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Abstract

Accurate identification of cell cycle phases in single-cell RNA-sequencing (scRNA-seq) data is crucial for biomedical research. Many
methods have been developed to tackle this challenge, employing diverse approaches to predict cell cycle phases. In this review article,
we delve into the standard processes in identifying cell cycle phases within scRNA-seq data and present several representative methods
for comparison. To rigorously assess the accuracy of these methods, we propose an error function and employ multiple benchmarking
datasets encompassing human and mouse data. Our evaluation results reveal a key finding: the fit between the reference data and the
dataset being analyzed profoundly impacts the effectiveness of cell cycle phase identification methods. Therefore, researchers must
carefully consider the compatibility between the reference data and their dataset to achieve optimal results. Furthermore, we explore
the potential benefits of incorporating benchmarking data with multiple known cell cycle phases into the analysis. Merging such data
with the target dataset shows promise in enhancing prediction accuracy. By shedding light on the accuracy and performance of cell
cycle phase prediction methods across diverse datasets, this review aims to motivate and guide future methodological advancements.
Our findings offer valuable insights for researchers seeking to improve their understanding of cellular dynamics through scRNA-seq
analysis, ultimately fostering the development of more robust and widely applicable cell cycle identification methods.
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INTRODUCTION
Understanding how cells divide and proliferate is of paramount
importance, both from a fundamental biological perspective and
in the realm of biomedical sciences. Cell cycle dysregulation,
as seen in cancer cells, can lead to uncontrolled growth and
proliferation [1]. Consequently, comprehending the mechanisms
governing the cell cycle is key to developing cell cycle–targeting
therapies [2]. Additionally, the cell cycle plays a vital role in organ
and tissue development [3], and studying it provides insights into
tissue regeneration [4].

Recently, as sequencing analysis has become increasingly
important [5, 6], single-cell RNA sequencing (scRNA-seq) has
emerged as a powerful tool for investigating the cell cycle [7],
enabling the identification of the cell cycle phases based on gene
expression profiles [8]. By analyzing gene expression profiles of
individual cells, researchers can classify cells into different stages
of the cell cycle and study the dynamics of gene expression
during this process. This approach allows the identification of
differentially expressed genes that may play a role in cell cycle
regulation [9–11]. Furthermore, scRNA-seq can be employed
to investigate cell cycle dynamics in specific cell types [12],
shedding light on cell type–specific regulation and identifying
potential therapeutic targets. Additionally, spatial transcriptomics
approaches have also been developed to study the cell cycle in
various tissue regions, potentially revealing region-specific cell
cycle regulators [13–15].

At the same time, the cell cycle can have a significant impact
on scRNA-seq analysis because it can introduce bias to the
analysis results [16, 17]. Cells in different stages of the cell cycle
exhibit distinct gene expression profiles, which, if not properly
considered, can lead to inaccurate analysis conclusions [8].
Computational methods are commonly employed to address
these biases by identifying and removing cell cycle phase
variations. Nevertheless, caution is needed, as improperly
removing cell cycle features can introduce biases and distort the
results [16]. Therefore, accurate identification of cell cycle phases
from scRNA-seq is in urgent need.

Here, we review existing methods for cell cycle phase identi-
fication. We assess the prediction performance of these methods
and propose potential beneficial analysis strategies. The cell cycle
can be broadly divided into two main phases: the interphase and
the M (mitosis) phase. The interphase is further subdivided into
three distinct stages: G1 (the cell prepares itself for division), S
(DNA synthesis) and G2 (the cell condenses genetic material for
division). The cell cycle starts from G1, through S and G2, ending
with the M stage, where the genetic material is separated into
two daughter cells. Once the M phase is complete, the parent cell
divides, giving rise to two daughter cells, each of which enters its
own cell cycle anew. Moreover, not all cells participate in the cell
cycle continuously. Some cells may exit the cell cycle temporarily
or permanently and enter a quiescent phase known as G0. In the
G0 phase, these cells do not undergo division; instead, they remain
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Table 1: List of methods for cell cycle phase identification

