupation         
Agricultural worker  140 53.2 (50.3–56.3) 59.9 (56.2–63.9) 38.0 (36.0–40.2)  138 74.6 (69.2–80.4) 120.0 (109.6–131.3) 69.0 (63.9–74.4) 
Factory worker  20 34.4 (29.7–39.9) 39.1 (33.0–46.2) 31.7 (27.4–36.6)  18 59.0 (47.9–72.7) 59.2 (46.0–76.1) 36.9 (29.9–45.5) 
Home-maker  106 40.1 (37.3–43.2) 43.2 (39.7–47.0) 32.9 (30.6–35.4)  109 68.6 (62.3–75.5) 88.4 (78.8–99.2) 65.3 (59.3–72.0) 
Non-manual labour  9 33.4 (27.0–41.4) 29.0 (22.7–37.0) 26.2 (21.2–32.4)  10 62.0 (47.1–81.8) 46.0 (33.0–64.2) 45.2 (34.2–59.7) 
Self/un-employed or other  109 29.1 (27.2–31.1) 30.7 (28.4–33.1) 28.5 (26.7–30.5)  89 31.6 (28.7–34.8) 43.7 (39.0–49.1) 37.4 (33.9–41.2) 

Current active smoker         
No  328 38.6 (36.5–40.8) 44.7 (42.0–47.6) 29.2 (27.7–30.8)  303 52.1 (48.2–56.3) 75.0 (68.3–82.3) 49.1 (45.5–53.0) 
Yes  56 45.1 (40.7–50.1) 41.9 (37.2–47.2) 45.6 (41.3–50.3)  61 71.9 (62.7–82.4) 90.2 (76.5–106.3) 70.5 (61.6–80.7) 

Passive smoking exposure§         

No  200 38.7 (36.7–40.9) 42.9 (40.4–45.6) 30.6 (29.1–32.2)  180 50.7 (47.1–54.6) 51.8 (48.1–55.7) 75.9 (69.5–83.0) 
Yes  184 42.0 (39.9–44.3) 44.8 (42.2–47.6) 35.8 (34.1–37.7  184 64.0 (59.8–68.5) 57.7 (53.9–61.7) 82.4 (75.9–89.5) 

Household size**         
≤ 4 persons  196 39.6 (37.7–41.7) 42.6 (40.2–45.2) 34.2 (32.6–35.9)  190 55.5 (51.8–59.5) 78.9 (72.6–85.8) 55.9 (52.2–59.9) 
> 4 persons  188 41.2 (39.0–43.5) 45.3 (42.6–48.1) 32.0 (30.5–33.7)  174 60.0 (55.8–64.5) 79.9 (73.3–87.2) 53.8 (50.1–57.8) 

Cooking frequency         
Daily personal cooking  301 41.4 (39.2–43.8) 43.6 (41.0–46.5) 34.4 (32.6–36.3)  280 59.2 (54.7–64.1) 82.4 (74.9–90.6) 55.3 (51.1–59.8) 
Daily household cooking  41 37.6 (33.7–42.1) 49.2 (43.4–55.9) 31.3 (28.2–34.8)  44 52.1 (44.9–60.4) 75.2 (63.0–89.8) 54.6 (47.2–63.2) 
Infrequent cooking  42 39.6 (35.6–44.1) 39.9 (35.3–45.1) 30.8 (27.8–34.1)  40 58.3 (50.4–67.5) 74.5 (62.5–88.7) 54.1 (46.9–62.5) 

Smoky home while cooking††

No  222 37.2 (35.2–39.2) 40.9 (38.5–43.5) 32.4 (30.8–34.1)  196 45.7 (42.4–49.1) 61.8 (56.6–67.6) 46.8 (43.4–50.3) 
Yes  120 46.1 (43.0–49.3) 53.7 (49.7–58.0) 35.1 (32.9–37.4)  127 74.9 (68.7–81.6) 119.5 (107.7–132.5) 67.7 (62.1–73.8) 

Smoky home while heating‡‡

No  163 44.3 (41.8–47.0) 44.1 (41.3–47.2) 34.0 (32.1–35.9)  151 55.3 (51.2–59.8) 72.6 (66.2–79.6) 54.2 (50.2–58.4) 
Yes  85 39.9 (36.8–43.1) 51.4 (46.9–56.4) 29.5 (27.4–31.8)  101 82.0 (74.9–89.7) 127.9 (114.8–142.4) 72.5 (66.4–79.2)  

