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Summary

The dominant risk factors for late-onset Alzheimer’s disease (AD) are advanced age and the 

APOE4 genetic variant. To examine how these factors alter neuroimmune function, we generated 

an integrative, longitudinal single-cell atlas of brain immune cells in AD model mice bearing 

the three common human APOE alleles. Transcriptomic and chromatin accessibility analyses 

identified a reactive microglial population defined by concomitant expression of inflammatory 

signals and cell-intrinsic stress markers whose frequency increased with age and APOE4 burden. 

An analogous population was detectable in brains of human AD patients, including in cortical 

tissue using multiplexed spatial transcriptomics. This population, which we designate terminally 

inflammatory microglia (TIMs), exhibited defects in amyloid-β clearance and altered cell-cell 

communication during aducanumab treatment. TIMs may represent an exhausted-like state for 

inflammatory microglia in the AD milieu that contributes to AD risk and pathology in APOE4 
carriers and the elderly, thus presenting a potential therapeutic target for AD.
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Introduction

Alzheimer’s disease (AD) is an incurable neurodegenerative disease and the predominant 

form of dementia, characterized by progressive synaptic dysfunction, neuronal loss, and 

cognitive decline1,2. Excessive accumulation of the amyloid-β (Aβ) peptide and aggregates 

of hyperphosphorylated tau proteins are the major pathological features of the Alzheimer’s 

brain, followed by neuroinflammation, which is thought to be driven primarily by microglial 

cells1–3. Microglia are yolk sac-derived myeloid cells and the dominant immune population 

of the brain4–6. While microglia are central mediators of classical neuroinflammation, they 

are also a highly heterogeneous population, present in the AD brain in distinct states that can 

be differentially beneficial or detrimental to disease progression7–14. Nonetheless, the factors 

determining whether a given microglial population either constrains or contributes to AD 

pathology remain poorly defined.

Apolipoprotein E (APOE) is a secreted protein named for its central role in lipid trafficking 

with three common human isoforms: APOE2, APOE3, and APOE4. Although these alleles 

only vary at two amino acid sites, they are nonetheless strongly associated with differential 

risk for several diseases, including hyperlipidemia and atherosclerosis15. APOE is of 

particular interest in human health due to its role as the single largest monoallelic risk 

factor for late-onset AD (LOAD), with APOE4 increasing risk and APOE2 reducing risk 

relative to APOE3, the most common allele in the population16. APOE is also a regulator 

of immunity more broadly, with roles in anti-tumor immunity17,18, the response to SARS-

CoV-2 infection19, and multiple other inflammatory contexts20. Still, the mechanisms by 

which brain immune cells are jointly modulated by aging and distinct APOE alleles are not 

well understood.

We aimed to characterize the immune cellular changes in the AD brain driven by aging 

and distinct APOE alleles by generating a single-cell atlas of immune cells from brains 

of AD mice bearing either APOE2, APOE3, or APOE4 alleles at distinct ages. Our atlas 

encompasses mice from 10 weeks of age to ~2 years of age, an understudied super-elderly 

state. By combining two global genome-wide modalities across multiple timepoints in AD 

progression, we systematically profiled the complex dynamics of the neuroimmune system 

and leveraged this data to interrogate its emergent biological properties. We identified a 

population of microglia expressing a signature of inflammatory and stress signaling markers 

whose frequency was enriched by age and APOE4 genotype. These microglia are present in 

human AD, exhibit impaired capacity for Aβ clearance, and appear to be key participants in 

the microglial response to aducanumab, an approved AD treatment. These findings identify 

a putative exhausted-like state for microglia in AD and a potential target cell for future 

therapeutic intervention.

Results

Single-Cell RNA Sequencing Identifies a Terminally Inflammatory Microglial State in AD 
Mice

We crossed 5×FAD mice, a common murine model of AD progression, with mice 

bearing human APOE2, APOE3, or APOE4 alleles in the murine Apoe locus (hereafter 
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denoted AD*APOE2, AD*APOE3, and AD*APOE4). We flow-sorted Cd45+ cells from 

the hippocampal and cortical regions of these APOE-homozygote 5×FADhet mice at 10 

weeks and 20 weeks of age, as well as of APOE3- and APOE4-homozygote 5×FADhet 

mice aged to 96 weeks of age (~2 years, equivalent to a human octogenarian), pooling 

cells from 3–6 mice per group. We then performed 10X single-cell RNA sequencing using 

either 3’v3 or 5’v2 capture technology, yielding an atlas of 30,868 single-cells after filtering 

and quality control (Fig. 1A). We sorted microglia specifically from hippocampal and 

cortical tissue due to their central roles in AD pathology and progression3,21–23. Reciprocal 

principal component analysis mediated integration24 followed by clustering identified 17 

clusters, including one major cluster representing ~80% of single-cell profiles that expressed 

microglial markers8 such as P2ry12 and Tmem119 (Fig. 1B, Fig. S1A). Subclustering 

this microglial group generated 20 discrete microglial subpopulations, including clusters 

corresponding to the disease-associated microglia (DAM) state25 that were identified by 

high expression of genes such as APOE and Cst7 (Fig. 1C). We augmented these 20 

clusters by leveraging a k-nearest neighbors (KNN) approach26 to survey the single-cell 

manifold for small, highly connected groups of cells with unique expression signatures. 

After hierarchical statistical evaluation, a single high-confidence microcluster of 11 cells 

expressing a transcriptional program including Il34 and Ano1 passed thresholding (Fig. 

S1B–C). We manually annotated this cluster as Il34+ microglia, arriving at a final set of 

21 clusters. To establish that the clusters identified in this pipeline are meaningful and 

not spurious products of overclustering, we trained a 100-ply random forest classifier on a 

4-fold cross-validation scheme over 25 iterations on the raw counts data from each cluster, 

using the classifier to produce a pairwise confusion matrix between each combination 

of microglial subclusters. Cells were rarely misassigned by this classifier (Fig. S1D), 

supporting the final clustering generated by this approach.

We next asked whether some clusters were over- or under-represented in any samples. While 

microglia appeared uniformly distributed by genotype in UMAP space after integration, 

microglia from 96-week-old mice showed a clear shift toward clusters marked by 

concomitant expression of inflammatory genes such as S100a8 and S100a9 and immediate 

early response genes such as Fos, Jun, and Egr127 (Fig. 1D–E, Fig. S1E); we denote these 

clusters terminally inflammatory microglia, or TIMs (justification below). TIMs were almost 

exclusive to samples from 96-week-old mice and particularly enriched in AD mice bearing 

the APOE4 genotype (45% of all microglia from AD*APOE3 at 96 weeks, 69% of all 

microglia from AD*APOE4 at 96 weeks, and <1% from all other samples, Fig. S1F). 

Importantly, TIMs were not a low-quality population or a group of doublets, as a spline-

based miQC28 approach scored cells from TIM clusters as less likely to be low-quality 

(p = 6.1×10−33 by Mann-Whitney-Wilcoxon nonparametric test, Fig. S1G) than all other 

microglial clusters, even canonical populations such as DAMs and homeostatic microglia.

Inflammatory microglia, the activated counterpart of homeostatic microglia, accumulate in 

the AD milieu due to persistent AD-associated neuroinflammation14,29. Given the high 

frequency of TIMs in aged samples and their near absence in younger mice, we reasoned 

that they may represent a more advanced stage for inflammatory microglia in the AD brain. 

To this end, we generated splice-aware alignments30 and performed directed fate mapping, 

using CellRank31 to construct a composite transition kernel. Splicing dynamics are powerful 
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features for the study of cell transitions, as the ratio between spliced and unspliced products 

can inform whether genes are being stably expressed, are being induced, or are being 

repressed at the time of library preparation. However, we elected to design the kernel based 

heavily on connectivity and CytoTRACE32 with a comparatively minimal contribution from 

splicing dynamics, as the cell transitions being captured in our data occur on a much longer 

timescale than that of splicing regulation. Consistent with TIMs representing a terminal 

state, CellRank identified a robust flow from homeostatic microglia through acutely and 

chronically inflammatory clusters and into the age-specific population (Fig. 1F). Based on 

the above observations, we termed these cells terminally inflammatory microglia, or TIMs.

We noted that TIMs partitioned into two major subpopulations, one that maintained high 

expression of effector markers and one that instead exhibited higher expression of stress 

markers; we termed these effector-hi TIMs and effector-lo TIMs, respectively (Fig. 1C, Fig. 

S1A). The atlas suggested that effector-lo TIMs might be enriched in AD*APOE4 and that 

effector-hi TIMs might be enriched in AD*APOE3 (Fig. 1G), but the statistical power to 

confirm this was lacking. We similarly questioned whether AD*APOE2, which was absent 

from the atlas at the 96-week timepoint, would display shifts in TIM subpopulations. To 

explore these questions, we aged a cohort of AD*APOE2, AD*APOE3, and AD*APOE4 
mice (n = 5 per genotype) to 60 weeks of age and separately sorted Cd45+ cells from the 

hippocampal and cortical regions of each brain. We then generated bulk RNAseq libraries 

from each of the 15 samples and used our single-cell atlas as a reference to perform 

in silico decomposition33 of the bulk counts (Fig. 1H, Fig. S1H). Consistent with our 

atlas, we found that AD*APOE4 mice were enriched for effector-lo TIMs compared to 

their AD*APOE3 counterparts. Interestingly, while effector-hi TIMs were not increased 

in AD*APOE3 compared to AD*APOE4, again consistent with our atlas, we found that 

essentially all TIMs from AD*APOE2 mice were effector-hi in transcriptional signature. 

These findings demonstrate that TIMs exhibit heterogeneity and that this heterogeneity is 

modulated in the context of AD by APOE genotype.

TIMs are Defined by Distinct Transcription Factors, Cell-Cell Contacts, and Metabolic 
Pathways

To better characterize the drivers of TIMs and other microglial populations in our atlas, 

we used Single-Cell Regulatory Network Inference and Clustering (SCENIC)34 to perform 

gene regulatory network reconstruction (Fig. 2A). Hierarchical clustering of the most highly 

variable regulons recapitulated known features of microglial biology, such as the enrichment 

of an Irf7-driven regulon in a subcluster of microglia expressing interferon-associated 

genes35 and Hif1a scoring highly in the late-stage DAM-2 cluster36. We found that a regulon 

defined by Smad4, which is required for microglial differentiation and development37, was 

significantly depleted in DAMs relative to all other microglia in our atlas (Fig. S2A), 

suggesting that DAMs may acquire their phenotype through quasi-reversion to a border-

associated macrophage-like state. Meanwhile, TIMs were strongly associated both with a 

suite of inflammatory regulons driven by NF-κB38 and CEB/P39 family transcription factors 

and with multiple AP-1 family transcription factors (Fig. 2B, Fig. S2B). Interestingly, TIMs 

were strongly enriched for some inflammatory regulons (Nfkb2, Irf1, Irf3, Irf4) but depleted 

for others (Irf5, Irf7, Irf9, Stat1/2) relative to homeostatic microglia (Fig. S2C), indicating 
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potential selective regulation of specific inflammatory pathways. We additionally found that 

effector-lo TIMs were distinguished from effector-hi TIMs by increased utilization of these 

AP-1 and Klf-family factors and comparatively weaker regulation through regulons such as 

Sox4 and Tcf4 (Fig. 2C).

While our brain immune atlas is dominated by microglia, it also includes several other 

immune populations that commingle with microglia in the AD milieu. We consequently 

aimed to model these contacts using cell-cell interaction imputation via CellPhoneDB40. 

We compared ligand:receptor complexes with high predicted importance between TIMs 

and both homeostatic (Fig. 2D) and DAM (Fig. 2E) clusters, nominating IL11, 

dehydroepiandrosterone (DHEA), and 2-arachidonoylglycerol (2-AG) as strongly enriched 

while integrin αMβ2 (MAC-1) and leukotriene B4 were strongly depleted in TIMs relative 

to both. IL11, DHEA, and 2-AG have all been implicated as attenuators of microglial 

activation and mediators of remyelination and repair programs41–43. Likewise, MAC-1 

has been nominated as a key contributor to microglial activation and neurodegeneration 

in both AD44 and other neurodegenerative conditions such as Parkinson’s disease45, 

while leukotriene B4 is an established contributor to neutrophil infiltration and tissue 

damage46. Together, this shift in the interactome of TIMs supports a bias towards decreased 

inflammation and reduced activation in comparison to other inflammatory populations like 

DAMs. Interestingly, TGFβ signaling was also predicted to be depleted in TIMs compared 

to both DAMs and homeostatic microglia despite TGFβ being a potent anti-inflammatory 

microglial cytokine47, suggesting an alternative mechanism by which TIMs acquire a less 

inflammatory phenotype. Also consistent with the view that TIMs skew less inflammatory in 

their cell state, we found that TIMs were predicted to be significantly less promiscuous in 

their cell interaction networks than all other microglial populations (Fig. 2F–G), indicating a 

diminished ability to contribute to inflammation in their local environment.