Name Key features Release date Category Language Link

Oscope Cyclic genes,
pseudotime

18 October 2015 Marker genes–based
clustering

R https://www.biostat.wisc.edu/&#x007E;
kendzior/OSCOPE/

cyclone Cell cycle phase 9 December 2015 Marker genes–based
clustering

R https://rdrr.io/bioc/scran/man/cyclone.html

ccRemover Remove cell cycle 19 August 2017 Marker genes–based
clustering

R https://github.com/cran/ccRemover

f-scLVM Cyclic genes, remove
cell cycle

11 November 2017 Marker genes–based
clustering

Python, R https://github.com/scfurl/f-scLVM

cycleX Cell cycle phase,
pseudotime

20 November 2017 Marker genes–based
clustering

Python, R workflow

reCAT Cell cycle phase, cyclic
genes, g0, pseudotime

16 March 2019 Marker genes–based
clustering

R https://github.com/tinglab/reCAT

Pre-Phaser Cell cycle phase, g0,
pseudotime

6 September 2019 Machine learning C++, Python https://github.com/ayurovsky/Pre-Phaser

CCPE Cell cycle phase, cyclic
genes, high dimensional,
pseudotime, remove cell
cycle

6 January 2021 Marker genes–based
clustering

Matlab, Python,
R

https://github.com/LiuJJ0327/CCPE

Cyclum Cell cycle phase, cyclic
genes, pseudotime,
remove cell cycle

18 March 2020 Machine learning Python https://github.com/KChen-lab/Cyclum

DeepCycle Cell cycle phase, cyclic
genes, deep learning,
pseudotime

29 July 2021 Machine learning Python https://github.com/andreariba/DeepCycle

ccAF Cell cycle phase, g0,
machine learning

14 May 2020 Machine learning Python https://github.com/plaisier-lab/ccAF

peco Continuum, cyclic
genes, pseudotime

13 November 2020 Machine learning R https://github.com/jhsiao999/peco

tricycle Cell cycle phase, cyclic
genes, pseudotime,
remove cell cycle,
transfer learning

18 March 2022 Machine learning R https://github.com/hansenlab/tricycle

Seurat Cell cycle phase,
remove cell cycle, score

27 June 2018 Marker genes–based
clustering

Python, R https://satijalab.org/seurat/articles/cell_
cycle_vignette.html

Revelio Cell cycle phase, cyclic
genes, pseudotime,
remove cell cycle

1 November 2020 Marker genes–based
clustering

R https://github.com/danielschw188/Revelio

CSICC Cell cycle phase, g0,
pseudotime

12 May 2022 Marker genes–based
clustering

R, Web https://sc1.engr.uconn.edu

resting until prompted to re-enter the cell cycle under specific
conditions. Since computationally identifying the G0 phase is yet
still challenging, we mainly focus on the computational identifi-
cation of the G1, S, G2 and M phases in this review.

METHODS FOR CELL CYCLE
IDENTIFICATION
About a dozen software tools have been developed to identify cell
cycle phases from single-cell RNA-seq data. These methods can be
broadly classified into two main groups: the marker gene–based
clustering approach and the machine learning approach, which
involves pre-training with existing cell cycle phase-labeled data.
A summary of these methods, along with their key features, is
presented in Table 1.

For example, ccRemover [16] applies dimension reduction
and bootstrap analysis of marker gene expression to detect
and remove the cell-cycle effect in scRNA-seq data. Oscope [18]
identifies candidate oscillatory cyclic marker genes to construct
a pseudotime profile, recovering the circular states at single-cell
level. Cyclone [19] utilizes a pair-based classification prediction

method by comparing the proportion of marker pairs identified
by marker gene expression, enabling the prediction of the cell
cycle phase for each cell.