* Number of subjects. 
† Only adjusted for sex. The age cut-off was set to separate middle-aged adults and elderly following the convention. 
‡ Only adjusted for age. 
§ Total passive smoking exposure (frequency per week) of >3–5 days/week was defined as exposed (“Yes”). 
** The 4-person household size cut off was set on the median of the reported household size in the sample. 
†† Restricted to individuals who reported frequent household or personal cooking only. 
‡‡ Restricted to individuals who reported heating in winter only. 
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Fig. 2. Age- and sex-adjusted 24-hour geometric mean PM2.5 concentrations (μg/m3) recorded in the personal, kitchen, living room, and community monitors by 
season and the combination of primary cooking and heating fuels. Each vertical bar represents adjusted geometric means of each microenvironment by exposure 
groups, with vertical black lines showing the corresponding 95 % confidence intervals (CIs). Non-overlapping CIs between bars indicate statistically significant 
difference. From left to right the four bars in each group are personal, kitchen, living room, and community PM2.5 levels. Participants reporting using unspecified 
“other” fuels for heating were excluded due to small sample size (Nsummer = 1; Nwinter = 2). 
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When inspecting the aggregated diurnal PM2.5 levels visually, we 
observed major peaks at around noon and evening time for both solid 
fuel and clean fuel users, and these peaks were substantially higher in 
solid fuel users, up to ~500 and ~1200 μg/m3 in summer and winter, 
respectively (Fig. 3A-C). A small morning peak (~08:00) was also found 
in the kitchen in winter (Fig. 3B). Solid fuel users appeared to have lower 
community PM2.5 exposure than clean fuel users in summer, but have 
the highest levels in winter, with broadly concordant diurnal variations 
for all three fuel use categories in both seasons (Fig. 3D). The differences 
in diurnal exposure levels by heating fuel combinations were largely 
similar to those by cooking fuels in summer, but in winter the exposure 
levels in individuals who did not have heating were just slightly lower 
than the solid fuel users but much higher than clean fuel users, especially 
in kitchens (Fig. 4). 

3.3. PM2.5 exposure models and inter-spatial correlation 

We found moderate correlation between personal and household 
PM2.5 levels (living room Spearman's r: 0.64–0.66; kitchen r: 0.52–0.59). 
In contrast, the correlation between community levels and personal or 
household levels was weaker, especially in summer, with Spearman's r 
ranging 0.15–0.34 in summer and 0.41–0.55 in winter (Fig. 5). Among 
the different cooking and heating fuel combinations, the correlation 
between community levels and personal or household levels was the 
strongest in those reporting no cooking or heating, with Spearman's r 
ranging 0.47–0.68 in summer and 0.43–0.46 in winter, and the weakest 
in those who had used solid fuels, with the corresponding range of 
0.11–0.31 and 0.29–0.52, respectively (eFigures 4A-C). 

4. Discussion 

We reported integrated and time-resolved PM2.5 levels at personal, 
household (kitchen and living room), and community environments by 
cooking and heating fuel combinations and other key characteristics in 
384 adults in summer and 364 adults in winter from one urban and two 
rural areas of China. Solid fuel use for cooking and heating was associ-
ated with significantly higher estimated annual PM2.5 exposure at both 
personal and household levels: personal PM2.5 exposure in summer and 
winter was over 3 times and 5 times the World Health Organization 24- 
hour Air Quality Guidelines (WHO AQG) level (15 μg/m3), respectively 
and the annual personal exposure was over 15 times of the WHO annual 
AQG level (5 μg/m3) (WHO Global Air Quality Guidelines. Particulate 
Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and 
Carbon Monoxide, 2021). The PM2.5 levels across all microenvironments 
were higher in winter than summer, with about 2–4 times higher 

community levels across fuel categories. Time-resolved data showed 
vast inter- and intra-personal variability in PM2.5 exposure within and 
across seasons, with remarkably high exposure (5-min moving-average 
up to 1200 μg/m3) recorded in typical cooking times (about 2–4 h per 
day) among solid fuel users, especially in the kitchen. 

Previous studies assessing exposures to air pollution were highly 
heterogeneous in settings, sample size, prevalent fuel types, and recor-
ded PM2.5 levels (Balakrishnan et al., 2018; Benka-Coker et al., 2020; Ni 
et al., 2016; Shupler et al., 2018; Shupler et al., 2020; Sidhu et al., 2017; 
Snider et al., 2018; Tong et al., 2018; Ye et al., 2020), but there has been 
broadly consistent evidence that solid fuel use for cooking was associ-
ated with higher personal and kitchen PM2.5 levels as reported in our 
study. For logistical and technical reasons, most previous studies pri-
marily measured kitchen PM2.5 (Balakrishnan et al., 2018; Benka-Coker et al., 2020; 

Han et al., 2021; Ni et al., 2016; Shupler et al., 2018; Shupler et al., 2020; Sidhu et al., 2017; 