We next aimed to leverage scUTRquant48, a pipeline that performs 3’UTR-sensitive 

alignment, to study differential 3’UTR length and intronic polyadenylation events in our 

data. Given our particular interest in TIMs and their relative enrichment in AD*APOE4 
mice over AD*APOE3 mice, we aligned and compared reads from AD*APOE3 and 

AD*APOE4 96-week-old mice. Several genes passed differential enrichment thresholding 

after bootstrapping, including immune-related genes (Il13ra1, Apobec3a), chromatin 

remodelers (Rbbp4), and a striking number of endocytosis-related and lysosomal genes 

(Glmp, Rab7, Abcg1, Tubb5, Atp2b4, Ppt1) with significantly differentially regulated 

3’UTR lengths and internal polyadenylation events between the two APOE genotypes 

(Fig. S2D–F). Moreover, given the function of metabolism in supporting microglial states, 

we surmised that TIMs would be defined by differential metabolic phenotypes when 

compared to other microglia. We therefore inferred the metabolic state of all microglia 

using Compass49, a flux balance analysis algorithm that estimates a model of bidirectional 

flow of all metabolic reactions in Recon2 weighted by the expression level of key metabolic 

enzymes (Fig. 2H). Interestingly, pathways in cellular energetics such as the citric acid 

cycle, glycolysis/gluconeogenesis, the pentose phosphate pathway, and the metabolism 

of sugars such as galactose, fructose, and mannose were depleted in TIMs, suggesting 

an energetic deficiency unique to this population. Meanwhile, TIMs were enriched for 

pathways in ROS detoxification and in the metabolism of several amino acids, including 
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taurine, hypotaurine, cysteine, tyrosine, methionine, arginine, and proline, implicating 

altered glutathione and amino acid metabolism as key features of the TIM state.

Single-Cell Multiome Sequencing Uncovers Mediators of Transcriptional Regulation in 
TIMs

Collectively, these data suggested that TIMs are a distinct population of microglia that arises 

exclusively in aged mice and with higher frequency in AD*APOE4 than in AD*APOE3. 

However, our atlas lacked resolution in the period between 20 weeks and 96 weeks, 

when TIMs transition from essentially absent to nearly dominant, limiting our ability to 

predict the determinants of TIM emergence. Moreover, the atlas was restricted only to 

transcriptomic space, reducing the confidence with which claims about gene regulation 

could be made, and was generated by integrating both 3’ and 5’ libraries, an approach 

that makes assumptions about capture efficiency and library preparation. We therefore 

complemented the atlas by using 10X snRNAseq/scATACseq multiome sequencing to 

jointly characterize the transcriptome and the chromatin accessibility landscape of Cd45+ 

cells sorted from the hippocampal and cortical regions of AD*APOE4 mice aged to 60 

weeks. We elected to perform multiome sequencing on samples from AD*APOE4 mice 

to maximize the likelihood that we would detect TIMs at this intermediate timepoint. 

After filtering and quality control50, the resulting library consisted of 5,081 single-cell 

profiles across 32,285 RNA species and 134,523 differentially accessible regions. Joint 

representation of RNA and ATAC features followed by clustering identified 23 clusters, 8 

of which were microglial subclusters (Fig. 3A). Confirming our results from the age- and 

APOE isoform-dependent atlas, one cluster in these 60-week-old mice was defined by a 

gene expression program corresponding to that of TIMs and was present at a frequency of 

7.3% of all microglia, more frequently than in 20-week-old mice (0.3%) and less frequently 

than was detected in 96-week-old mice (69%) (Fig. S3A–B). These findings indicate that 

TIMs are already present at robustly detectable levels by 60 weeks of age and continue 

to accumulate thereafter in an age-dependent manner. Reassuringly, both RNA and ATAC 

modalities had high concordance in markers for TIMs such as Egr1 and Btg2 (Fig. S3C) 

and for well-established markers in other clusters such as APOE for DAMs, Skap1 for T 

cells, Ngp for neutrophils, and Ebf1 for B cells (Fig. S3D). Further validating results from 

the atlas, transcription factor footprinting of CEBPD, a predicted regulon in DAMs, and 

NFKB2, a predicted regulon in TIMs, showed higher Tn5 insertion enrichment in their 

respective clusters (Fig. 2A, Fig. S3E).

To leverage chromatin accessibility information from the multiome dataset, we used 

chromVAR51 to unbiasedly profile the chromatin landscape and infer motif accessibilities 

in each cell. In addition to the motifs we previously identified by footprinting, ETS family 

motifs were nominated as uniquely enriched in TIMs compared to other clusters (Fig. 3B). 

As a more sophisticated alternative to naïve enrichment, we also performed latent Dirichlet 

allocation-based topic modeling52 of RNA and ATAC features, identifying 11 RNA topics 

and 20 ATAC topics that captured the dynamics of multiomic regulation across the entire 

dataset (Fig. 3C). Of these, ATAC topic 2 (defined by RUNX factors) was enriched in TIMs 

while ATAC topic 3 (defined by both CEB/P factors and AP-1 factors) was enriched in 

DAMs.
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We then aimed to capture the gene regulatory networks undergirding the accumulation of 

TIMs by using the SCENIC+ suite53 to model transcription factor “enhancer regulons”, 

or eRegulons, contributing to cell state in each cluster (Fig. 3D). Consistent with the above-

mentioned results, TIMs scored highly for Nfkb2 and Fos eRegulons, while DAMs scored 

highly for Cebpa and Sox5 eRegulons. We reasoned that these regulatory networks were 

strong drivers of their respective cell clusters and that their ablation would be sufficient to 

drive these two cell populations back to a homeostatic state. To test this, we performed 

computational perturbation simulations of the SCENIC+ gene regulatory network by 

artificially setting expression of the given transcription factor to 0, recalculating expression 

of all other genes based on the SCENIC+ gene regulatory network, and embedding the 

resulting cells on a PCA manifold constructed from eRegulon information. Ablation of Fos 
and Nfkb2 signaling produced a robust flow from TIMs back onto the homeostatic cluster 

(Fig. 3E), while ablation of Sox5 likewise generated a flow from DAMs back onto the 

homeostatic cluster (Fig. S3F). Interestingly, ablation of other regulons associated with the 

TIM state such as Klf4 did not produce concordant shifts in gene regulatory network status 

(Fig. S3G), suggesting that Fos and Nfkb2 may be required for TIM maintenance while Klf4 
and other factors might be dispensable once the TIM state is attained.

Seeking to replicate results from the integrated atlas, we modeled cell-cell interactions 

in the multiome dataset with CellPhoneDB. In agreement with findings from the atlas, 

we identified fewer interactions made by TIMs than by either homeostatic microglia or 

DAMs (Fig. 3F). Moreover, many of the differentially enriched complexes from the atlas, 

such as DHEA, TGFβ, and 2-AG, were among the strongest contributors to the microglial 

interactome in the multiome dataset (Fig. S3H). A direct comparison of TIMs to DAMs in 

the multiome dataset identified a number of ligand:receptor pairs that were differentially 

enriched in each, the bulk of which were concordant in directionality with results from the 

larger dataset (Fig. 3G). The most strongly enriched ligand in TIMs in the multiome dataset, 

histamine, was concordant with the atlas and is implicated in microglial inflammation54,55, 

consistent with the view of TIMs as an inflammatory state. Meanwhile, DAMs were strongly 

enriched for TREM2, a known driver of DAM progression9 and again concordant with 

the atlas. We similarly aimed to model the metabolic state of microglia in the multiome 

dataset using Compass to explore pathways with differential flux between TIMs and DAMs. 

Corroborating results from the atlas, TIMs were markedly enriched for metabolic pathways 

of multiple amino acids, including taurine, hypotaurine, phenylalanine, histidine, arginine, 

proline, glutamate, lysine, cystine, alanine, valine, leucine, and isoleucine, while energetic 

pathways such as glycolysis, pentose phosphate pathway, and the metabolism of fructose, 

mannose, and galactose were strongly depleted in TIMs compared to in DAMs (Fig. 3H).

TIMs are Pervasive in Late-Stage Human AD and are Enriched by Age and APOE4

Previous efforts utilizing murine models to describe microglial subpopulations in AD have 

frequently been constrained by the absence of equivalent populations in human samples; 

for instance, DAMs are observed across murine AD models but have no single analogue 

in human AD56. We consequently asked whether the TIM phenotype was unique to our 

aged mouse model or if it might also be detectable in single-cell data gathered from human 

patients. To address this question, we used Seurat anchor integration for label transfer to 
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project microglia from ten previously published snRNAseq human brain datasets57–66 onto 

our murine multiome data (Fig. 4A). TIMs were identified in all ten datasets at frequencies 

comparable to that of the multiome reference; moreover, TIMs were identified whether 

tissue was processed by enzymatic digestion or by cold Dounce homogenization, indicating 

that the TIM state is not exclusively a product of ex vivo stress during sample preparation 

(Fig. 4B). We next leveraged these integrations to query the accompanying metadata and 

explore the impact of various factors on the frequency of TIMs. Consistent with our 

expectations, TIMs were more abundant in samples from patients with AD than in those 

without disease (Fig. 4C), in patients with more advanced disease as measured by Braak 

stage, a histopathological proxy for AD progression (Fig. 4D), and in patients carrying an 

APOE4 allele compared to their APOE3/APOE3 counterparts (Fig. 4E). Importantly, the 

frequency of TIMs did not correlate with post-mortem interval (Fig. 4F), suggesting that 

TIMs are unlikely to be an artifact of sample preparation. To better model the interplay 

of all these factors, we built a multiple linear regression model of TIM frequency across 

all individuals in the second ROSMAP dorsolateral prefrontal cortex project, a repository 

of snRNAseq data from the dorsolateral prefrontal cortex of 465 human AD donors; again 

consistent with our observations, we found that APOE4 allele count and Braak score were 

strong predictors of TIM frequency while other factors such as postmortem interval had no 

predictive power (Fig. 4G). Strikingly, we also observed that male sex was nearly as strong 

a modifier of TIM frequency as APOE4 allele count in this dataset, suggesting the existence 

of a sex-specific phenotype controlling the emergence of this unique cell state. We note that 

while age at death was not a robust predictor of TIM frequency, >91% of samples in the 

dataset are from individuals over the age of 80, making it a poorly informative parameter 

in this analysis. Finally, we performed label transfer between our larger single-cell atlas 

and microglia from the Tabula Muris Senis, a single-cell atlas of mouse tissues across 

age67. We found that the frequency of TIMs increased monotonically from 3-month-old to 

24-month-old mice, in agreement with the view that TIMs accumulate with age (Fig. S4). 

These findings suggest that TIMs are also present at robustly detectable levels in human 

brains and that their frequency follows the same trends as in mice with respect to age, 

disease, and presence of the APOE4 allele.

The TIM Spatial Niche is Enriched for Aβ Plaques and Inflammatory Cells in the Cortex

To further examine TIMs in the context of human AD, we used the Xenium platform to 

perform multiplexed in situ transcriptomics on cortical tissue samples from six human AD 

donors, three homozygous for APOE4 and three homozygous for APOE3. After quality 

control and filtering68, the resulting dataset covered 494,376 individual cells over a panel 

of 266 genes. We leveraged our computational label transfer of previously published human 

snRNAseq datasets to identify putative markers of human TIMs during the annotation 

process (Fig. S5A), yielding 22 clusters covering both neuronal and glial populations (Fig. 

S5B–C). Critically, we observed a clear population of TIMs with robust representation 

across both genotypes (Fig. 5A). Consistent with our murine data, we found that donors 

homozygous for APOE4 were enriched for TIMs relative to those homozygous for APOE3 
(22.7% vs. 5.2%; Fig. 5B). We generated a cell-cell spatial neighborhood matrix across all 

six sections, confirming that our data had captured the expected architecture of the cortex 

(Fig. S5D). We then investigated the spatial niche of TIMs within the tissue by calculating 
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the increased probability of observing a given cell type near a TIM compared to the null 

distribution. We found that TIMs are about 50% more likely to be found next to other 

TIMs than would be expected based on their frequency, while L5 neurons and two astrocyte 

populations with high copy number of APP or APOE transcripts were 10–20% more likely 

than expected to be found next to TIMs (Fig. 5C, Fig. S5E). We repeated the same analysis 

in a genotype-aware fashion, revealing that TIMs in APOE4 donors were more likely to 

cluster with neurons and these two astrocyte populations, whereas TIMs in APOE3 donors 

were more often adjacent to oligodendrocytes, the majority of which reside in the white 

matter (Fig. 5D). These data suggest that the APOE4 genotype is associated both with an 

increased frequency of TIMs and an increased proximity of those TIMs to grey matter. We 

then stained the same tissue sections used for Xenium with methoxy-X04, a fluorescent 

stain specific for Aβ plaques. Comparing results from methoxy-X04 staining to our Xenium 

annotations revealed that TIMs could be detected in regions containing high Aβ burden (Fig. 

5E), suggesting a potential role for TIMs in Aβ-related pathogenesis.

TIMs Exhibit Defective Capacity for Aβ Phagocytosis and Clearance

Collectively, our findings suggested that the TIM state might have consequences on 

microglial function and phenotype. To test this prediction, we harvested cells from the 

hippocampal and cortical regions of AD*APOE2, AD*APOE3, and AD*APOE4 mice at 

60 weeks of age and incubated them ex vivo with fluorescently labeled and oligomerized 

amyloid-β 1–42 (Aβ). We employed a pH-insensitive fluorophore, HiLexa 488, to ensure 

that fluorescent signal would be stable after cellular uptake. We then sorted Cd45+ cells, 

splitting each sample into two tubes based on Aβ uptake as measured by fluorescent 

signal, before performing post-sort cell hashing followed by 10X 5’v2 scRNAseq (Fig. 

6A). Filtering, quality control, and computational integration resulted in a dataset of 

12,613 cells, 76% of which fell into one of 12 microglial subclusters and 24% of which 

fell into one of 17 smaller non-microglial populations (Fig. 6B). Comparing the relative 

distribution of microglia from Aβ-hi and Aβ-lo pools revealed that the Aβ-lo population 

was qualitatively shifted away from homeostatic clusters and towards TIMs (Fig. 6C). 