Furthermore, f-scLVM [20] models scRNA-seq data with gene
set annotation to capture cell-level heterogeneity, allowing for the
identification of cyclic genes and the removal of the cell cycle
effect. CycleX [21] extends the traditional pseudotime analysis to
multi-dimensional level, revealing the expression behavior along
the cell cycle. Additionally, reCAT [22] constructs a time series
from scRNA-seq data using a method based on the traveling sales-
man problem. Pre-Phaser [23] leverages the idea of using k-nearest
neighbor cell expression to predict cell cycle phase, providing a
computational framework for a more accurate cell cycle phase
detection. Additionally, CCPE [24] builds a helix model based on
gene expression with unsupervised clustering and estimates the
cell cycle phase from the helix curve.

On the other hand, Cyclum [25] is a machine learning–based
approach. Instead of focusing on marker gene expression, it uses
a circular manifold with an autoencoder to obtain cell-level cir-
cular pseudotime. Similar to Cyclum, DeepCycle [9] utilized an
autoencoder and RNA velocity data, assigning angles for each
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cell to represent their circular position in the cell cycle. ccAF [26]
creates a neural network method to classify cells into discrete
cell cycle phases, while peco [27] adopts a supervised machine
learning approach, training the Bayes predictor with labeled data
and predicting the corresponding pseudotime.

To illustrate their performance and conduct a further compar-
ison, we choose four representative and user-friendly methods:
Tricycle [28], Seurat [29], Revelio [10] and CS1CC [30]. Tricycle
represents a machine learning method, while the remaining three
are marker gene–based clustering methods.

Specifically, Tricycle employs transfer learning to create refer-
ence embeddings of the cell cycle time ordering, using the first
two principal components from the reference data. The authors
utilized cortical neurosphere data as the reference due to the cell
cycle being the primary source of expression level variation in this
data. Alternatively, users can select other appropriate reference
data to construct corresponding reference embeddings. Using
these reference embeddings, Tricycle predicts cell positions for
a new scRNA-seq dataset, assuming the mean expression model
adheres to a periodic function with a single peak. To achieve this,
it projects the new RNA-seq data into the reference embeddings,
resulting in a polar coordinate position for each cell from 0 to 2pi.
Cell cycle phases are roughly assigned based on the significance
of cell cycle marker gene expressions, with the S phase approxi-
mately assigned from 0.5pi to pi, the G2M phase from pi to 1.75pi,
the G1 phase from 1.75pi to 0.25pi and the remaining region as
undivided [28]. Leveraging the pretrained reference embedding,
Tricycle enables rapid cell cycle phase prediction.

As a marker gene-based method, in the Seurat package, the
‘CellCycleScoring’ function assigns G1, S or G2M phases to each
cell. It calculates enrichment scores for phases S and G2M by
comparing average expression levels across marker gene sets for
phase S or G2M with the control expressions. Cell cycle phases
are assigned based on the more significant enrichment score. For
cells having both scores negative, they will be assigned to the G1
phase. Also, cells with larger enrichment scores greater than 1
deemed undecided [29]. Seurat remains computationally efficient
even with large single-cell datasets. The computational cost is in
proportion to the number of cells processed.

Revelio’s ‘getCellCyclePhaseAssignInformation’ function iden-
tifies cell cycle phases by first rotating the principal component
space from the gene expression data to find the 2D plane that
best explains cell cycle variance. The resulting rotated first two
principal components are termed dynamic components. With the
assumption that cell cycle phases follow a 2D circular trajectory
in the expression space, Revelio computes the cell cycle cluster
score and cell cycle marker score for these dynamic components.
The assignment of cell cycle phases is based on the correspond-
ing highest score. In addition, Revelio applies multiple filters to
remove potential doublets and cells with insufficient information,
ensuring accurate phase assignment for high-quality cells [10].
Similar to Seurat, Revelio can also provide rapid predictions.