Snider et al., 2018; Tong et al., 2018; Ye et al., 2020), while some had parallel 
measurements of personal (Ni et al., 2016; Shupler et al., 2020; Ye et al., 
2020) or ambient (Han et al., 2021; Ni et al., 2016; Snider et al., 2018) 
exposure, with most personal measurements done in a subset of par-
ticipants. Notably, the largest single sample (n = 910; ~48,000 person- 
hours) of personal PM2.5 measurements (alongside kitchen measure-
ments in 2365 households) came from the PURE-Air study focussing on 
cooking fuel in rural areas across eight countries (Shupler et al., 2020). 
With 48-hour integrated PM2.5 measurements, they found lower PM2.5 
levels by cooking fuel types moving up the traditional ‘energy ladder’ (i. 
e. from heavily polluting biomass to coal, then to gas and electricity) 
(Gordon et al., 2014), but they also found substantial heterogeneity 
within each solid fuel category and between countries (e.g. kitchen 
PM2.5 for primary wood use was 50 [45–55] μg/m3 in China and 105 
[96–116] μg/m3 in India), possibly due to varying fuel use behaviour or 
infrastructure, chemical constituents of fuels, and different climate 
conditions (Shupler et al., 2020). With the parallel and repeated time- 
resolved assessment of personal, kitchen, living room (80,980 person- 
hours for each measure), and community (67,326 person-hours) PM2.5 
levels in summer and winter (eTable 2), we provided further insight into 
the complex relationships between fuel use behaviour and PM2.5 levels 
across the personal-household-community exposure spectrum. 

Consistent with the growing number of studies that ascertained 
multiple fuel use (Ni et al., 2016; Shupler et al., 2020; Snider et al., 
2018), we showed that fuel stacking was common in rural China, and 
even mixed use of solid and clean fuels was associated with substantially 
elevated PM2.5 exposure, especially in winter. As fuel stacking is 
increasingly common in many developing economies, this highlights the 
importance of capturing usage information beyond a single, primary fuel 
type, in order to more accurately assess household air pollution exposure 

Table 2 
Age- and sex-adjusted estimated annual 24-hour geometric mean PM2⋅5 exposure levels (μg/m3) for the personal, kitchen, living room, and community environments 
by cooking and heating fuel category.  

Cooking and heating fuel category Personal Kitchen Living room Community 

Primary cooking fuel combination     
No cooking (n = 45) 60.0 (50.6–71.2) 85.5 (67.8–107.7) 51.5 (44.4–59.8) 53.8 (46.4–62.4) 
Clean fuels only (n = 155) 50.7 (45.7–56.3) 59.7 (51.9–68.7) 45.6 (41.6–49.9) 56.0 (52.1–60.2) 
Solid fuels included (n = 107) 84.9 (74.9–96.3) 116.8 (98.6–138.4) 68.3 (61.2–76.2) 63.9 (57.9–70.5) 

Primary heating fuel combination     
No heating (n = 98) 50.2 (44.4–56.8) 65.9 (55.7–77.9) 47.2 (42.4–52.7) 56.3 (51.8–61.2) 
Clean fuels only (n = 39) 43.4 (36.1–52.2) 44.5 (34.6–57.2) 39.3 (33.4–46.3) 53.7 (47.7–60.6) 
Solid fuels included (n = 169) 76.3 (69.2–84.2) 103.5 (90.6–118.3) 61.3 (56.3–66.9) 61.4 (56.3–66.9) 

Primary cooking and heating fuel combination     
No cooking or heating (n = 8) 50.2 (34.3–73.6) 59.2 (34.4–101.8) 41.7 (29.4–59.0) 52.0 (40.5–66.8) 
Clean fuels (n = 107) 41.6 (37.3–46.5) 52.3 (44.8–61.2) 41.0 (37.1–45.3) 54.2 (50.2–58.4) 
Solid fuels included (n = 191) 78.2 (71.6–85.3) 102.4 (90.4–116.0) 62.1 (57.3–67.3) 62.1 (57.4–67.2) 

Annual mean level was estimated using the regional temperature data from 2005 to 2017, the number of months with average temperature < 10 degrees are 3/12 in 
Suzhou, 5/12 in Gansu, 4/12 in Henan. Using the same data, the proportion of days with ≤10 degrees daily average temperature are 1233/4717 (26.1 %) in Suzhou, 
1921/4717 (40.7 %) in Gansu, 1524/4717 (32.7 %) in Henan. The analyses were restricted to participants with good quality PM2.5 data in both seasons (n = 307). The 
analyses for were restricted to 307 participants with repeated measurements in both summer and winter, and one participant reporting unspecified “other” fuel for 
cooking was further excluded from the heating-related analyses. 
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and the associated disease burden. On the other hand, before 2015, 
heating has not commonly been considered as a major contributor of air 
pollution by researchers and policymakers (Chan et al., 2017; Chen 
et al., 2018; Tao et al., 2018; World Health Organization, 2016). Our 
findings add to the growing field measurement evidence (Carter et al., 
2016; Liao et al., 2017; Walker et al., 2021), showing those who used 