We then examined the relative proportion of cells in each cluster that originated in the 

Aβ-hi pool per genotype to identify which populations were most or least capable of Aβ 
uptake (Fig. 6D). Two populations, one of homeostatic microglia enriched for ribosomal 

transcripts (χ2
0.05 = 1.88×10−58) and one of microglia marked by interferon responsive 

genes (χ2
0.05 = 2.70×10−17) were consistently overrepresented in the Aβ-hi pool, though 

interferon induced microglia from AD*APOE4 were less so than their AD*APOE2 and 

AD*APOE3 counterparts. Meanwhile, both effector-lo TIMs (χ2
0.05 = 6.87×10−27) and 

effector-hi TIMs (χ2
0.05 = 1.58×10−14) were underrepresented in the Aβ-hi pool. Strikingly, 

AD*APOE4 was defined by both a more severe underrepresentation of effector-lo TIMs in 

the Aβ-hi pool – suggestive of a more exacerbated defect in Aβ clearance by this population 

in this genotype – alongside a higher frequency of effector-lo TIMs overall, revealing a 

compounding effect in which AD*APOE4 is overburdened with a population of particularly 

impaired cells.
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The Frequency and Interactome of TIMs are Modulated by Aducanumab Treatment

While AD remains incurable, aducanumab is a recently developed and approved monoclonal 

antibody therapeutic that aims to slow disease progression by selectively binding to Aβ 
aggregates69. It is believed that these aggregates are then cleared by Fc-receptor mediated 

binding with myeloid cells. While clinical trials showed modest improvements in cognition 

driven by treatment, patients nonetheless experienced significant side-effects such as 

neuroinflammation and edema70. Given aducanumab’s strong impact on myeloid cells in 

the AD brain, we wondered how it would influence the emergence and behavior of TIMs 

in late-stage disease. We treated 60-week-old AD*APOE2, AD*APOE3, and AD*APOE4 
mice with daily intraperitoneal injections of aducanumab or of an isotype control for five 

days before performing single-cell sequencing of Cd45+ cells from their hippocampal and 

cortical regions (Fig. 7A). Processing and annotation produced a dataset of 13,483 cells, 

80% of which were microglia (Fig. 7B). Subclustering to microglia revealed that cells from 

animals treated with isotype control were predominantly homeostatic, acutely inflammatory, 

or effector-lo TIMs while those from animals treated with aducanumab were instead largely 

DAMs, effector-hi TIMs, and poised-like homeostatic microglia (Fig. 7C–D). Poised-like 

homeostatic microglia are differentiated from homeostatic microglia by higher expression of 

MHC-I genes and Cd52 (Fig. S6A), a gene signature associated with the microglial response 

to demyelination or injury4.

We used CellChat71 to better understand the shifts in the interactome driven by both 

aducanumab and APOE isoform across these samples, finding that aducanumab treatment 

and APOE4 were both associated with a higher number of predicted interactions and a 

stronger average predicted interaction strength (Fig. 7D). Querying across specific pathways 

identified key pathways with both high activity and differential utilization across APOE 
isoform (Fig. 7E); for instance, Gas6, a major driver of inflammation implicated in Aβ 
plaque clearance72, was more active after aducanumab treatment in APOE3 and APOE4, 

while Cd22, a potent inhibitor of microglial phagocytosis73, was more active in APOE2 
after treatment. These findings suggest that aducanumab treatment was less able to drive 

microglial responses to Aβ in APOE2 animals than in APOE3 or APOE4 counterparts. We 

then projected all ligand-receptor complexes onto a unified functional similarity manifold 

and determined the pairwise Euclidean distance between pathways from aducanumab-

treated and isotype control-treated animals of the same genotype (Fig. 7F), revealing that 

APOE2 mice exhibited the strongest shifts in signaling in Cd22, while APOE3 and APOE4 
instead had shifts in Cd39, a regulator of microglial migration74, and Csf1r, a key microglial 

survival factor75.

Next, we examined interactome shifts within specific cell types driven by aducanumab 

treatment. Strikingly, aducanumab massively expanded the total interactome of adaptive 

immune cells across all three genotypes, particularly Cd8 T cells and immature B 

cells (Fig. S6B), both of which inhabit the dura of the meninges76–78. Moreover, the 

interactome of these cell types was expanded in APOE4 animals to a greater extent than 

in APOE2 or APOE3 animals. A closer examination of the Cd8 T cell interactome revealed 

that this was driven primarily by increases in inflammatory signaling through type-II 

interferons along with elevated cell-cell adhesion via ICAMs (Fig. 7G). Similar pathways 
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were also modulated in immature B cells, effector-lo TIMs, and effector-hi TIMs (Fig. 

S6C). Finally, we explored which cell types might be driving differential T and B cell 

signaling after aducanumab treatment by separating signaling into senders and receivers and 

finding the mean difference in signaling strength between aducanumab-treated and isotype 

control-treated animals across all APOE isoforms (Fig. 7H). As expected, inflammatory 

microglial clusters showed the strongest increase in signal sending after aducanumab 

treatment. Remarkably, though, the largest growth in signaling after aducanumab treatment 

came from effector-hi TIMs, suggesting that this population may be particularly critical 

while coordinating cell-cell communication networks during inflammation. Combined with 

the higher frequency of effector-hi TIMs in aducanumab-treated animals, these findings 

highlight effector-hi TIMs as central orchestrators of the adaptive immune response to 

aducanumab therapy.

Discussion

Microglia display remarkable diversity, particularly within the inflammatory milieu of 

disease states. In this study, we present a single-cell atlas of microglial gene expression in 

AD in an age- and APOE isoform-dependent manner. Just as single-cell techniques revealed 

unappreciated heterogeneity in macrophage state beyond the M1-M2 paradigm79, these data 

define a microglial state beyond the homeostatic-inflammatory binary characterized by futile 

inflammation and impaired response to chronic stimuli. We refer to this population as TIMs 

and show that its frequency is increased by APOE4 and age. TIMs are distinguished from 

DAMs and other previously described microglial states in several respects, including their 

concomitant expression of inflammatory markers and cell-intrinsic stress signatures, their 

distinct chromatin accessibility landscape, and their unique metabolic state and interactome.

A transcriptomic signature with some similarity to that of TIMs has been presumed to 

represent an ex vivo stress signature induced by enzymatic processing80. However, TIMs are 

robustly detectable in snRNAseq datasets of human AD, irrespective of whether single-cell 

suspensions were prepared by enzymatic processing or by cold Dounce homogenization. 

While we cannot exclude enzymatic digestion as a potential confounder of transcriptional 

state, our analysis shows that TIMs are not purely an artifact of sample preparation. 

Moreover, even under the interpretation that the TIM phenotype is exacerbated by ex vivo 
conditions, our data indicates that microglia from aged brains are more strongly predisposed 

towards stochastically adopting this state and that this transition is genetically modulated 

by APOE genotype. We consequently propose that TIMs represent a bona fide microglial 

program and suggest that this state may have previously been underappreciated due to its 

age-dependent accumulation.

Many of the characteristics of TIMs, most notably their decreased utilization of glycolytic 

pathways and their simultaneous expression of both pro- and anti-inflammatory signals, are 

also observed in T cell exhaustion, a phenotypic state that is similarly induced by chronic 

stimulation and inflammation and is marked by impaired capacity to respond to those 

inflammatory signals. Likewise, TIMs are characterized by elevated expression of Serpine1, 

a marker of senescence whose expression in microglia is associated with Aβ pathology and 

inflammation81. This is further supported by the existence of a relatively minor population 
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of TIMs with particularly high expression of Serpine1 whose frequency is not affected 

by APOE genotype but is modified by age in the same way as other TIM states. These 

observations frame TIMs as a potential microglial equivalent of exhausted T cells, posing 

the possibility that TIMs represent a terminal state for activated microglia marked by a 

less inflammatory, functionally impaired, exhausted-like state82. We note that this microglial 

exhaustion is distinct from microglial depletion, a chronic, systemic decrease in microglial 

frequency that is a suggested therapeutic strategy against AD83.

In the context of the inflammatory AD milieu, these dysfunctional microglia may contribute 

to AD pathology, potentially explaining elements of AD evolution across stages of severity. 

Moreover, the greater frequency of TIMs in APOE4 carriers may contribute to their 

increased susceptibility to Alzheimer’s hallmarks, earlier disease onset, and differential 

rate of disease progression84. We speculate that this may occur through TIM accumulation 

resulting in a concomitant loss of homeostatic microglia, thereby interfering with normal 

constraint of AD progression and accelerating disease pathology. Alternatively, TIMs may 

have an active role in disruptive cell signaling or secretion of factors that lead to detrimental 

disease outcomes; ligands such as IL11, DHEA, 2-AG, and histamine, all of which were 

strongly enriched in TIMs in our data by cell-cell interaction imputation, are worthy of 

further exploration in this regard.

Epidemiological studies have long noted that AD incidence is considerably higher for 

females than for males85. While this is partially explained by the longer average lifespan 

of females, other factors, including post-menopausal changes in hormones and sex-specific 

differences in immune responses, are also implicated in this phenomenon86–88. However, 

comparatively little is understood with respect to putative drivers of AD that might be 

unique to males. One possibility is raised by a meta-analysis of the impact of herpes 

zoster vaccination on dementia, which revealed that while vaccination is protective against 

development of dementia later in life, this effect is stronger in females than in males89. Our 

finding that TIMs are enriched in males suggests a potential basis for this phenotype: the 

aged male neuroimmune system might be less responsive to the effects of historical immune 

interventions such as vaccination due to its higher burden of dysfunctional microglia. 

Combined with the observation that sex-specific AD risk in APOE4 carriers is particularly 

exacerbated between the ages of 65 and 7590, the approximate equivalent human age range 

to the period in which TIM emergence is most accelerated in our murine model, we 

posit that TIM frequency may be a cell-type-based risk factor that partially describes the 

incidence and pathology of AD in males.

Our results also underscore the presence of two distinct classes of TIMs in the AD 

milieu: effector-lo TIMs are defined predominantly by stress markers, while effector-hi 

TIMs maintain expression of genes relevant for immune crosstalk and function. While 

APOE4-bearing animals are strongly enriched for effector-lo TIMs, APOE2-bearing animals 

instead enrich for effector-hi TIMs. Our functional exploration of TIMs reveals that both 

subtypes show defects in Aβ clearance and that this is exacerbated in effector-lo TIMs. 

Meanwhile, effector-hi TIMs appear to be dominant contributors to the immune interactome 

during aducanumab treatment. Additional work is needed to clarify the differential roles of 
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these TIM subtypes during aging, in AD, and at physiological steady state, as well as the 

mechanism by which APOE variants bias TIMs towards different states.

Pioneering work in immunology revealed that T cells can undergo exhaustion, characterized 

by increased expression of inhibitory receptors and inappropriate activation in response to 

stimulus; this discovery laid the groundwork for immunotherapies that leverage antibody-

based therapeutics to promote effective T cell responses91,92. In much the same way, 

we postulate that a better understanding of the exhausted-like microglial phenotype we 

describe herein could enable a new treatment paradigm for AD predicated not on directly 

reducing neuroinflammation but instead on the reprogramming of microglia towards a more 

homeostatic state. Further functional characterization of TIMs and their ramifications in 
situ over the course of AD pathology may therefore uncover novel regulatory nodes and 

therapeutic avenues for the treatment and prevention of AD.

Limitations of Study

While the single-cell atlas generated in this work enables the exploration of deep questions 

in microglial heterogeneity, its statistical power is limited by the fact that one library was 

generated for each genotype and age. Moreover, while our analysis of human datasets 

identified a strong correlation between TIM frequency and sex, our murine work was 

underpowered with respect to this question. Future work will be necessary to validate these 

findings. Additionally, our computational modeling of the TIM gene regulatory network 

nominated a suite of AP-1 factors as being critical for either the establishment or the 

maintenance of the TIM state. In vivo studies modulating these transcription factors can 

conclusively determine necessity and sufficiency in their regulation of TIM emergence. 

Finally, our work reveals that TIMs are ubiquitous in murine and human AD, but whether 

TIMs also play a role in non-pathological aging or in other chronic neuroinflammatory 

conditions such as multiple sclerosis, Parkinson’s disease, and brain tumors remains to be 

described. Computational and experimental techniques can be leveraged to explore these 

questions, extending our findings to microglial biology beyond the scope of AD.

STAR Methods

Resource Availability

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Sohail Tavazoie 

(Sohail.Tavazoie@rockefeller.edu).

Materials availability—The AD*APOE mouse lines generated in this study will be made 

available for academic use upon reasonable request.

Data and code availability

• Collectively, all new sequencing data generated in this study are available on 

GEO under SuperSeries GSE239999. All raw data, Cell Ranger outputs, and 

processed Seurat and Signac structures for the atlas and multiome dataset are 

available on GEO under accession number GSE225503. All raw data, Cell 
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Ranger outputs, and processed Seurat structures for the aducanumab treatment 

experiments are available on GEO under accession number GSE239975. All raw 

data, Cell Ranger outputs, and processed Seurat structures for the Aβ uptake 

experiments are available on GEO under accession number GSE239974. All 

raw data and counts matrices from bulk sequencing of aged AD*APOE mice 

are available on GEO under accession number GSE239977. All Xenium raw 

data, the processed Squidpy structure, and full-slide scans after post-Xenium 

methoxy-X04 staining are available on Zenodo at 10.5281/zenodo.8206638. The 

ROSMAP DLPFC-1 and DLPFC-2 data used in this analysis are available at 

Synapse under accession codes syn16780177 and syn31512863.