CS1CC (SC1 Cell Cycle analysis tool) reveals cell cycle phases by
firstly clustering cells represented in transcriptome t-SNE space
into a hierarchical dendrogram. The dendrogram can include
at most seven clusters of cells corresponding to seven distinct
phases—G1, G1/S, S, G2, G2/M, M and G0. Using the Optimal Leaf
Ordering algorithm, CS1CC assigns the leaves of the dendrogram
to determine the positions of cells along the cell cycle. For each
cluster, CS1CC utilizes the mean expression level of corresponding
marker genes to establish the cell phase. Moreover, it provides
an approach to distinguish non-dividing cells based on the Gene-
Smoothness Score (GSS) in each cluster, where GSS less than 0.05

indicates non-dividing cells [30]. Since CS1CC is a web-based tool
that requires the creation of a hierarchical dendrogram before
prediction, this method is slightly more time-consuming com-
pared to others. For a dataset comprising 247 cells, this approach
yields results in approximately 3 min.

Currently, due to the absence of a standardized cell cycle phase
division strategy, different cell cycle phase prediction methods
may utilize varying phase categories. For instance, the recom-
mended reference marker gene set for Seurat consists of three
phases: G1, S and G2M, while Revelio includes the phases G1S, S,
G2, G2M and MG1. Furthermore, different benchmarking datasets
might employ different cell cycle indicators, leading to differ-
ent phase labels. For example, our hESC benchmarking dataset
labeled cell cycle phases as G1, S and G2, whereas the mESC-Q
dataset labeled cells in G1, S and G2M. Consequently, calculating
the prediction accuracy becomes challenging.

Inspired by the circular trajectory feature of the cell cycle, to
compare the performance of these four methods, we encoded
different cell cycle phases as angles in a circle, from 0 to pi.
Phases G1, G1S, S, SG2, G2, G2M, M and MG1 are encoded as
0, 1/8pi, pi/4, 3/8pi, 1/2pi, 5/8pi, 3/4pi and 7/8pi correspondingly.
Assume the true encoded cell cycle phase is θT and the predicted
encoded cell cycle phase is θP, the error between the predicted
value and the true value is defined by Error = sin (|θT − θP|). The
further the predicted value is from the true value in the cycle, the
larger the error, enabling a proper measurement of circular values
prediction performance.

BENCHMARKING DATASETS
To evaluate the accuracy of cell cycle prediction methods, we
utilized four widely used datasets comprising both human and
mouse cells as benchmarking data. These datasets were thought-
fully selected to encompass diverse cell types and distributions of
cell cycle phases.

1) Human embryonic stem cell (hESC) data [18]. Cells undergo-
ing scRNA-seq were sorted using the fluorescence-activated
cell sorting (FACS). Their cell cycles were identified using flu-
orescent ubiquitination-based cell-cycle indicator (FUCCI).
This dataset includes 91, 80 and 76 cells in G1, S and G2
phases, respectively. All cells in this dataset are expected to
be proliferating.

2) Mouse embryonic stem (ES) cell data by Quartz-Seq [31]
(mESC-Q). Quartz-Seq is a novel single-cell RNA-seq method
that can differentiate cell-cycle phases of a single cell type.
The dataset comprises 20, 7 and 8 ES cells in G1, S and G2M
phases, respectively. All cells in this dataset are expected to
proliferate.

3) Mouse embryonic stem cell (mESC) data [17]. Cell cycle
phases of mESCs are identified based on FACS with Hoechst
staining. The dataset contains a total of 288 cells: 96 cells in
each G1, S and G2M phase used for single-cell RNA-seq with
Fluidigm C1 protocol. All mESCs in this dataset are expected
to be proliferating.

4) Human retinal pigment epithelial (RPE)–FUCCI cell data [32].
RPE-FUCCI is a human untransformed cell line, RPE-1, anno-
tated by the FUCCI system. In this dataset, 244 and 30 cells
are identified as G1 and G2M phases by FUCCI after per-
forming single-cell RNA-seq with FACS. Although all cells are
classified into two cycle phases, this dataset also includes
the cell cycle time (the time in minutes since the completion
of metaphase) as a more detailed reference. Since this study
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primarily focused on the M-G1 phase transition, the RPE-
FUCCI cells in this dataset are expected to be proliferating.
Cells in this experiment are separated into three plates, and
we specifically analyze plate 2 in this review.