solid fuels for heating to have 91–188 % higher personal and household 
PM2.5 exposure in winter, when compared to clean fuel users. It may 
seem counterintuitive to observe a higher level in the kitchen than in the 
living room, but previous studies have noted generally poorer ventila-
tion in winter and that solid fuel users may stay in the kitchen longer to 
get warmth from the cookstove to save fuel (Gordon et al., 2014). In fact, 
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Fig. 3. 24-hour average time-series plots for PM2.5 concentrations (μg/m3) recorded in the personal, kitchen, living room, and community monitors by season and 
primary cooking fuel combinations. There were 123 (13,761 person-hour), 167 (18,663 person-hour) and 94 (10,607 person-hour) subjects for the “Solid fuels 
included”, “Clean fuels” and “No cooking” group in summer, respectively; There were 126 (13,174 person-hour), 173 (17,956 person-hour) and 65 (6819 person- 
hour) subjects for the “Solid fuels included”, “Clean fuels” and “No cooking” group in winter, respectively. Smaller plots nested within panels are “zoom-in” version of 
the corresponding plot, as the use of a universal y-axis limit up to 1200 with reference to the kitchen exposure levels impaired the readability of those plots. 
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we have previously reported a slower rate of modernisation of heating 
(versus cooking) fuel in China (as in many other LMICs) (Chan et al., 
2017). Adding to the complexity, the lack of heating in rural China was 
associated with a lower socioeconomic status and greater likelihood of 
using solid fuels for cooking compared to clean fuel users (Chan et al., 

2017). This, together with the likely reduced ventilation (to keep warm) 
in winter time, may explain the considerably (25 %) higher personal and 
household PM2.5 levels (in both seasons) among our participants who 
reported ‘no heating’, compared with the clean heating fuel users. 

While the community PM2.5 level was markedly higher in winter in 
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Fig. 4. 24-hour average time-series plots for PM2.5 concentrations (μg/m3) recorded in the personal, kitchen, living room, and community monitors by season and 
primary heating fuel combinations. 
There were 200 (22,539 person-hours), 47 (5226 person-hours) and 136 (15,147 person-hours) subjects for the “Solid fuels included”, “Clean only” and “No heating” 
group in summer, respectively; There were 207 (21,772 person-hours), 43 (4261 person-hours) and 112 (11,701 person-hours) subjects for the “Solid fuels included”, 
“Clean only” and “No heating” group in winter, respectively. Smaller plots nested within panels are “zoom-in” version of the corresponding plot, as the use of a 
universal y-axis limit up to 1200 with reference to the kitchen exposure levels impaired the readability of those plots. 
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both solid (about 4 times) and clean (about 2 times) fuel users, there was 
an interesting contrast that solid fuel users had lower community PM2.5 
than clean fuel users in summer, but higher in winter. The ‘winter smog’ 
phenomenon in densely populated (often urban) areas of China is well- 
documented, as increased energy consumption, reliance on coal-fired 
power plants, and meteorological factors (e.g. temperature inversion) 
drive heightened regional ambient air pollution, while the limited 
stringent environmental regulations or poor enforcement of such are 
relevant contextual factors (Gu and Yim, 2016). On the other hand, most 
solid fuel users resided in rural areas with lower population and vehicle 
density, which tend to be associated with lower ambient air pollution. In 
winter, however, the intensive use of solid fuels for heating (most par-
ticipants reported heating throughout the day) could result in major rise 
of neighbourhood PM2.5 in addition to regional ambient air pollution, as 
supported by previous studies (Hu et al., 2020; Ni et al., 2016). It is also 
worth noting that the increase in personal and household levels across 
seasons was much higher in solid fuel users than in clean fuel users, 
whose personal and household levels were <50 % of the community 
levels. 

As in numerous previous studies (Han et al., 2021; Ni et al., 2016) we 
observed relatively weak correlation between personal and community 
PM2.5 levels. This poses questions to the commonly adopted exposure 
assessment methods in previous epidemiological studies, particularly 

modelled ambient PM2.5 levels, often applied without accounting for 
inter-spatial variability and people's time spent indoors (typically 70–80 
%) (Murray et al., 2020). This may be less problematic in HICs with 
relatively low exposure from non-ambient sources, although the re- 
emergence of wood-fire heating may raise concern. The relatively 
strong correlation (0.52–0.66) between personal and household mea-
surements is consistent with previous evidence (e.g. PURE-Air: person- 
to-kitchen correlation = 0.69) (Shupler et al., 2020). Our evidence adds 
further support for more accurate personal exposure estimation via 
household measurements along with housing characteristics question-
naires, simple personal GPS trackers, and advanced ambient air pollu-
tion modelling approaches (Li et al., 2020; Schneider et al., 2020), 
especially in large-scale epidemiological studies where extensive per-
sonal measurement is infeasible. More in-depth modelling analysis on 
our data will generate further insight for better exposure approximation 
in future studies. 