• All R and Python code necessary to reproduce the analysis and figures in this 

manuscript has been annotated and uploaded to Github at https://github.com/

alonmillet/apoe-ad-age-atlas.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

Experimental Model Details

C57BL/6 (strain 000664) and 5×FAD (strain 34840) mice were purchased from the 

Jackson Laboratories and maintained in our facilities. Mice bearing knock-in of human 

APOE2, APOE3, or APOE4 in the murine Apoe locus [B6.129P2-Apoetm1(APOE*2)Mae N9 

(APOE2), B6.129P2-Apoetm2(APOE*3)Mae N8 (APOE3) and B6.129P2-Apoetm3(APOE*4)Mae 

N8 (APOE4)] were purchased from Taconic Biosciences and maintained in our facilities. 

Mice expressing each APOE allele were crossed with 5×FAD hemizygous mice to generate 

the final AD*APOE line. 5×FAD hemizygous*APOE homozygous mice were used in this 

study. Mice were weaned at the third postnatal week, genotyped in-house and kept on a 12 

h/12 h light/dark cycle (lights on at 7:00) with access to food and water ad libitum.

Both female and male mice were used for experiments. Animal care and experimentation 

were according to NIH guidelines and were approved by the Institutional Animal Care and 

Use Committee at The Rockefeller University (protocols #20010 and #23007).

Method Details

Brain immune cell isolation—Brain immune cells were isolated as previously 

described93–96 with minor modifications. Briefly, mice were anesthetized with a ketamine/

xylazine cocktail and perfused with 25 ml of Ca2+/Mg2+-free DPBS (Sigma). Cortex and 

hippocampus were removed and placed in FACS buffer (PBS containing 5% FBS and 10 

mM HEPES), minced with scissors, and incubated with 80 U/mL of collagenase D (Roche) 

at 37°C for 30 min. Collagenase was inactivated by adding 10 mM EDTA for an additional 

5min incubation at 37°C. Digested material was passed through a 70μm cell strainer and 

centrifuged at 1500rpm for 10min. The pellet was then resuspended in 7mL of 38% Percoll 

(Sigma) followed by a centrifugation at 2000rpm for 30 min. Nonspecific binding to Fc 

receptors was blocked by incubation with a CD16- and CD32-specific antibody (BioLegend) 

for 15min. Lastly, cells were washed and stained with an anti-CD45 antibody (BioLegend) 
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and 0.05 μg/mL DAPI (Sigma), then washed and resuspended in FACS buffer. Cells were 

sorted on a FACSAria-II flow cytometer (Becton Dickinson) for singlet DAPI– Cd45+ cells.

Single-cell library preparation—For samples from 96-week-old mice, sorted CD45+ 

cells from each genotype were washed, strained through a 40μm strainer (Flowmi), and 

resuspended in PBS containing 0.04% BSA at ~1000 cells/μL. Libraries were prepared 

using 10X Genomics 3’v3 chemistry per manufacturer’s instructions and sequenced on an 

Illumina NovaSeq SP. Six mice were pooled for the APOE3 library while four mice were 

pooled for the APOE4 library.

For samples from 10-week-old and 20-week-old mice, cells were also stained with 0.5μg of 

TotalSeq-C mouse hashing antibody (BioLegend) per genotype before cell sorting. Sorted 

CD45+ cells from each genotype were then pooled at equal cell numbers, washed, strained 

through a 40μm strainer (Flowmi), and resuspended in PBS containing 0.04% BSA at 

~1500 cells/μL for superloading as previously described97. Libraries were prepared using 

10X Genomics 5’v2 chemistry with Feature Barcoding per manufacturer’s instructions and 

sequenced on an Illumina NovaSeq SP. Three mice were pooled together per genotype for 

each library.

Aducanumab treatment and library preparation—For the aducanumab treatment 

experiment, 60-week-old mice were treated intraperitoneally with 0.5mg of either 

aducanumab (Cardinal Health) or human IgG isotype control (Invitrogen #02–7102) daily 

for 5 days prior to immune cell isolation and library prep as for the 10-week-old and 

20-week-old mice, ultimately pooling cells at ~2000 cells/μL for superloading. Samples 

were sequenced on an Illumina NovaSeq S2. Three mice were pooled together per genotype 

for each library.

Multiome library preparation—Brain immune cells were isolated as described above 

from two 60-week-old AD*APOE4 mice. Sorted CD45+ cells were centrifuged at 500rcf 

for 5min at 4°C and resuspended in 100μL lysis buffer (10mM Tris-HCl pH 7.4, 10mM 

NaCl, 3mM MgCl2, 0.01% Tween-20, 0.01% Nonidet P40 substitute, 0.001% digitonin, 1% 

BSA, 1mM DTT, and 1U/μL Sigma Protector RNase inhibitor in nuclease-free water). Cells 

were lysed for 3min on ice. Lysis was stopped by addition of 1mL wash buffer (10mM 

Tris-HCl pH 7.4, 10mM NaCl, 3mM MgCl2, 1% BSA, 0.1% Tween-20, 1mM DTT, and 

1U/μL Sigma Protector RNase inhibitor in nuclease-free water) followed by centrifugation 

at 500rcf for 5min at 4°C. Cells were washed twice more in wash buffer, then resuspended 

at 3000 nuclei/μL in diluted nuclei buffer (10X Genomics nuclei buffer diluted with 1mM 

DTT and 1U/μL Sigma Protector RNase inhibitor in nuclease-free water). Libraries were 

prepared using 10X Genomics Single Cell Multiome ATAC + Gene Expression chemistry 

per manufacturer instructions. The GEX library was sequenced on an Illumina Nextseq P2, 

while the ATAC library was sequenced on an Illumina NovaSeq S1.

Bulk sequencing of neuroimmune cells—Brain immune cells (Cd45+) were isolated 

from five 60-week-old mice per genotype as for single-cell library preparation but sorted 

directly into 500μL of Buffer RLT (Qiagen). Each brain was sorted into a separate tube 

rather than bulking genotypes together. RNA was isolated using the RNeasy Micro Kit 
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(Qiagen) and used as input for library preparation using the SMART-Seq v4 Low Input 

workflow (Takara Bio). Samples were sequenced on an Illumina NovaSeq SP. The resulting 

FASTQs were processed with Salmon98 to generate per-sample counts matrices, followed by 

in silico decomposition against the atlas using Bisque33.

Paraffin embedded sections of human brains—Human brain sections of postmortem 

age-matched Alzheimer’s disease APOE3/APOE3 carriers and APOE4/APOE4 carriers 

were obtained from the Carroll A. Campbell, Jr. Neuropathology Laboratory at the Medical 

University of South Carolina, which is part of the South Carolina Alzheimer’s Disease 

Research Center. The experiments involving these sections were reviewed and approved by 

the IRB committee of the Medical University of South Carolina (eIRB Pro0012869). This 

study met the “Not Human Research” criteria defined by the Code of Federal Regulations 

(45CFR46).

APOE genotyping—APOE alleles were genotyped as previously described99. In 

short, genomic DNA was extracted from 10–20g pieces of brain tissue using the E.Z. 

96 Tissue DNA Kit (Omega Bio-Tek). The APOE locus was amplified using the 

forward primer 5’-ACAGAATTCGCCCCGGCCTGGTACAC-3’ and the reverse primer 

5’-TAAGCTTGGCACGGCTGTCCAAGGA-3’ with the following thermocycling settings: 

94°C 3min, (94°C 30s → 60°C 30s → 72°C 1min) × 35 cycles, 72°C 2min, 12°C hold. 

Amplicons were digested by addition of 0.165μL each of AflII (New England Biolabs) and 

HaeII (New England Biolabs) and incubation for 120min at 37°C. The resulting digests were 

run on a 4% agarose gel to differentiate between the characteristic banding patterns.

Xenium library preparation—Sections were prepared from FFPE blocks of cortical 

tissue from human AD donors, acquired from the Carroll A. Campbell, Jr. Neuropathology 

Laboratory, which is part of the South Carolina Alzheimer’s Disease Research Center. 

Sample preparation and imaging was performed as per manufacturer recommendations using 

the Human Brain Gene Expression Panel (10X Genomics).

Methoxy-X04 staining—After the Xenium workflow, slides were subjected to the 

manufacturer’s quencher removal protocol used for post-Xenium H&E staining. After 

quencher removal, slides were stained for 10min in 30μM methoxy-X04 (Tocris Bioscience) 

solution in 40% EtOH, adjusted to pH 10 with NaOH. Slides were dipped briefly in water 

5× before being differentiated for 2min in 0.2% NaOH in 80% EtOH. Sections were then 

stained with 1:10,000 STYOX Green (ThermoFischer) in HBSS for 10min to mark nuclei. 

Slides were washed 3× in water before being imaged in 405nm and 488nm channels.

Aβ uptake experiment—Single-cell suspensions were generated from the hippocampal 

and cortical regions of the brains of 60-week-old mice as previously described. Aβ 1–42, 

HiLexa™ Fluor 488-labeled (Anaspec #AS-65627) was used for Aβ oligomer preparation 

(denoted AβO-488). Aβ oligomers were prepared according to Ledo et al., 2020100. Cells 

were treated with 1μM of AβO-488 per 15 min at RT before being washed and sorted on 

a FACSAria-II and gated for singlet DAPI− Cd45+ cells. Within this population, cells were 

sorted into either AβO-488-hi or AβO-488-lo pools depending on whether they were in 

the top or bottom 50% of AF488 signal. Sorted cells were spun down at 300rcf for 7min 
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at 4°C, resuspended in 100μL FACS buffer containing 0.5μg of TotalSeq-C mouse hashing 

antibody, and incubated on ice for 15 min. Cells were then washed twice more in FACS 

buffer before counting, pooling at equal numbers, and resuspending at ~2000 cells/μL for 

single-cell library preparation with superloading using 10X Genomics 5’v2 chemistry per 

manufacturer instructions. Three mice were pooled together per genotype for each library.

Library analysis—Counts matrices were produced using Cell Ranger version 6.1.1 

with alignment against mm10 as a reference genome. For multiplexed samples, hashed 

demultiplexing was performed using Cell Ranger multi, with read R2 and pattern 

5PNNNNNNNNNN(BC). Hashing sequences used for each sample are provided in 

Supplemental Table 1.

All code used for subsequent bioinformatic analysis is provided; briefly, data from single-

cell libraries was loaded into Seurat101, filtered by QC metrics such as fraction of reads with 

mitochondrial origin, number of reads, and number of unique features using MiQC28, and 

integrated by Seurat rPCA integration to generate a single dataset encompassing cells from 

10-week, 20-week, and 96-week samples (E2_10wk: 3,494 cells; E3_10wk: 3,523 cells; 

E4_10wk: 3,344 cells; E2_20wk: 2,997 cells; E3_20wk: 3,685 cells; E4_20wk: 4,634 cells; 

E3_96wk: 6,745 cells; E4_96wk: 2,446 cells). This structure was clustered and manually 

annotated to arrive at the final, analyzed data structure. Data from the aducanumab and Aβ 
libraries were analyzed and processed using the same method as was used for the atlas.

Data from the multiome library was loaded into Signac50 and filtered manually by QC 

metrics such as fraction of reads with mitochondrial origin, number of GEX reads, number 

of ATAC reads, number of unique features, TSS enrichment, and nucleosome signal. Peaks 

were called using MACS2102. The resulting GEX and peak information were used to 

generate a joint UMAP representation via Seurat’s weighted nearest neighbor approach. 

After clustering and manual annotation, peaks were re-called within each cluster to identify 

rare, cluster-specific peaks to arrive at the final, analyzed data structure.

For all downstream analysis, please refer to the accompanying code documentation.

Spatial transcriptome analysis—Preprocessing and cell segmentation of Xenium data 

was performed by the onboard pipelines on the Xenium machine. The resulting counts 

matrices were loaded into Squidpy68, log-normalized, and filtered to cells with at least 

5 transcripts and to genes with expression in at least 5 cells. As all libraries were 

generated from the same source and on the same machine run, data were merged without 

computational integration. This data was clustered and manually annotated to arrive at a 

final data structure. Markers for each cluster were identified by filtering the microglial atlas 

to only the genes probed by the utilized Xenium panel and using conventional differential 

gene analysis methods such as the FindMarkers function to identify putative markers of each 

population.

Single-cell density plots—Density plots were generated by retrieving the raw UMAP 

cell embeddings from the Seurat structure. The ggplot::stat_density_2d function was then 
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used to calculate the two-dimensional kernel density estimated with an axis-aligned bivariate 

normal kernel evaluated on a square grid.

RNA velocity analysis—Raw reads from the single-cell library were realigned against 

the mouse transcriptome in splice-aware fashion using the kallisto bustools kb-python 

workflow30. Spliced and unspliced matrices were then imported into Python alongside 

barcodes, UMAP coordinates, and cluster information previously calculated as described 

above. Matrices were filtered to remove empty droplets and merged with UMAP and cluster 

data before being processed with scVelo103 in dynamical modeling mode. The top 100 genes 

were corrected for differential kinetics before the calculation of velocity for each individual 

cell.

The velocity calculated by scVelo was then used as an input for CellRank31 to construct 

a custom kernel. Alongside the velocity kernel, a connectivity kernel based on k-nearest 

neighbors, a pseudotime kernel, and a kernel built from CytoTRACE32 were included at a 

ratio of 2%, 90%, 4%, and 4%, respectively. GPCCA was used to estimate flow through 

the kernel via Schur decomposition with the Krylov method on 10 components, with 

five terminal macrostates identified. This kernel and estimation were used for downstream 

analysis.