We evaluated four chosen methods on our four benchmarking
datasets, encompassing both human and mouse genes. Tricycle
supports direct usage for both human and mouse data through
its integrated ‘species’ parameter specification. For other meth-
ods, as the provided cell cycle marker genes are for humans,
we converted the mouse genes in the scRNA-seq data to their
human counterparts using the ‘biomaRt’ package in R, leveraging
homology.

Moreover, we conducted special analysis tasks based on the
hESC data. Specifically, we divided hESC data based on their cell
cycle phases into three test datasets: G1, S and G2. We then
evaluated the accuracy of the cell cycle prediction methods for
each test dataset, which only includes a single-cell phase. This
approach enables us to more effectively explore variations in pre-
dictive performance across different cell phases. Since the predic-
tion methods rely on comparing marker gene expressions across
various phases, the presence of cells from multiple cell cycle
phases in the data might precondition the cell cycle prediction
and potentially enhance the accuracy of the results. To test the
hypothesis, we performed additional simulations blending cells
from different phases to each of the test dataset. For example, we
blended the G1 data set with randomly chosen proportions (20%,
40%, 60% and 80%) of the remaining S and G2 cells. Subsequently,
we evaluated whether this additional padding of cells from dif-
ferent phases would improve prediction accuracy for G1 cells. By
assessing the impact of padding the G1 dataset with cells from
other phases, we can gain valuable insights into the influence of
data composition on the accuracy of cell cycle phase predictions.

COMPARISON RESULTS
In this study, we employed four commonly used methods, namely,
Tricycle, Seurat, Revelio and CS1CC, to identify cell cycle phases
using four scRNA-seq data sets. The prediction results are shown
in Figure 1, and the errors are shown in Figure 2. It was observed
that no single method outperforms the others consistently across
all datasets, indicating that the performance of these approaches
is highly dependent on the specific characteristics of the scRNA-
seq data.

Notably, in our analysis, Tricycle demonstrated relatively
accurate predictions for mouse data while being less accurate
for human data (Figures 1 and 2). This discrepancy may be
attributed to the fact that the mouse data share more similarities
with the training data used in Tricycle, compared to the human
data. This highlights the importance of data compatibility and
the reference embedding used for projection in the transfer
learning approach. Nevertheless, Tricycle’s success in predicting
mouse stem cell data given cortical neurosphere reference data
(Figures 1C and 2C) showcases the potential of transfer learning,
especially when dealing with new data lacking sufficient direct
references.

Seurat, Revelio and CS1CC implemented a cell cycle marker
gene enrichment clustering approach, which involves identify-
ing genes with high expression levels during different cell cycle
phases. Although this approach successfully predicted many cell
cycle phases, it also resulted in a considerable number of mis-
matches. These discrepancies might be attributed to noise in the
single-cell RNA-seq data, ambiguity in cell cycle marker genes,

systematic errors in the marker gene enrichment approach or
differences in the implementation of each model.

Both Seurat and Revelio assign cells by selecting the cell cycle
phase with the highest score, potentially leading to random phase
assignments for cells with similar scores across all phases. Con-
sequently, Seurat and Revelio consistently assign cells to one of
the predetermined cell cycle phases, irrespective of the actual cell
cycle phases. In contrast, CS1CC begins by identifying clusters,
allowing the number of clusters to vary instead of being fixed.
It then proceeds to assign cell cycle phases based on the score
for each cluster. This implementation offers greater flexibility
in predicting datasets with various composition of phases but
carries the risk of misclassifying entire clusters of cells.

As evident from Figure 1, Seurat and Revelio consistently
assign cells to all their available phases (three and five phases,
respectively), whereas CS1CC demonstrates more adaptability,
assigning three phases for the human datasets (Figure 1A and D)
and two phases for the mouse datasets (Figures 1B and C). Similar
observations were made in the simulation results (Figure 3),
where cells from a single phase (as the single color in the
center indicated) were assigned to multiple possible phases
by Seurat and Revelio, resulting in numerous mismatches. On
the other hand, when we considered G1 cells padded with
randomly chosen 60% or 80% of the remaining cells from different
phases (Figure 3A, 5th and 6th columns), CS1CC successfully
recognized the majority cells are G1. However, for data with only
S cells and 0% main part blended (Figure 3B, 1st column), CS1CC
misclassified the entire samples to MG1 and G2M phases.