Our time-resolved data also illustrated the remarkable short-term 
intra- and inter-personal variability in PM2.5 exposure even within 
each fuel use category. The diurnal patterns of kitchen PM2.5 appeared 
consistent with the previously reported time-activity patterns in CKB-Air 
(Chan et al., 2021), such as the exposure peaks (averaged twice in 
summer; 3 times in winter) at typical meal times. Furthermore, we 
observed stronger and longer-lasting evening peaks of personal and 

Fig. 5. The correlation matrix between the log-transformed concentrations of PM2.5 at personal, kitchen, living room and community levels. 
Red area under curves and dots are summer data; blue area under curves and dots are winter data; black numbers in boxes are overall Spearman correlation co-
efficient; red and blue numbers are summer- and winter-specific correlation. 
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household levels among individuals who used solid fuels in winter, 
which is consistent with typical space heating practices with reduced 
ventilation at night. The vast diurnal variations, with personal PM2.5 
exposure as high as 400 μg/m3 and as low as 10 μg/m3, lead to the 
question of whether and how long-term average exposure could 
compare to an accumulation of repeated bursts of extreme exposure on a 
time scale of minutes to hours compare to longer-term average exposure 
(e.g. between day, seasonal, or annual) in relation to disease develop-
ment risk (Smith and Kriebel, 2013). Conventional epidemiological 
approaches examine short- (days) and long- (years) term exposure- 
outcome associations separately with limited consideration on their 
interplay. Questions remain as to the extent to which environmental risk 
factors increase disease risk by causing gradual pathophysiological 
changes versus repeated acute events triggering clinically significant 
discomfort or illnesses. The mystery might be solved by the increasing 
availability of more refined air pollution data, the use of chamber 
studies, and the emerging multi-omics technologies that facilitate a 
better understanding of the toxicology and pathophysiology. 

CKB-Air offers one of the most detailed parallel and repeated sea-
sonal assessments of personal, household, and community level PM2.5 
with one of the largest time-resolved datasets (67,326–80,980 person- 
hours per microenvironment). Moreover, we assessed not only the role 
of parallel fuel use for cooking but also for heating on both average and 
time-resolved PM2.5 exposure, shedding light on the complexity of fuel 
use behaviour and PM2.5 exposure. However, several limitations war-
rant discussion. First, despite the relatively large amount (in person- 
hour) of data captured, the number of participants representing each 
fuel use combination beyond the aggregated categories on solid versus 
clean fuels was small. Also, the large inter-and intra-personal variability 
means that we could not reliably estimate PM2.5 levels by >10 different 
fuel combinations captured. Moreover, as the majority of clean fuel 
users reported mixed use of gas and electricity, and the solid fuel users 
reported mixed use of solid and clean fuels, the present study was not 
suited to assess PM2.5 levels associated individual fuel types in popula-
tion with high level of fuel-stacking. Second, unlike some previous 
studies that used gold-standard gravimetric samplers in measuring in-
tegrated PM2.5 exposure (Shupler et al., 2020), we used a nephelometer 
in order to obtain detailed time-resolved data. Despite the field- and lab- 
based validation and calibration, our instruments inevitably entailed 
random measurement error and, potentially, over-estimation at very 
high levels of relative humidity (>90 %) or PM2.5 (>1000 μg/m3), a 
common challenge of nephelometer-based devices. Designed for high- 
pollution settings, the built-in low- and high-channel algorithm of 
PATS and the regular wood smoke and zeroing calibration should reduce 
(but not eliminate) these errors. Third, we assessed community PM2.5 at 
a single location, and we lacked pairwise data of street and regional 
levels. Fourth, the study sample was recruited via convenient sampling 
from three purposively selected areas in China, so the estimated expo-
sure levels would not be generalisable to China or other populations. 
Similarly, given the stark contrast in fuel use patterns between the rural 
and urban sites, we could not conduct reliable subgroup analysis by 
urbanity. Fifth, the household questionnaire on participant character-
istics was only administered in winter. Although we assessed most 
characteristics (e.g. cooking frequency) on a 12-month time frame, 
participants had to recall their cooking fuel types used in summer if 
these differed in winter, so recall bias may exist. 

5. Conclusions 

This study has demonstrated the feasibility and value of collecting 
detailed air pollution exposure measurement data to capture intra- and 
inter-personal variations over short (weekly) and medium (seasonal) 
term, in rural and urban China. Most notably, the individuals who used 
solid fuels for cooking or heating were found to have annual personal 
PM2.5 exposure over 15 times higher than the latest WHO AQG. The 
relatively weak correlation of personal with community PM2.5, in 

contrast to the stronger correlation between personal and household 
levels, supports the use of reliable, low-cost household static monitors in 
improving personal air pollution exposure assessment in large-scale 
epidemiological studies. Our findings underscores the complexity of 
air pollution exposure and the need for cross-disciplinary investigation 
involving exposure science, toxicology, epidemiology and statistics. 

Open access statement 

This research was funded in whole, or in part, by the Wellcome Trust 
[Grant number 212946/Z/18/Z, 202922/Z/16/Z, 104085/Z/14/Z, 
088158/Z/09/Z, 223100/Z21/Z]. For the purpose of Open Access, the 
author has applied a CC-BY public copyright licence to any Author 
Accepted Manuscript version arising from this submission. 