Ligand-receptor analysis—For the microglial atlas and the multiome dataset, 

CellPhoneDB40 was used to estimate ligand-receptor interactions. Raw counts were 

normalized to counts per 10,000 per cell and gene names were converted to human orthologs 

using the MGI human-mouse ortholog dataset. CellPhoneDB was run in statistical_analysis 

mode against the CellPhoneDBv3 database using default parameters. Statistical significance 

was evaluated by CellPhoneDB’s internal bootstrapping method and only significant 

interactions were used for downstream analysis.

For the aducanumab treatment dataset, CellChat71 was used to estimate ligand-receptor 

interactions. For each sample in the integrated dataset, a CellChat object was generated, 

overexpressed genes and interactions were identified, and communication probabilities 

and pathways were computed. These CellChat objects were then lifted onto the same 

cluster labels using the liftCellChat method before being merged for later analysis. All 

interactions were estimated from raw counts against the CellChatDB.mouse object with 

default parameters.

Transcription factor program analysis—SCENIC34 and SCENIC+53 were used to 

perform transcription factor regulatory program estimation on single-cell and multiome data, 

respectively. For SCENIC, GRNBoost2 was used to identify coexpressed modules from 

the raw counts data. RCisTarget was then used to identify regulons before AUCell was 

used to estimate the activity of each regulon at single-cell resolution. The output matrix 

of regulons by cells was used for downstream plotting and analysis. Differential module 

analysis was performed by importing the regulon-by-cell matrix as a Seurat assay and 

performing conventional differential expression analysis via Wilcoxon rank sum test.
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For SCENIC+, raw counts were imported along with cluster annotations. RNA counts 

were log-normalized, scaled, and filtered to highly variable genes. Raw ATAC reads 

were imported and peaks were called normalized to the size of each chromosome using 

MACS2 before being filtered using the Aerts Lab mm10 blacklist. Consensus peaks were 

converted to a bed file for downstream analysis. Processed RNA and ATAC data were 

subjected to QC controlling for fragment count, FRIP, TSS enrichment, and duplication 

rate to filter to high-quality cells. CisTopic was used to perform latent Dirichlet allocation 

topic modeling before PyCisTarget was used to identify enriched motifs and differentially 

accessible regions. These results were used as inputs to the SCENIC+ algorithm against 

a list of all known mouse transcription factors from the HUST database. Estimated gene 

regulatory networks were used for downstream analysis. For in silico perturbation modeling, 

the plot_perturbation_effect_in_embedding function was used to re-estimate transcriptional 

profiles after setting the expression of a given transcription factor to 0.

Multiome topic modeling—The MIRA suite52 was used to perform topic modeling and 

latent Dirichlet allocation on multiome RNA and ATAC data. Raw RNA and ATAC counts 

were filtered to genes with expression at least 15 cells and normalized to 1000 total counts 

per cell. Genes were separated into highly variable genes based on dispersion for training of 

each topic model. These models were then used to generate a joint representation of RNA 

and ATAC features with a box-cox transformation strength of 0.33 selected by examining the 

quality of the resulting UMAPs, per MIRA documentation recommendations. Clusters were 

renamed to match clusters from the Seurat-generated joint representation before per-cell 

topic scores for all RNA and ATAC topics were exported and used for downstream analysis.

Bulk sequencing decomposition—Bisque33 was used to decompose bulk RNA 

sequencing counts into estimates of population frequencies. After reads were aligned with 

Salmon, counts were merged into a single table for later analysis. Raw counts from the 

integrated single-cell atlas were used as a reference for Bisque decomposition via the 

SeuratToExpressionSet function. The bulk table was then decomposed with no prespecified 

markers. The resulting proportion estimates were used for later plotting and analysis.

Metabolic state estimation—Compass49 was used to estimate the flux through each 

metabolic reaction in Recon2 in the atlas and multiome datasets. In order to decrease 

computational demands and to reduce the impact of signal sparsity, fifty cells for the atlas or 

ten cells for the multiome dataset from each cluster were randomly pseudobulked together. 

Raw counts were then exported and used as input to Compass on all Mus musculus reactions 

with default parameters. The IBM ILOG CPLEX Optimization Studio was used with an 

academic license to solve flux balance analysis.

Quantification and Statistical Analysis

R version ≥4.1 and Python version ≥3.7 were used for data analysis. FlowJo software 

(Tree Star) was used for analysis of flow cytometry data. No statistical methods were used 

to predetermine sample sizes; sample sizes were determined according to data reported 

in previous publications. Animals in the same litter were randomly assigned to different 

experimental groups and blinded to experimenters.

Millet et al. Page 19

Immunity. Author manuscript; available in PMC 2024 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported in part by R35CA274446 and the Reem Kayden Award. A.M. was supported by NIH T32 
GM132083. We thank the Rockefeller Transgenic and Reproductive Core for assistance with IVF, the Rockefeller 
Genomics Core for assistance with sequencing, the Rockefeller Flow Cytometry Core for assistance with FACS, the 
Weill Cornell Epigenomics Core for their assistance with multiome sequencing, the Memorial Sloan Kettering 
Single Cell Analytics Innovation Lab for assistance with Xenium, the Memorial Sloan Kettering Molecular 
Cytology Core for assistance with methoxy-X04 imaging, the Rockefeller University veterinary technician team 
for assistance with mouse work, and Dr. Eric Hamlett for his assistance with acquisition and preparation of human 
brain sections. We thank the Carroll A. Campbell, Jr. Neuropathology Laboratory at the Medical University of 
South Carolina for providing human brain sections. We thank Alexandra Pinzaru and King Faisal Yambire for their 
invaluable comments during manuscript preparation. The graphical abstract and Figures 1A, 5A, and S1B were 
prepared using Biorender.com.

References

1. Heneka MT, Carson MJ, Khoury JE, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-
Coray T, Vitorica J, Ransohoff RM, et al. (2015). Neuroinflammation in Alzheimer’s disease. 
Lancet Neurology 14, 388–405. 10.1016/s1474-4422(15)70016-5. [PubMed: 25792098] 

2. Long JM, and Holtzman DM (2019). Alzheimer Disease: An Update on Pathobiology and 
Treatment Strategies. Cell 179, 312–339. 10.1016/j.cell.2019.09.001. [PubMed: 31564456] 

3. Hansen DV, Hanson JE, and Sheng M (2018). Microglia in Alzheimer’s disease. J Cell Biol 217, 
459–472. 10.1083/jcb.201709069. [PubMed: 29196460] 

4. Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A, Wysoker A, Walker AJ, Gergits F, 
Segel M, Nemesh J, et al. (2018). Single-Cell RNA Sequencing of Microglia throughout the Mouse 
Lifespan and in the Injured Brain Reveals Complex Cell-State Changes. Immunity 50, 253–271.e6. 
10.1016/j.immuni.2018.11.004. [PubMed: 30471926] 

5. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, 
Stanley ER, et al. (2010). Fate mapping analysis reveals that adult microglia derive from primitive 
macrophages. Science (New York, N.Y.) 330, 841–845. 10.1126/science.1194637. [PubMed: 
20966214] 

6. Schulz C, Perdiguero EG, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu 
B, Jacobsen SEW, Pollard JW, et al. (2012). A lineage of myeloid cells independent of Myb 
and hematopoietic stem cells. Science (New York, N.Y.) 336, 86–90. 10.1126/science.1219179. 
[PubMed: 22442384] 

7. St-Pierre M-K, VanderZwaag J, Loewen S, and Tremblay M-È (2022). All roads lead to 
heterogeneity: The complex involvement of astrocytes and microglia in the pathogenesis of 
Alzheimer’s disease. Front Cell Neurosci 16, 932572. 10.3389/fncel.2022.932572. [PubMed: 
36035256] 

8. Paolicelli RC, Sierra A, Stevens B, Tremblay M-E, Aguzzi A, Ajami B, Amit I, Audinat E, 
Bechmann I, Bennett M, et al. (2022). Microglia states and nomenclature: A field at its crossroads. 
Neuron 110, 3458–3483. 10.1016/j.neuron.2022.10.020. [PubMed: 36327895] 

9. Deczkowska A, Keren-Shaul H, Weiner A, Colonna M, Schwartz M, and Amit I (2018). Disease-
Associated Microglia: A Universal Immune Sensor of Neurodegeneration. Cell 173, 1073–1081. 
10.1016/j.cell.2018.05.003. [PubMed: 29775591] 

10. Heneka MT, Kummer MP, Stutz A, and Delekate A (2013). NLRP3 is activated in Alzheimer/’s 
disease and contributes to pathology in APP/PS1 mice. Nature.

11. Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt SV, Vieira-Saecker A, Schwartz S, Albasset 
S, McManus RM, Tejera D, et al. (2019). NLRP3 inflammasome activation drives tau pathology. 
Nature 575, 669–673. 10.1038/s41586-019-1769-z. [PubMed: 31748742] 

12. Ennerfelt H, Frost EL, Shapiro DA, Holliday C, Zengeler KE, Voithofer G, Bolte AC, Lammert 
CR, Kulas JA, Ulland TK, et al. (2022). SYK coordinates neuroprotective microglial responses 

Millet et al. Page 20

Immunity. Author manuscript; available in PMC 2024 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://Biorender.com


in neurodegenerative disease. Cell 185, 4135–4152.e22. 10.1016/j.cell.2022.09.030. [PubMed: 
36257314] 

13. Wang S, Sudan R, Peng V, Zhou Y, Du S, Yuede CM, Lei T, Hou J, Cai Z, Cella M, et al. (2022). 
TREM2 drives microglia response to amyloid-β via SYK-dependent and -independent pathways. 
Cell 185, 4153–4169.e19. 10.1016/j.cell.2022.09.033. [PubMed: 36306735] 

14. Sierra A, Abiega O, Shahraz A, and Neumann H (2013). Janus-faced microglia: beneficial 
and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 7, 6. 10.3389/
fncel.2013.00006. [PubMed: 23386811] 

15. Khalil YA, Rabès J-P, Boileau C, and Varret M (2021). APOE gene variants in primary 
dyslipidemia. Atherosclerosis 328, 11–22. 10.1016/j.atherosclerosis.2021.05.007. [PubMed: 
34058468] 

16. Liu C-C, Liu C-C, Kanekiyo T, Xu H, and Bu G (2013). Apolipoprotein E and Alzheimer disease: 
risk, mechanisms and therapy. Nat Rev Neurol 9, 106–118. 10.1038/nrneurol.2012.263. [PubMed: 
23296339] 

17. Tavazoie MF, Pollack I, Tanqueco R, Ostendorf BN, Reis BS, Gonsalves FC, Kurth I, Andreu-
Agullo C, Derbyshire ML, Posada J, et al. (2018). LXR/ApoE Activation Restricts Innate Immune 
Suppression in Cancer. Cell 172, 825–840.e18. 10.1016/j.cell.2017.12.026. [PubMed: 29336888] 

18. Ostendorf BN, Bilanovic J, Adaku N, Tafreshian KN, Tavora B, Vaughan RD, and Tavazoie SF 
(2020). Common germline variants of the human APOE gene modulate melanoma progression and 
survival. Nat Med 26, 1048–1053. 10.1038/s41591-020-0879-3. [PubMed: 32451497] 

19. Ostendorf BN, Patel MA, Bilanovic J, Hoffmann H-H, Carrasco SE, Rice CM, and Tavazoie SF 
(2022). Common human genetic variants of APOE impact murine COVID-19 mortality. Nature 
611, 346–351. 10.1038/s41586-022-05344-2. [PubMed: 36130725] 

20. Initiative ADN, Shi Y, Yamada K, Liddelow SA, Smith ST, Zhao L, Luo W, Tsai RM, Spina 
S, Grinberg LT, et al. (2017). ApoE4 markedly exacerbates tau-mediated neurodegeneration in a 
mouse model of tauopathy. Nature 549, 523–527. 10.1038/nature24016. [PubMed: 28959956] 

21. Roussarie J-P, Yao V, Rodriguez-Rodriguez P, Oughtred R, Rust J, Plautz Z, Kasturia S, Albornoz 
C, Wang W, Schmidt EF, et al. (2020). Selective Neuronal Vulnerability in Alzheimer’s Disease: A 
Network-Based Analysis. Neuron. 10.1016/j.neuron.2020.06.010.

22. Tzioras M, McGeachan RI, Durrant CS, and Spires-Jones TL (2023). Synaptic degeneration 
in Alzheimer disease. Nat Rev Neurol 19, 19–38. 10.1038/s41582-022-00749-z. [PubMed: 
36513730] 

23. Bero AW, Yan P, Roh JH, Cirrito JR, Stewart FR, Raichle ME, Lee J-M, and Holtzman DM (2011). 
Neuronal activity regulates the regional vulnerability to amyloid-β deposition. Nat Neurosci 14, 
750–756. 10.1038/nn.2801. [PubMed: 21532579] 

24. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, Hao Y, Stoeckius M, 
Smibert P, and Satija R (2019). Comprehensive Integration of Single-Cell Data. Cell 177, 1888–
1902.e21. 10.1016/j.cell.2019.05.031. [PubMed: 31178118] 

25. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David 
E, Baruch K, Lara-Astaiso D, Toth B, et al. (2017). A Unique Microglia Type Associated 
with Restricting Development of Alzheimer’s Disease. Cell 169, 1276–1290.e17. 10.1016/
j.cell.2017.05.018. [PubMed: 28602351] 

26. Lubatti G, Stock M, Iturbide A, Segura MLRT, Tyser R, Theis FJ, Srinivas S, Torres-Padilla 
M-E, and Scialdone A (2022). CIARA: a cluster-independent algorithm for the identification 
of markers of rare cell types from single-cell RNA seq data. Biorxiv, 2022.08.01.501965. 
10.1101/2022.08.01.501965.