Based on the breakdown of evaluation results for each cell cycle
phase across the four benchmarking datasets (Figure 4) and the
error summarization of simulation results for hESC (Figure 5), it
is evident that CS1CC performs exceptionally well in identifying
the G1 phase in hESC. This result remained robust across different
proportions of padding cells in the simulation (Figure 5A). This
could be attributed to the larger number of G1-specific marker
genes compared to other phases, indicating that the accuracy of
the prediction improves with an increased amount of high-quality
marker information. Hence, careful selection of high-quality cell
cycle marker gene sets, as well as thoughtful consideration of
implementation in the analysis pipeline, is crucial for this kind
of approach.

Additionally, analyzing the simulation results in Figure 5, we
noticed that higher proportions of primary data blended into the
test datasets resulted in lower error scores for all four methods.
This suggests that leveraging benchmarking data with multiple
known cell cycle phases and merging them with the new data
for cell cycle phase prediction could improve prediction accu-
racy, especially for methods that use the unsupervised clustering
approach.

In addition to the circular error calculation, we also evaluated
the performance based on whether the predicted phase matches
(or partial matches, e.g. G2 matches G2M) the underlying true
phase. The breakdown of false positives and false negatives for
each cell phase across all methods is depicted in Figure 6, exhibit-
ing results similar to those in Figure 4. The accuracy based on
phase matching for the benchmarking datasets and the simu-
lations is illustrated in Supplementary Figures S1–S4, exhibiting
results similar to those obtained by circular error calculation.
Notably, CS1CC generally demonstrated a relatively higher accu-
racy for the benchmarking data and the G1 cell simulation studies.

Overall, our evaluation emphasizes that the accuracy of cell
cycle prediction methods varies depending on the specific dataset.
The transfer learning approach’s success depends on the shared
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Figure 1. Pie charts showing the distribution of true and predicted cell cycle phases. The center of each chat exhibits the actual cell cycle phases that
were experimentally labeled. The outer circles of the chart display the phases that were predicted by four different methods: CS1CC, Revelio, Seuret and
Tricycle (from inside to outside). Phase G1, G1S, G2, G2M, MG1, S and NA are plotted counterclockwise. Four scRNA-seq data sets are used: (A) hESC; (B)
mESC-Q; (C) mESC; and (D) human RPE-FUCCI cells (plate 2).

signal between the reference embedding and the dataset. For
the cell cycle marker gene approach, the proper selection of the
marker gene set is critical. Moreover, integrating benchmarking
data with known cell cycle phases into new datasets can sig-
nificantly enhance prediction accuracy. Therefore, researchers
should carefully consider the cell types in their dataset and the
compatibility of the selected cell cycle marker gene sets when
choosing a cell cycle prediction method.

DISCUSSION AND FUTURE PERSPECTIVES
In this study, we conducted a comprehensive evaluation of four
commonly used methods for identifying cell cycle phases from
single-cell RNA-seq data. Our findings indicate that the transfer
learning approach demonstrates promising performance, partic-
ularly when a suitable reference embedding is utilized. Addition-
ally, the marker gene approach can yield accurate results if the
selected marker gene list is well suited to the dataset, empha-
sizing the significance of careful marker gene selection, normal-
ization and filtering steps in the analysis pipeline. Furthermore,
merging benchmarking data with known cell cycle phases to the
new query data set proves to be a viable strategy for improving
prediction accuracy.

To enable a direct comparison of results across all four
methods, we categorized the continuous results provided by

Tricycle using a strategy proposed from their function anno-
tations. This categorization might have reduced the validity of
Tricycle’s method since they indicated that a continuous cell cycle
assignment would be more meaningful. As for Seurat, Revelio
and SC1CC, we evaluated their performance based solely on their
suggested cell cycle marker genes. Fine-tuning the marker gene
list for a specific dataset could increase prediction accuracy.