Data access statement 

The China Kadoorie Biobank (CKB) is a global resource for the 
investigation of lifestyle, environmental, blood biochemical and genetic 
factors as determinants of common diseases. The CKB study group is 
committed to making the cohort data available to the scientific com-
munity in China, the UK and worldwide to advance knowledge about the 
causes, prevention and treatment of disease. For detailed information on 
what data is currently available to open access users and how to apply 
for it, visit: http://www.ckbiobank.org/site/Data+Access. 

Researchers who are interested in obtaining the raw data from the 
China Kadoorie Biobank study that underlines this paper should contact 
ckbaccess@ndph.ox.ac.uk. A research proposal will be requested to 
ensure that any analysis is performed by bona fide researchers. 

CRediT authorship contribution statement 

Ka Hung Chan: Conceptualization, Methodology, Software, Formal 
analysis, Investigation, Resources, Data curation, Writing – original 
draft, Writing – review & editing, Visualization, Project administration, 
Supervision. Xi Xia: Methodology, Software, Formal analysis, Investi-
gation, Writing – review & editing, Visualization. Cong Liu: Method-
ology, Resources, Data curation, Writing – review & editing. Haidong 
Kan: Methodology, Resources, Data curation, Writing – review & edit-
ing. Aiden Doherty: Methodology, Investigation, Writing – review & 
editing. Steve Hung Lam Yim: Methodology, Resources, Writing – re-
view & editing. Neil Wright: Methodology, Software, Data curation, 
Writing – review & editing. Christiana Kartsonaki: Methodology, 
Software, Data curation, Writing – review & editing. Xiaoming Yang: 
Resources, Data curation, Software. Rebecca Stevens: Resources, Data 
curation, Software. Xiaoyu Chang: Resources, Project administration. 
Dianjianyi Sun: Resources, Project administration. Canqing Yu: Re-
sources, Project administration, Funding acquisition. Jun Lv: Resources, 
Project administration, Funding acquisition. Liming Li: Resources, 
Project administration, Funding acquisition. Kin-Fai Ho: Conceptuali-
zation, Methodology, Resources, Writing – review & editing, Supervi-
sion. Kin Bong Hubert Lam: Conceptualization, Methodology, 
Resources, Writing – review & editing, Project administration, Super-
vision, Funding acquisition. Zhengming Chen: Conceptualization, 
Methodology, Resources, Writing – review & editing, Project adminis-
tration, Supervision, Funding acquisition. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

See data access statement in manuscript. 

K.H. Chan et al.                                                                                                                                                                                                                                 

http://www.ckbiobank.org/site/Data+Access
mailto:ckbaccess@ndph.ox.ac.uk


Science of the Total Environment 904 (2023) 166647

12

Acknowledgements 

The chief acknowledgment is to the participants, the project staff, 
and the China National Centre for Disease Control and Prevention (CDC) 
and its regional offices for assisting with the fieldwork. We thank Judith 
Mackay in Hong Kong; Yu Wang, Gonghuan Yang, Zhengfu Qiang, Lin 
Feng, Maigeng Zhou, Wenhua Zhao, and Yan Zhang in China CDC; 
Lingzhi Kong, Xiucheng Yu, and Kun Li in the Chinese Ministry of 
Health; and Garry Lancaster, Sarah Clark, Martin Radley, Mike Hill, 
Hongchao Pan, and Jill Boreham in the CTSU, Oxford, for assisting with 
the design, planning, organization, and conduct of the study. 

The CKB baseline survey and the first re-survey were supported by 
the Kadoorie Charitable Foundation in Hong Kong. The long-term 
follow-up has been supported by Wellcome grants to Oxford Univer-
sity (212946/Z/18/Z, 202922/Z/16/Z, 104085/Z/14/Z, 088158/Z/ 
09/Z) and grants from the National Natural Science Foundation of China 
(82192900, 82192901, 82192904) and from the National Key Research 
and Development Program of China (2016YFC0900500). The UK Med-
ical Research Council (MC_UU_00017/1, MC_UU_12026/2, 
MC_U137686851), Cancer Research UK (C16077/A29186; C500/ 
A16896) and the British Heart Foundation (CH/1996001/9454), pro-
vide core funding to the Clinical Trial Service Unit and Epidemiological 
Studies Unit at Oxford University for the project. KHC acknowledges 
support from the BHF Centre of Research Excellence, University of Ox-
ford (RE/18/3/34214). AD is supported by the Wellcome Trust 
(223100/Z21/Z). The CKB-Air study was supported by a UK Medical 
Research Council: Global Challenges Research Fund – Foundation 
Award (Ref MR/P025080/1) and a Nuffield Department of Population 
Health Pump-priming Award. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.scitotenv.2023.166647. 

References 

Balakrishnan, K., Ghosh, S., Thangavel, G., et al., 2018. Exposures to fine particulate 
matter (PM2.5) and birthweight in a rural-urban, mother-child cohort in Tamil 
Nadu, India. Environ. Res. 161, 524–531. 