27. Law CW, Chen Y, Shi W, and Smyth GK (2014). voom: precision weights unlock linear model 
analysis tools for RNA-seq read counts. Genome Biol. 15, R29. 10.1186/gb-2014-15-2-r29. 
[PubMed: 24485249] 

28. Hippen AA, Falco MM, Weber LM, Erkan EP, Zhang K, Doherty JA, Vähärautio A, Greene CS, 
and Hicks SC (2021). miQC: An adaptive probabilistic framework for quality control of single-cell 
RNA-sequencing data. Plos Comput Biol 17, e1009290. 10.1371/journal.pcbi.1009290. [PubMed: 
34428202] 

Millet et al. Page 21

Immunity. Author manuscript; available in PMC 2024 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



29. Onuska KM (2020). The Dual Role of Microglia in the Progression of Alzheimer’s Disease. J 
Neurosci 40, 1608–1610. 10.1523/jneurosci.2594-19.2020. [PubMed: 32075949] 

30. Melsted P, Booeshaghi AS, Liu L, Gao F, Lu L, Min K.H. (Joseph), Beltrame E. da V., 
Hjörleifsson KE, Gehring J, and Pachter L (2021). Modular, efficient and constant-memory 
single-cell RNA-seq preprocessing. Nat Biotechnol 39, 813–818. 10.1038/s41587-021-00870-2. 
[PubMed: 33795888] 

31. Lange M, Bergen V, Klein M, Setty M, Reuter B, Bakhti M, Lickert H, Ansari M, Schniering 
J, Schiller HB, et al. (2022). CellRank for directed single-cell fate mapping. Nat Methods 19, 
159–170. 10.1038/s41592-021-01346-6. [PubMed: 35027767] 

32. Gulati GS, Sikandar SS, Wesche DJ, Manjunath A, Bharadwaj A, Berger MJ, Ilagan F, Kuo AH, 
Hsieh RW, Cai S, et al. (2020). Single-cell transcriptional diversity is a hallmark of developmental 
potential. Science 367, 405–411. 10.1126/science.aax0249. [PubMed: 31974247] 

33. Jew B, Alvarez M, Rahmani E, Miao Z, Ko A, Garske KM, Sul JH, Pietiläinen KH, Pajukanta P, 
and Halperin E (2020). Accurate estimation of cell composition in bulk expression through robust 
integration of single-cell information. Nat. Commun 11, 1971. 10.1038/s41467-020-15816-6. 
[PubMed: 32332754] 

34. Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, Rambow F, 
Marine J-C, Geurts P, Aerts J, et al. (2017). SCENIC: single-cell regulatory network inference and 
clustering. Nat Methods 14, 1083–1086. 10.1038/nmeth.4463. [PubMed: 28991892] 

35. Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T, Shimada N, Ohba Y, Takaoka 
A, Yoshida N, et al. (2005). IRF-7 is the master regulator of type-I interferon-dependent immune 
responses. Nature 434, 772–777. 10.1038/nature03464. [PubMed: 15800576] 

36. Grubman A, Choo XY, Chew G, Ouyang JF, Sun G, Croft NP, Rossello FJ, Simmons R, Buckberry 
S, Landin DV, et al. (2021). Transcriptional signature in microglia associated with Aβ plaque 
phagocytosis. Nat Commun 12, 3015. 10.1038/s41467-021-23111-1. [PubMed: 34021136] 

37. Brioschi S, Belk JA, Peng V, Molgora M, Rodrigues PF, Nguyen KM, Wang S, Du S, 
Wang W-L, Grajales-Reyes GE, et al. (2023). A Cre-deleter specific for embryo-derived brain 
macrophages reveals distinct features of microglia and border macrophages. Immunity. 10.1016/
j.immuni.2023.01.028.

38. Wang C, Fan L, Khawaja RR, Liu B, Zhan L, Kodama L, Chin M, Li Y, Le D, Zhou Y, et al. 
(2022). Microglial NF-κB drives tau spreading and toxicity in a mouse model of tauopathy. Nat 
Commun 13, 1969. 10.1038/s41467-022-29552-6. [PubMed: 35413950] 

39. Liu T, Zhu B, Liu Y, Zhang X, Yin J, Li X, Jiang L, Hodges AP, Rosenthal SB, Zhou L, et al. 
(2020). Multi-omic comparison of Alzheimer’s variants in human ESC–derived microglia reveals 
convergence at APOE. J Exp Med 217, e20200474. 10.1084/jem.20200474. [PubMed: 32941599] 

40. Efremova M, Vento-Tormo M, Teichmann SA, and Vento-Tormo R (2020). CellPhoneDB: 
inferring cell–cell communication from combined expression of multi-subunit ligand–receptor 
complexes. Nat Protoc 15, 1484–1506. 10.1038/s41596-020-0292-x. [PubMed: 32103204] 

41. Maheshwari A, Janssens K, Bogie J, Haute CVD, Struys T, Lambrichts I, Baekelandt V, Stinissen 
P, Hendriks JJA, Slaets H, et al. (2013). Local Overexpression of Interleukin-11 in the Central 
Nervous System Limits Demyelination and Enhances Remyelination. Mediat Inflamm 2013, 
685317. 10.1155/2013/685317.

42. Alexaki VI, Fodelianaki G, Neuwirth A, Mund C, Kourgiantaki A, Ieronimaki E, Lyroni K, 
Troullinaki M, Fujii C, Kanczkowski W, et al. (2018). DHEA inhibits acute microglia-mediated 
inflammation through activation of the TrkA-Akt1/2-CREB-Jmjd3 pathway. Mol Psychiatr 23, 
1410–1420. 10.1038/mp.2017.167.

43. Mecha M, Yanguas-Casás N, Feliú A, Mestre L, Carrillo-Salinas F, Azcoitia I, Yong VW, and 
Guaza C (2019). The endocannabinoid 2-AG enhances spontaneous remyelination by targeting 
microglia. Brain Behav Immun 77, 110–126. 10.1016/j.bbi.2018.12.013. [PubMed: 30582962] 

44. Zhang D, Hu X, Qian L, Chen S-H, Zhou H, Wilson B, Miller DS, and Hong J-S (2011). 
Microglial MAC1 receptor and PI3K are essential in mediating β-amyloid peptide-induced 
microglial activation and subsequent neurotoxicity. J Neuroinflamm 8, 3. 10.1186/1742-2094-8-3.

Millet et al. Page 22

Immunity. Author manuscript; available in PMC 2024 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



45. Gao H-M, Zhou H, Zhang F, Wilson BC, Kam W, and Hong J-S (2011). HMGB1 acts on microglia 
Mac1 to mediate chronic neuroinflammation that drives progressive neurodegeneration. J Neurosci 
Official J Soc Neurosci 31, 1081–1092. 10.1523/jneurosci.3732-10.2011.

46. Hijioka M, Futokoro R, Ohto-Nakanishi T, Nakanishi H, Katsuki H, and Kitamura Y 
(2020). Microglia-released leukotriene B4 promotes neutrophil infiltration and microglial 
activation following intracerebral hemorrhage. Int Immunopharmacol 85, 106678. 10.1016/
j.intimp.2020.106678. [PubMed: 32544870] 

47. Spittau B, Dokalis N, and Prinz M (2020). The Role of TGFβ Signaling in Microglia Maturation 
and Activation. Trends Immunol 41, 836–848. 10.1016/j.it.2020.07.003. [PubMed: 32741652] 

48. Fansler MM, Zhen G, and Mayr C (2021). Quantification of alternative 3′UTR 
isoforms from single cell RNA-seq data with scUTRquant. Biorxiv, 2021.11.22.469635. 
10.1101/2021.11.22.469635.

49. Wagner A, Wang C, Fessler J, DeTomaso D, Avila-Pacheco J, Kaminski J, Zaghouani S, Christian 
E, Thakore P, Schellhaass B, et al. (2021). Metabolic modeling of single Th17 cells reveals 
regulators of autoimmunity. Cell 184, 4168–4185.e21. 10.1016/j.cell.2021.05.045. [PubMed: 
34216539] 

50. Stuart T, Srivastava A, Madad S, Lareau CA, and Satija R (2021). Single-cell chromatin state 
analysis with Signac. Nat Methods 18, 1333–1341. 10.1038/s41592-021-01282-5. [PubMed: 
34725479] 

51. Schep AN, Wu B, Buenrostro JD, and Greenleaf WJ (2017). chromVAR: inferring transcription-
factor-associated accessibility from single-cell epigenomic data. Nat Methods 14, 975–978. 
10.1038/nmeth.4401. [PubMed: 28825706] 

52. Lynch AW, Theodoris CV, Long HW, Brown M, Liu XS, and Meyer CA (2022). MIRA: joint 
regulatory modeling of multimodal expression and chromatin accessibility in single cells. Nat 
Methods 19, 1097–1108. 10.1038/s41592-022-01595-z. [PubMed: 36068320] 

53. González-Blas CB, Winter SD, Hulselmans G, Hecker N, Matetovici I, Christiaens V, Poovathingal 
S, Wouters J, Aibar S, and Aerts S (2023). SCENIC+: single-cell multiomic inference of enhancers 
and gene regulatory networks. Nat. Methods, 1–13. 10.1038/s41592-023-01938-4. [PubMed: 
36635552] 

54. Zhang W, Zhang X, Zhang Y, Qu C, Zhou X, and Zhang S (2020). Histamine Induces Microglia 
Activation and the Release of Proinflammatory Mediators in Rat Brain Via H1R or H4R. J 
Neuroimmune Pharm 15, 280–291. 10.1007/s11481-019-09887-6.

55. Ferreira R, Santos T, Gonçalves J, Baltazar G, Ferreira L, Agasse F, and Bernardino L (2012). 
Histamine modulates microglia function. J Neuroinflamm 9, 90. 10.1186/1742-2094-9-90.

56. Olah M, Menon V, Habib N, Taga MF, Ma Y, Yung CJ, Cimpean M, Khairallah A, Coronas-
Samano G, Sankowski R, et al. (2020). Single cell RNA sequencing of human microglia 
uncovers a subset associated with Alzheimer’s disease. Nat. Commun 11, 6129. 10.1038/
s41467-020-19737-2. [PubMed: 33257666] 

57. Blanchard JW, Akay LA, Davila-Velderrain J, Maydell D. von, Mathys H, Davidson SM, 
Effenberger A, Chen C-Y, Maner-Smith K, Hajjar I, et al. (2022). APOE4 impairs myelination via 
cholesterol dysregulation in oligodendrocytes. Nature 611, 769–779. 10.1038/s41586-022-05439-
w. [PubMed: 36385529] 

58. Mathys H, Davila-Velderrain J, Peng Z, Gao F, Mohammadi S, Young JZ, Menon M, He L, 
Abdurrob F, Jiang X, et al. (2019). Single-cell transcriptomic analysis of Alzheimer’s disease. 
Nature 570, 332–337. 10.1038/s41586-019-1195-2. [PubMed: 31042697] 

59. Morabito S, Miyoshi E, Michael N, Shahin S, Martini AC, Head E, Silva J, Leavy K, Perez-
Rosendahl M, and Swarup V (2021). Single-nucleus chromatin accessibility and transcriptomic 
characterization of Alzheimer’s disease. Nat Genet 53, 1143–1155. 10.1038/s41588-021-00894-z. 
[PubMed: 34239132] 

60. Lau S-F, Cao H, Fu AKY, and Ip NY (2020). Single-nucleus transcriptome analysis reveals 
dysregulation of angiogenic endothelial cells and neuroprotective glia in Alzheimer’s disease. P 
Natl Acad Sci Usa 117, 25800–25809. 10.1073/pnas.2008762117.

Millet et al. Page 23

Immunity. Author manuscript; available in PMC 2024 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



61. Leng K, Li E, Eser R, Piergies A, Sit R, Tan M, Neff N, Li SH, Rodriguez RD, Suemoto CK, et al. 
(2021). Molecular characterization of selectively vulnerable neurons in Alzheimer’s disease. Nat 
Neurosci 24, 276–287. 10.1038/s41593-020-00764-7. [PubMed: 33432193] 

62. Grubman A, Chew G, Ouyang JF, Sun G, Choo XY, McLean C, Simmons RK, Buckberry S, 
Vargas-Landin DB, Poppe D, et al. (2019). A single-cell atlas of entorhinal cortex from individuals 
with Alzheimer’s disease reveals cell-type-specific gene expression regulation. Nat Neurosci 22, 
2087–2097. 10.1038/s41593-019-0539-4. [PubMed: 31768052] 

63. Gabitto MI, Travaglini KJ, Rachleff VM, Kaplan ES, Long B, Ariza J, Ding Y, Mahoney JT, 
Dee N, Goldy J, et al. (2023). Integrated multimodal cell atlas of Alzheimer’s disease. bioRxiv, 
2023.05.08.539485. 10.1101/2023.05.08.539485.

64. Green GS, Fujita M, Yang H-S, Taga M, McCabe C, Cain A, White CC, Schmidtner AK, Zeng 
L, Wang Y, et al. (2023). Cellular dynamics across aged human brains uncover a multicellular 
cascade leading to Alzheimer’s disease. bioRxiv, 2023.03.07.531493. 10.1101/2023.03.07.531493.