Our analysis offers valuable insights into the accuracy of cell
cycle prediction methods and their performance across different
datasets. Developing accurate cell cycle prediction methods is
crucial for gaining a comprehensive understanding of single-
cell RNA-seq data and effectively removing the cell cycle as
a confounding factor during differential analysis. Our findings
emphasize the importance of carefully evaluating the accuracy
of different cell cycle prediction methods and selecting the one
that best suits the specific dataset.

Looking ahead, further research efforts are needed to address
certain challenges in cell cycle prediction from single-cell RNA-
seq data. One critical aspect is the difficulty of finding an optimal
reference embedding or a comprehensive list of marker genes that
can be widely applicable across various datasets. As each dataset
may have unique characteristics, developing a more powerful and
widely applicable method for predicting cell cycle phases would
significantly enhance the accuracy and utility of such analyses in
a broader context.
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Figure 2. Errors of cell cycle phase identification methods on four scRNA-seq data sets. Errors are calculated in the circular space. The datasets of hESC
(A), mESC-Q (B), mESC (C) and human RPE-FUCCI cells (D) are used. The average errors across datasets are summarized in (E).

Figure 3. Evaluation results of the selected methods on simulated datasets. G1 (A), S (B) and G2 (C) cells from the hESC data are merged with randomly
chosen proportions (0%, 20%, 40%, 60% and 80%) of the remaining cells. The circle in the center of the chart displays the actual cell cycle phases that
were experimentally labeled. The outer circles of the graph display the phases that were predicted by four different methods: CS1CC, Revelio, Seuret
and Tricycle (from inside to outside). Phase G1, G1S, G2, G2M, MG1, S and NA are plotted counterclockwise.
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Figure 4. Evaluation results specified by individual phases for considered methods. Errors are calculated in the circular space for each phase. The phase
compositions of each data set are shown on each subpanel. (A) hESC; (B) mESC-Q; (C) mESC; and (D) human RPE-FUCCI cells.

Figure 5. Errors of the selected methods on simulated datasets. G1 (A), S (B) and G2 (C) cells from the hESC data are merged with randomly chosen
proportions (0%, 20%, 40%, 60% and 80%) of the remaining cells. Errors are calculated in the circular space for each method.

Moreover, future studies could explore the combination of
multiple prediction methods to leverage their respective strengths
and overcome their limitations. Integrating diverse approaches
may lead to more robust and accurate cell cycle phase predictions,
especially for datasets with complex and heterogeneous cell pop-
ulations.

In summary, advancing the accuracy and generalizability
of cell cycle prediction methods remains an important area
of research in the field of single-cell RNA-seq analysis. By
addressing the current limitations and challenges, researchers
can uncover deeper insights into cellular dynamics and improve
the interpretation of scRNA-seq data, enabling more accurate
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Figure 6. Evaluation results based on phase matching for considered methods. False-positive (A–D) and false-negative rates (E–H) are calculated for each
phase based on direct phase matching or partial matching. (A) and (E) hESC; (B) and (F) mESC-Q; (C) and (G) mESC; and (D) and (H) human RPE-FUCCI
cells.
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downstream analyses and enhancing our understanding of
complex biological processes.

Key Points

• Four commonly used methods for identifying cell cycle
phases from single-cell RNA-seq data were evaluated in
this study.

• The transfer learning approach such as Tricycle showed
promising performance, especially when a suitable ref-
erence embedding was utilized.

• The marker gene enrichment approach can yield accu-
rate results if the selected marker gene list is well suited
to the dataset, emphasizing the significance of careful
marker gene selection, normalization and filtering steps
in the analysis pipeline.

• Integrating benchmarking data with multiple known
cell cycle phases into new datasets can significantly
enhance prediction accuracy.

• Researchers should carefully evaluate the accuracy of
different cell cycle prediction methods and select the
one that best suits their specific datasets.
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