Benka-Coker, M.L., Peel, J.L., Volckens, J., et al., 2020. Kitchen concentrations of fine 
particulate matter and particle number concentration in households using biomass 
cookstoves in rural Honduras. Environ. Pollut. 258, 113697. 

Cao, J.J., Lee, S.C., Chow, J.C., et al., 2005. Indoor/outdoor relationships for PM2.5 and 
associated carbonaceous pollutants at residential homes in Hong Kong - case study. 
Indoor Air 15 (3), 197–204. 

Carter, E., Archer-Nicholls, S., Ni, K., et al., 2016. Seasonal and diurnal air pollution from 
residential cooking and space heating in the eastern Tibetan Plateau. Environ. Sci. 
Technol. 50 (15), 8353–8361. 

Chan, K.H., Lam, K.B.H., Kurmi, O.P., et al., 2017. Trans-generational changes and rural- 
urban inequality in household fuel use and cookstove ventilation in China: a multi- 
region study of 0.5 million adults. Int. J. Hyg. Environ. Health 220 (8), 1370–1381. 

Chan, K.H., Newell, K., Lam, K.B., 2020. The effects of air pollution upon public health. 
In: Harrison, R. (Ed.), Environmental Pollutant Exposures and Public Health. Royal 
Society for Chemistry, UK.  

Chan, K.H., Xia, X., Ho, K.F., et al., 2021. Regional and seasonal variations in household 
and personal exposures to air pollution in one urban and two rural Chinese 
communities: a pilot study to collect time-resolved data using static and wearable 
devices. Environ. Int. 146, 106217. 

Chen, Z., Lee, L., Chen, J., et al., 2005. Cohort profile: the Kadoorie Study of Chronic 
Disease in China (KSCDC). Int. J. Epidemiol. 34 (6), 1243–1249. 

Chen, Z., Chen, J., Collins, R., et al., 2011. China Kadoorie Biobank of 0.5 million people: 
survey methods, baseline characteristics and long-term follow-up. Int. J. Epidemiol. 
40 (6), 1652–1666. 

Chen, Y., Shen, H., Smith, K.R., et al., 2018. Estimating household air pollution exposures 
and health impacts from space heating in rural China. Environ. Int. 119, 117–124. 

Gordon, S.B., Bruce, N.G., Grigg, J., et al., 2014. Respiratory risks from household air 
pollution in low and middle income countries. Lancet Respir. Med. 2 (10), 823–860. 

Gu, Y., Yim, S.H., 2016. The air quality and health impacts of domestic trans-boundary 
pollution in various regions of China. Environ. Int. 97, 117–124. 

Han, Y., Chatzidiakou, L., Yan, L., et al., 2021. Difference in ambient-personal exposure 
to PM2.5 and its inflammatory effect in local residents in urban and peri-urban 
Beijing, China: results of the AIRLESS project. Faraday Discuss. 226, 569–583. 

Health Effect Institute, 2020. State of Global Air 2020. Boston, MA. 
Hu, W., Downward, G., Wong, J.Y.Y., et al., 2020. Characterization of outdoor air 

pollution from solid fuel combustion in Xuanwei and Fuyuan, a rural region of 
China. Sci. Rep. 10 (1), 11335. 

Li, Z., Yim, S.H.-L., Ho, K.-F., 2020. High temporal resolution prediction of street-level 
PM2.5 and NOx concentrations using machine learning approach. J. Clean. Prod. 
268. 

Liao, J., Zimmermann Jin, A., Chafe, Z.A., et al., 2017. The impact of household cooking 
and heating with solid fuels on ambient PM 2.5 in peri-urban Beijing. Atmos. 
Environ. 165, 62–72. 

Morawska, L., Thai, P.K., Liu, X., et al., 2018. Applications of low-cost sensing 
technologies for air quality monitoring and exposure assessment: how far have they 
gone? Environ. Int. 116, 286–299. 

Murray, C.J.L., Aravkin, A.Y., Zheng, P., et al., 2020. Global burden of 87 risk factors in 
204 countries and territories, 1990–2019: a systematic analysis for the Global 
Burden of Disease Study 2019. Lancet 396 (10258), 1223–1249. 

Ni, K., Carter, E., Schauer, J.J., et al., 2016. Seasonal variation in outdoor, indoor, and 
personal air pollution exposures of women using wood stoves in the Tibetan Plateau: 
baseline assessment for an energy intervention study. Environ. Int. 94, 449–457. 

Pillarisetti, A., Allen, T., Ruiz-Mercado, I., et al., 2017. Small, smart, fast, and cheap: 
microchip-based sensors to estimate air pollution exposures in rural households. 
Sensors (Basel) 17 (8), 1879. 

Schneider, R., Vicedo-Cabrera, A.M., Sera, F., et al., 2020. A satellite-based spatio- 
temporal machine learning model to reconstruct daily PM2.5 concentrations across 
Great Britain. Remote Sens. 12 (22). 