65. Cain A, Taga M, McCabe C, Green GS, Hekselman I, White CC, Lee DI, Gaur P, Rozenblatt-
Rosen O, Zhang F, et al. (2023). Multicellular communities are perturbed in the aging human brain 
and Alzheimer’s disease. Nat. Neurosci 26, 1267–1280. 10.1038/s41593-023-01356-x. [PubMed: 
37336975] 

66. Prater KE, Green KJ, Mamde S, Sun W, Cochoit A, Smith CL, Chiou KL, Heath L, Rose SE, 
Wiley J, et al. (2023). Human microglia show unique transcriptional changes in Alzheimer’s 
disease. Nat. Aging 3, 894–907. 10.1038/s43587-023-00424-y. [PubMed: 37248328] 

67. Consortium T.T.M., Almanzar N, Antony J, Baghel AS, Bakerman I, Bansal I, Barres BA, Beachy 
PA, Berdnik D, Bilen B, et al. (2020). A single-cell transcriptomic atlas characterizes ageing 
tissues in the mouse. Nature 583, 590–595. 10.1038/s41586-020-2496-1. [PubMed: 32669714] 

68. Palla G, Spitzer H, Klein M, Fischer D, Schaar AC, Kuemmerle LB, Rybakov S, Ibarra IL, 
Holmberg O, Virshup I, et al. (2022). Squidpy: a scalable framework for spatial omics analysis. 
Nat. Methods 19, 171–178. 10.1038/s41592-021-01358-2. [PubMed: 35102346] 

69. Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M, Dunstan R, Salloway S, Chen 
T, Ling Y, et al. (2016). The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. 
Nature 537, 50–56. 10.1038/nature19323. [PubMed: 27582220] 

70. Haeberlein SB, Aisen PS, Barkhof F, Chalkias S, Chen T, Cohen S, Dent G, Hansson O, Harrison 
K, Hehn C. von, et al. (2022). Two Randomized Phase 3 Studies of Aducanumab in Early 
Alzheimer’s Disease. J. Prev. Alzheimer’s Dis 9, 197–210. 10.14283/jpad.2022.30. [PubMed: 
35542991] 

71. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan C-H, Myung P, Plikus MV, and Nie 
Q (2021). Inference and analysis of cell-cell communication using CellChat. Nat. Commun 12, 
1088. 10.1038/s41467-021-21246-9. [PubMed: 33597522] 

72. Owlett LD, Karaahmet B, Le L, Belcher EK, Dionisio-Santos D, Olschowka JA, Elliott 
MR, and O’Banion MK (2022). Gas6 induces inflammation and reduces plaque burden but 
worsens behavior in a sex-dependent manner in the APP/PS1 model of Alzheimer’s disease. J. 
Neuroinflammation 19, 38. 10.1186/s12974-022-02397-y. [PubMed: 35130912] 

73. Pluvinage JV, Haney MS, Smith BAH, Sun J, Iram T, Bonanno L, Li L, Lee DP, Morgens DW, 
Yang AC, et al. (2019). CD22 blockade restores homeostatic microglial phagocytosis in aging 
brains. Nature 568, 187–192. 10.1038/s41586-019-1088-4. [PubMed: 30944478] 

74. Matyash M, Zabiegalov O, Wendt S, Matyash V, and Kettenmann H (2017). The adenosine 
generating enzymes CD39/CD73 control microglial processes ramification in the mouse brain. 
PLoS ONE 12, e0175012. 10.1371/journal.pone.0175012. [PubMed: 28376099] 

75. Elmore MRP, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA, Kitazawa M, 
Matusow B, Nguyen H, West BL, et al. (2014). Colony-Stimulating Factor 1 Receptor Signaling 
Is Necessary for Microglia Viability, Unmasking a Microglia Progenitor Cell in the Adult Brain. 
Neuron 82, 380–397. 10.1016/j.neuron.2014.02.040. [PubMed: 24742461] 

76. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, 
Mandell JW, Lee KS, et al. (2015). Structural and functional features of central nervous system 
lymphatic vessels. Nature 523, 337–341. 10.1038/nature14432. [PubMed: 26030524] 

Millet et al. Page 24

Immunity. Author manuscript; available in PMC 2024 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



77. Mesquita SD, Louveau A, Vaccari A, Smirnov I, Cornelison RC, Kingsmore KM, Contarino C, 
Onengut-Gumuscu S, Farber E, Raper D, et al. (2018). Functional aspects of meningeal lymphatics 
in aging and Alzheimer’s disease. Nature 560, 185–191. 10.1038/s41586-018-0368-8. [PubMed: 
30046111] 

78. Schafflick D, Wolbert J, Heming M, Thomas C, Hartlehnert M, Börsch A-L, Ricci A, Martín-
Salamanca S, Li X, Lu I-N, et al. (2021). Single-cell profiling of CNS border compartment 
leukocytes reveals that B cells and their progenitors reside in non-diseased meninges. Nat. 
Neurosci 24, 1225–1234. 10.1038/s41593-021-00880-y. [PubMed: 34253922] 

79. Ma R-Y, Black A, and Qian B-Z (2022). Macrophage diversity in cancer revisited in the era of 
single-cell omics. Trends Immunol 43, 546–563. 10.1016/j.it.2022.04.008. [PubMed: 35690521] 

80. Marsh SE, Walker AJ, Kamath T, Dissing-Olesen L, Hammond TR, Soysa T.Y. de, Young AMH, 
Murphy S, Abdulraouf A, Nadaf N, et al. (2022). Dissection of artifactual and confounding 
glial signatures by single-cell sequencing of mouse and human brain. Nat Neurosci 25, 306–316. 
10.1038/s41593-022-01022-8. [PubMed: 35260865] 

81. Hu Y, Fryatt GL, Ghorbani M, Obst J, Menassa DA, Martin-Estebane M, Muntslag TAO, Olmos-
Alonso A, Guerrero-Carrasco M, Thomas D, et al. (2021). Replicative senescence dictates the 
emergence of disease-associated microglia and contributes to Aβ pathology. Cell Reports 35, 
109228. 10.1016/j.celrep.2021.109228. [PubMed: 34107254] 

82. Kummer MP, Ising C, Kummer C, Sarlus H, Griep A, Vieira‐Saecker A, Schwartz S, Halle 
A, Brückner M, Händler K, et al. (2021). Microglial PD‐1 stimulation by astrocytic PD‐L1 
suppresses neuroinflammation and Alzheimer’s disease pathology. Embo J 40, e108662. 10.15252/
embj.2021108662. [PubMed: 34825707] 

83. Spangenberg E, Severson PL, Hohsfield LA, Crapser J, Zhang J, Burton EA, Zhang Y, Spevak 
W, Lin J, Phan NY, et al. (2019). Sustained microglial depletion with CSF1R inhibitor impairs 
parenchymal plaque development in an Alzheimer’s disease model. Nat Commun 10, 3758. 
10.1038/s41467-019-11674-z. [PubMed: 31434879] 

84. Sando SB, Melquist S, Cannon A, Hutton ML, Sletvold O, Saltvedt I, White LR, Lydersen S, and 
Aasly JO (2008). APOE ε4 lowers age at onset and is a high risk factor for Alzheimer’s disease; 
A case control study from central Norway. Bmc Neurol 8, 9. 10.1186/1471-2377-8-9. [PubMed: 
18416843] 

85. Seshadri S, Wolf PA, Beiser A, Au R, McNulty K, White R, and D’Agostino RB (1997). Lifetime 
risk of dementia and Alzheimer’s disease: The impact of mortality on risk estimates in the 
Framingham Study. Neurology 49, 1498–1504. 10.1212/wnl.49.6.1498. [PubMed: 9409336] 

86. Coales I, Tsartsalis S, Fancy N, Weinert M, Clode D, Owen D, and Matthews PM (2022). 
Alzheimer’s disease-related transcriptional sex differences in myeloid cells. J. Neuroinflammation 
19, 247. 10.1186/s12974-022-02604-w. [PubMed: 36199077] 

87. Klein SL, and Flanagan KL (2016). Sex differences in immune responses. Nat. Rev. Immunol 16, 
626–638. 10.1038/nri.2016.90. [PubMed: 27546235] 

88. Xiong J, Kang SS, Wang Z, Liu X, Kuo T-C, Korkmaz F, Padilla A, Miyashita S, Chan P, Zhang 
Z, et al. (2022). FSH blockade improves cognition in mice with Alzheimer’s disease. Nature 603, 
470–476. 10.1038/s41586-022-04463-0. [PubMed: 35236988] 

89. Eyting M, Xie M, Heß S, Heß S, and Geldsetzer P (2023). Causal evidence that herpes 
zoster vaccination prevents a proportion of dementia cases. medRxiv, 2023.05.23.23290253. 
10.1101/2023.05.23.23290253.

90. Neu SC, Pa J, Kukull W, Beekly D, Kuzma A, Gangadharan P, Wang L-S, Romero K, Arneric SP, 
Redolfi A, et al. (2017). Apolipoprotein E Genotype and Sex Risk Factors for Alzheimer Disease: 
A Meta-analysis. JAMA Neurol. 74, 1178–1189. 10.1001/jamaneurol.2017.2188. [PubMed: 
28846757] 

91. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ, and Ahmed R 
(2006). Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 
682–687. 10.1038/nature04444. [PubMed: 16382236] 

92. Leach DR, Krummel MF, and Allison JP (1996). Enhancement of Antitumor Immunity by 
CTLA-4 Blockade. Science 271, 1734–1736. 10.1126/science.271.5256.1734. [PubMed: 8596936] 

Millet et al. Page 25

Immunity. Author manuscript; available in PMC 2024 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



93. Ledo JH, Zhang R, Mesin L, Mourão-Sá D, Azevedo EP, Troyanskaya OG, Bustos V, 
and Greengard P (2020). Lack of a site-specific phosphorylation of Presenilin 1 disrupts 
microglial gene networks and progenitors during development. Plos One 15, e0237773. 10.1371/
journal.pone.0237773. [PubMed: 32822378] 

94. Mass E, Jacome-Galarza CE, Blank T, Lazarov T, Durham BH, Ozkaya N, Pastore A, 
Schwabenland M, Chung YR, Rosenblum MK, et al. (2017). A somatic mutation in 
erythro-myeloid progenitors causes neurodegenerative disease. Nature 549, 389–393. 10.1038/
nature23672. [PubMed: 28854169] 

95. Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR, Lafaille JJ, Hempstead BL, Littman DR, and 
Gan W-B (2013). Microglia promote learning-dependent synapse formation through brain-derived 
neurotrophic factor. Cell 155, 1596–1609. 10.1016/j.cell.2013.11.030. [PubMed: 24360280] 

96. Garré JM, Silva HM, Lafaille JJ, and Yang G (2017). CX3CR1+ monocytes modulate learning 
and learning-dependent dendritic spine remodeling via TNF-α. Nat Med 23, 714–722. 10.1038/
nm.4340. [PubMed: 28504723] 

97. Stoeckius M, Zheng S, Houck-Loomis B, Hao S, Yeung BZ, Mauck WM, Smibert P, and Satija 
R (2018). Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for 
single cell genomics. Genome Biol 19, 224. 10.1186/s13059-018-1603-1. [PubMed: 30567574] 

98. Patro R, Duggal G, Love MI, Irizarry RA, and Kingsford C (2017). Salmon provides fast and bias-
aware quantification of transcript expression. Nat. Methods 14, 417–419. 10.1038/nmeth.4197. 
[PubMed: 28263959] 

99. Sadeghi HM, Sabzghabaee AM, Mousavian Z, Saadatnia M, Shirani S, and Moazen F (2011). 
Polymorphism of Apo lipoprotein E gene and the risk of multiple sclerosis. J. Res. Méd. Sci. : Off. 
J. Isfahan Univ. Méd. Sci 16, 1519–1524.

100. Ledo JH, Liebmann T, Zhang R, Chang JC, Azevedo EP, Wong E, Silva HM, Troyanskaya OG, 
Bustos V, and Greengard P (2020). Presenilin 1 phosphorylation regulates amyloid-β degradation 
by microglia. Mol Psychiatr, 1–16. 10.1038/s41380-020-0856-8.

101. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby 
C, Zager M, et al. (2021). Integrated analysis of multimodal single-cell data. Cell 184, 3573–
3587.e29. 10.1016/j.cell.2021.04.048. [PubMed: 34062119] 

102. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, 
Brown M, Li W, et al. (2008). Model-based Analysis of ChIP-Seq (MACS). Genome Biol. 9, 
R137. 10.1186/gb-2008-9-9-r137. [PubMed: 18798982] 

103. Bergen V, Lange M, Peidli S, Wolf FA, and Theis FJ (2020). Generalizing RNA velocity 
to transient cell states through dynamical modeling. Nat. Biotechnol 38, 1408–1414. 10.1038/
s41587-020-0591-3. [PubMed: 32747759] 

Millet et al. Page 26

Immunity. Author manuscript; available in PMC 2024 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: The age- and APOE isoform-dependent AD neuroimmune atlas.
(A) Schematic of the workflow used to generate the atlas, generated from n = 3–6 animals 

per age and genotype. (B) UMAP of all cells in the atlas. (C) Subclustering and UMAP 

of microglia only. (D) 2D density plots overlaid on the microglial UMAP showing cell 

distributions at 10, 20, and 96 weeks of age. (E) Volcano plot of differentially expressed 

genes between TIMs and non-TIM microglia. The B-statistic is the log-odds that a gene is 

differentially expressed. Statistics were calculated using voom normalization and empirical 

Bayesian estimation through the limma package. (F) CellRank-calculated velocity streams 

on data from 20wk- and 96wk-year-old mice. Streams were estimated by a custom kernel 

based on splicing dynamics, connectivity, and CytoTRACE. Cells are embedded on the same 

UMAP manifold as in (C). (G) Stacked barplot of TIM subpopulations in the atlas from 

AD*APOE3 and AD*APOE4 animals at 96 weeks of age. (H) Boxplots of the proportion 

of effector-lo and effector-hi TIMs in bulk sequencing samples of 60-week-old AD*APOE 
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animals, estimated by in silico decomposition with the atlas as a reference. Significance 

evaluated by Welch’s t-test.
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Figure 2: TIMs are defined by a unique transcriptional program, interactome, and metabolic 
state.
(A) Heatmap of SCENIC-derived regulons per cluster, filtered to most highly variable 

transcription factors. (B) Lollipop plot of differentially enriched SCENIC-derived regulons 

between TIMs and all non-TIM microglia. Positive values indicate increased strength in 

TIMs. (C) Same as (B) but comparing effector-lo TIMs to effector-hi TIMs. Positive values 

indicate increased strength in effector-lo TIMs. (D) CellPhoneDB scores for ligand:receptor 

complexes, comparing TIMs and homeostatic microglia. (E) Same as (D) but comparing 

TIMs and DAMs. (F) Circos plot of the atlas interactome. Size of outermost bars represents 

number of interactions, divided into cluster-by-other and other-by-cluster. (G) Barplot 

showing the total number of interactions predicted to be made by each cluster. Superclusters 

follow the same division as in (F). Bars are means ± standard error, significance evaluated 

by Welch’s t-test. (H) Dot plot of the Cohen’s d of Compass scores for metabolic pathways, 

comparing TIMs to non-TIM microglia. Each point represents a reaction within the larger 
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subsystem; subsystems are sorted by median enrichment value. Medians are indicated by 

crossed points.
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Figure 3: Multiome sequencing of AD*APOE4 mice at 60 weeks of age nominates regulatory 
features of TIMs.
(A) Joint UMAP of RNA and ATAC features from the multiome library. (B) Volcano plot 

of chromVAR motif accessibility between TIMs and DAM-2 cells. (C) Scores for two topics 

derived from latent Dirichlet allocation of ATAC features and their associated transcription 

factors. (D) Heatmap of eRegulon enrichment and expression across microglial clusters. 

(E) Perturbation simulation plots ablating Fos and Nkfb2. Expression of the respective 

transcription factor was set to 0 and the gene regulatory networks were re-initialized to 

generate new expression profiles for each cell. Cells are projected in a PCA space defined 

by the gene regulatory net. Arrow shade indicates the magnitude of the transition flow. (F) 

Circos plot of the multiome dataset interactome. Size of outermost bars represents number 

of interactions, divided into cluster-by-other and other-by-cluster. (G) CellPhoneDB scores 

for ligand:receptor complexes, comparing TIMs and DAMs. Points are colored by whether 

the complex was also found to be differentially enriched in the atlas. (H) Dot plot of the 
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Cohen’s d of Compass scores for metabolic pathways, comparing TIMs to DAM-2s. Each 

point represents a reaction within the larger subsystem; subsystems are sorted by median 

enrichment value. Medians are indicated by crossed points.
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Figure 4: TIMs are detected in publicly available human snRNAseq datasets.
(A) UMAP projection of microglia from ten publicly available human snRNAseq datasets 

after anchor integration onto the data acquired in this study. (B) Barplot of TIM frequency 

in each dataset. (C) Boxplot of TIM frequency in data projected from Lau, 2020, grouped 

by disease state. Significance evaluated by Welch’s t-test. (D) Boxplot of TIM frequency 

in data projected from Leng, 2021, grouped by Braak stage, a measure of disease severity. 

Significance evaluated by Welch’s t-test. (E) Boxplot of TIM frequency in data projected 

from Blanchard, 2022, grouped by either amyloid-β burden or by presence of an APOE4 
allele. Significance evaluated by Welch’s t-test. (F) Boxplot of TIM frequency in data 

projected from the Seattle AD Brain Atlas, grouped by post-mortem interval. Significance 

evaluated by Kruskal-Wallis test. (G) Multiple linear regression of TIM frequency by 

metadata provided in the second ROSMAP dorsolateral prefrontal cortex (n = 465).
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Figure 5: TIMs are enriched in the cortical layers of human AD patients bearing ApoE4.
(A) Spatial scatter plot of cell annotations in two representative sections out of the six 

subjected to Xenium analysis. At left is the full section, at right is a zoomed inset of 

the indicated region. TIMs are marked by larger point sizes in the zoomed inset for 

clarity. (B) Barplot of the fraction of microglia from each genotype annotated as a TIM. 

(C) Smoothed trendlines of the increased likelihood of finding a given cell type within a 

circle of the indicated radius centered on a TIM compared to over base expectation. Only 

the top four most enriched clusters are shown. (D) Barbell plot showing the increased 

likelihood of finding a given cell type within a circle of the indicated radius centered on 

a TIM compared to base expectation, separated by genotype. Significance evaluated by 

Welch’s t-test. Clusters are colored by which genotype shows higher enrichment around 

TIMs. (E) Representative fluorescence micrographs of cortical tissue sections from APOE3 

and APOE4 donors after post-Xenium staining with methoxy-X04 (a stain for Aβ) and 

accompanying annotations from Xenium data. TIMs are marked by larger point sizes in the 
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Xenium annotations for clarity. Circled regions indicate areas of high overlap between TIMs 

and Aβ plaques.

Millet et al. Page 35

Immunity. Author manuscript; available in PMC 2024 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6: TIMs are functionally impaired in capacity for amyloid-β clearance.
(A) Schematic of the experimental strategy to characterize microglial capacity for ex vivo 
Aβ uptake. (B) UMAP generated from all cells sequenced after the Aβ uptake experiment. 

(C) Joint subclustering UMAP of all microglial cells in the dataset and 2D density plots 

overlaid on the microglial UMAP showing cell distributions from the high uptake and 

low uptake populations. TIM clusters are outlined in red. Note that TIMs, and particularly 

effector-lo TIMs, are depleted in the high uptake fraction. (D) Barplot of the fraction of cells 

from each genotype and cluster in the high uptake pool and dotplot showing the fraction of 

cells from each genotype in the given cluster. Degree of over- or underrepresentation in the 

high uptake pool was evaluated using a chi-square test on the null expectation of an even 

split. P-values are reported at the α = 0.05 threshold.
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Figure 7: Aducanumab treatment profoundly alters the landscape of immune cells in the AD 
milieu.
(A) UMAP of all cells from the unified aducanumab dataset. (B) Joint subclustering UMAP 

of all microglial cells in the dataset and 2D density plots overlaid on the microglial 

UMAP showing cell distributions from the aducanumab-treated and isotype control-treated 

populations. TIM clusters are outlined in red. (C) Barplot of the frequency of microglial 

clusters in aducanumab-treated and isotype control-treated populations. (D) Barplot of the 

number of predicted interactions and the mean predicted interaction strength from each 

of the six samples in the aducanumab dataset, as estimated by CellChat. (E) Stacked 

barplot showing the total information flow predicted by CellChat through each signaling 

pathway. (F) Lollipop plot showing pathways with highest differential regulation between 

aducanumab-treated and isotype control-treated samples in each genotype, quantified by 

Euclidean distance on the joint functional similarity manifold produced by CellChat 

embedding. (G) Dotplot of differentially enriched signaling pathways in Cd8 T cells 
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between AD*APOE2 and AD*APOE4 aducanumab-treated animals by both incoming and 

outgoing signal strength. Pathways are color- and shape-coded by directionality and sample 

specificity. Positive numbers indicate a greater strength in AD*APOE4. (H) Heatmap 

showing the mean difference in incoming and outgoing signaling between aducanumab-

treated and isotype control-treated animals. Positive numbers indicate a greater strength in 

aducanumab-treated animals. Note that the strongest increases in outgoing signaling are in 

inflammatory microglia and especially in effector-hi TIMs.
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Key Resources Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

TruStain FcX BioLegend Cat#101319

Alexa Fluor® 700 anti-mouse CD45 Antibody BioLegend Cat#103127

TotalSeq™-C0302 anti-mouse Hashtag 2 Antibody BioLegend Cat#155863

TotalSeq™-C0303 anti-mouse Hashtag 3 Antibody BioLegend Cat#155865

TotalSeq™-C0304 anti-mouse Hashtag 4 Antibody BioLegend Cat#155867

TotalSeq™-C0305 anti-mouse Hashtag 5 Antibody BioLegend Cat#155869

TotalSeq™-C0306 anti-mouse Hashtag 6 Antibody BioLegend Cat#155871

TotalSeq™-C0308 anti-mouse Hashtag 8 Antibody BioLegend Cat#155875

Biological Samples

Brain sections from postmortem human AD donors This paper N/A

Chemicals, Peptides, and Recombinant Proteins

Collagenase D Roche Cat#11088858001

Percoll Sigma Cat#P1644-100ML

DAPI Sigma Cat#D8417-1MG

40um Strainer Flowmi Cat#BAH136800040-50EA

Aducanumab Cardinal Health Cat#64406-0101-01

Human IgG Isotype Control Invitrogen Cat#02-7102

Sigma Protector RNase Inhibitor Sigma Cat#3335402001

Buffer RLT QIAGEN Cat#79216

AflII New England Biolabs Cat#R0520S

HaeII New England Biolabs Cat#R0107S

Human Brain Gene Expression Panel 10X Genomics Cat#1000599

Methoxy-X04 Tocris Bioscience Cat#4920

SYTOX Green ThermoFischer Cat#S7020

Aβ 1-42, HiLexa™ Fluor 488-labeled Anaspec Cat#AS-65627

Critical Commercial Assays

RNeasy Micro Kit QIAGEN Cat#74004

SMART-Seq v4 Low Input Kit Takara Bio Cat#634894

E.Z. 96 Tissue DNA Kit Omega Bio-Tek Cat#D1196-00

Deposited Data

Raw data, Cell Ranger outputs, and processed Seurat and Signac 
structures for atlas and multiome dataset

This paper GSE225503

Raw data, Cell Ranger outputs, and processed Seurat and structures 
for aducanumab experiments

This paper GSE239975

Raw data, Cell Ranger outputs, and processed Seurat and structures 
for Aβ uptake experiments

This paper GSE239974

Raw data and counts matrices from bulk sequencing of aged 
AD*APOE mice

This paper GSE239977
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REAGENT or RESOURCE SOURCE IDENTIFIER

Xenium raw data, processed Squidpy structure, and full-slide scans 
from methoxy-X04 imaging

This paper 10.5281/zenodo.8206638

Data from Blanchard et al.57 Synapse syn38120890

Data from Mathys et al.58 Synapse syn18485175

Data from Morabito et al.59 Synapse syn22079621

Data from Lau et al.60 GEO GSE157827

Data from Leng et al.61 Synapse syn21788402

Data from Grubman et al.62 GEO GSE138852

Data from Gabitto et al.63 brain-map.org UMSVXTDIAZTAFKGE43T

Data from Prater et al.66 Synapse syn51272688

ROSMAP DLPFC-1 (Data from Green et al.)64 Synapse syn16780177

ROSMAP DLPFC-2 (Data from Cain et al.)65 Synapse syn31512863

Experimental Models: Organisms/Strains

C57BL/6 Jackson Laboratory Cat#000664

5×FAD Jackson Laboratory Cat#34840

B6.129P2-Apoetm1(APOE*2)Mae N9 Taconic Biosciences Cat#1547

B6.129P2-Apoetm2(APOE*3)Mae N8 Taconic Biosciences Cat#1548

B6.129P2-Apoetm3(APOE*4)Mae N8 Taconic Biosciences Cat#1549

Oligonucleotides

APOE F: ACAGAATTCGCCCCGGCCTGGTACAC IDT N/A

APOE R: TAAGCTTGGCACGGCTGTCCAAGGA IDT N/A

Software and Algorithms

Analysis scripts This paper https://github.com/alonmillet/apoe-ad-
age-atlas

R 4.1 R Foundation for Statistical 
Computing

RRID:SCR_001905

Python 3.7 Python Software 
Foundation

RRID:SCR_008394

FlowJo Tree Star RRID:SCR_008520

ILOG CPLEX Optimization Studio IBM N/A

CellRanger 10X Genomics RRID:SCR_023221

Seurat Hao et al.101 RRID:SCR_007322

miQC Hippen et al.28 RRID:SCR_022697

MACS2 Zhang et al.102 RRID:SCR_013291

Squidpy Palla et al.68 N/A

kb-python Melsted et al.30 RRID:SCR_018213

scVelo Bergen et al.103 RRID:SCR_018168

CellRank Lange et al.31 RRID:SCR_022827

CytoTRACE Gulati et al.32 RRID:SCR_022828

CellPhoneDB Efremova et al.40 RRID:SCR_017054
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REAGENT or RESOURCE SOURCE IDENTIFIER

CellChat Jin et al.71 RRID:SCR_021946

SCENIC Aibar et al.34 RRID:SCR_017247

SCENIC+ González-Blas et al.53 N/A

MIRA Lynch et al.52 N/A

Bisque Jew et al.33 N/A

Salmon Patro et al.98 RRID:SCR_017036

Compass Wagner et al.49 N/A
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