Shupler, M., Balakrishnan, K., Ghosh, S., et al., 2018. Global household air pollution 
database: kitchen concentrations and personal exposures of particulate matter and 
carbon monoxide. Data Brief 21, 1292–1295. 

Shupler, M., Hystad, P., Birch, A., et al., 2020. Household and personal air pollution 
exposure measurements from 120 communities in eight countries: results from the 
PURE-AIR study. Lancet Planet Health 4 (10), e451-e62. 

Shupler, M., Hystad, P., Birch, A., et al., 2022. Multinational prediction of household and 
personal exposure to fine particulate matter (PM2.5) in the PURE cohort study. 
Environ. Int. 159, 107021. 

Sidhu, M.K., Ravindra, K., Mor, S., John, S., 2017. Household air pollution from various 
types of rural kitchens and its exposure assessment. Sci. Total Environ. 586, 
419–429. 

Smith, T.J., Kriebel, D., 2013. Chapter 16: biologically based exposure assessment for 
epidemiology. In: Venables, K.M. (Ed.), Current Topics in Occupational 
Epidemiology. Oxford University Press, Oxford, UK.  

Snider, G., Carter, E., Clark, S., et al., 2018. Impacts of stove use patterns and outdoor air 
quality on household air pollution and cardiovascular mortality in southwestern 
China. Environ. Int. 117, 116–124. 

Stoner, O., Lewis, J., Martinez, I.L., Gumy, S., Economou, T., Adair-Rohani, H., 2021. 
Household cooking fuel estimates at global and country level for 1990 to 2030. Nat. 
Commun. 12 (1), 5793. 

Tao, S., Ru, M.Y., Du, W., et al., 2018. Quantifying the rural residential energy transition 
in China from 1992 to 2012 through a representative national survey. Nat. Energy 3, 
567–573. 

Tong, X., Wang, B., Dai, W.-T., et al., 2018. Indoor air pollutant exposure and 
determinant factors controlling household air quality for elderly people in Hong 
Kong. Air Qual. Atmos. Health 11 (6), 695–704. 

Walker, E.S., Noonan, C.W., Semmens, E.O., et al., 2021. Indoor fine particulate matter 
and demographic, household, and wood stove characteristics among rural US homes 
heated with wood fuel. Indoor Air 31 (4), 1109–1124. 

WHO Global Air Quality Guidelines. Particulate Matter (PM2.5 and PM10), Ozone, 
Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide, 2021. World Health 
Organization, Geneva.  

World Health Organization, 2016. Burning Opportunity: Clean Household Energy for 
Health, Sustainable Development, and Wellbeing of Women and Children Executive 
Summary. World Health Organization, Geneva, Switzerland.  

Ye, W., Saikawa, E., Avramov, A., Cho, S.H., Chartier, R., 2020. Household air pollution 
and personal exposure from burning firewood and yak dung in summer in the 
eastern Tibetan Plateau. Environ. Pollut. 263 (Pt B), 114531. 

K.H. Chan et al.                                                                                                                                                                                                                                 

https://doi.org/10.1016/j.scitotenv.2023.166647
https://doi.org/10.1016/j.scitotenv.2023.166647
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0005
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0005
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0005
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0010
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0010
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0010
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0015
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0015
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0015
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0020
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0020
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0020
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0025
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0025
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0025
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0030
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0030
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0030
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0035
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0035
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0035
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0035
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0040
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0040
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0045
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0045
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0045
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0050
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0050
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0055
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0055
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0060
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0060
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0065
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0065
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0065
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0070
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0075
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0075
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0075
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0080
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0080
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0080
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0085
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0085
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0085
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0090
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0090
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0090
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0095
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0095
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0095
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0100
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0100
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0100
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0105
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0105
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0105
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0110
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0110
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0110
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0115
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0115
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0115
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0120
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0120
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0120
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0125
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0125
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0125
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0130
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0130
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0130
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0135
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0135
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0135
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0140
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0140
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0140
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0145
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0145
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0145
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0150
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0150
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0150
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0155
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0155
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0155
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0160
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0160
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0160
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0165
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0165
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0165
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0170
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0170
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0170
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0175
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0175
http://refhub.elsevier.com/S0048-9697(23)05272-5/rf0175

	Characterising personal, household, and community PM2.5 exposure in one urban and two rural communities in China
	1 Introduction
	2 Materials and methods
	2.1 Study design and sample
	2.2 Questionnaire data
	2.3 Air pollution data
	2.3.1 Air pollution monitors
	2.3.2 Data cleaning and processing

	2.4 Data analysis
	2.5 Role of the funding source

	3 Results
	3.1 Basic characteristics and PM2.5 levels
	3.2 PM2.5 levels by fuel use patterns
	3.3 PM2.5 exposure models and inter-spatial correlation

	4 Discussion
	5 Conclusions
	Open access statement
	Data access statement
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Supplementary data
	References


