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Abstract

Background: Therapeutic agents that specifically target patients with RAS mutant

colorectal cancer (CRC) are needed. We sought potential drug targets by relating

genome-wide association study and survival data in patients with advanced CRC pro-

filed for mitogen-activated protein kinase (MAPK) pathway mutations.

Methods: In total, 694 patients from the clinical trials COIN and COIN-B had MAPK-

activated CRCs (assigned as KRAS, NRAS, or BRAF mutant). Genome-wide single

nucleotide polymorphism (SNP), gene, and gene-set analyses were performed to

identify determinants of survival. For rs12028023 in RAS protein activator-like

2 (RASAL2), we studied its effect by MAPK pathway activation status (by comparing

to 760 patients without MAPK-activated CRCs), MAPK gene mutation status, surface

area of the primary tumor (as a marker of proliferation), and expression on RASAL2.

Results: In MAGMA genome-wide analyses, RASAL2 was the most significant gene

associated with survival (p = 2.0 � 10�5). Patients carrying the minor (A) allele in the

lead SNP, rs12028023 in intron 1 of RASAL2, had a median increase in survival of

167 days as compared with patients carrying the major allele. rs12028023 was pre-

dictive for survival by MAPK-activation status (pZ-test = 2.1 � 10�3). Furthermore,

rs12028023 improved survival in patients with RAS mutant (hazard ratio

[HR] = 0.62, 95% confidence intervals [CI] = 0.5–0.8, p = 3.4 � 10�5) but not BRAF

mutant (p = 0.87) CRCs. The rs12028023 A-allele was associated with reduced

surface area of the primary tumor (Beta = �0.037, standard error [SE] = 0.017,

p = 3.2 � 10�2) and reduced RASAL2 expression in cultured fibroblasts

(p = 1.6 � 10�11).

Conclusion: Our data demonstrate a prognostic role for RASAL2 in patients with

MAPK-activated CRCs, with potential as a therapeutic target.
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1 | INTRODUCTION

Monoclonal antibodies against the epidermal growth factor receptor,

such as cetuximab, have shown benefit in KRAS and, KRAS and NRAS

(RAS), wild-type advanced colorectal cancer (CRC) when either used

as a monotherapy1,2 or in combination with chemotherapy.3–5 In con-

trast, targeted treatments for patients with RAS mutant disease are

only just emerging.6,7 Given that around half of all CRCs are RAS

mutant, this represents a clear unmet clinical need. AMG 510 (Sotora-

sib), an inhibitor of KRAS G12C, traps mutant KRAS in its inactive

GDP-bound state8 and has shown effectiveness in a Phase 2 trial of

nonsmall-cell lung cancer.9 MRTX849 (Adagrasib) also binds KRAS

G12C and inhibits intercellular signaling,10 and has shown promising

efficacy in patients with colorectal, nonsmall-cell lung, endometrial,

pancreatic, and ovarian cancers.11 However, both treatments are only

effective in cancers harboring G12C, which occurs in just 1–3% of

CRCs. Identifying drug targets for improved survival in patients with

RAS mutant CRCs therefore remains challenging.

RAS protein activator-like 2 (RASAL2) encodes a RAS GTPase-

activating protein (GAP), which negatively regulates the RAS signaling

pathway by converting RAS-GTP to RAS-GDP.12 RASAL2 was identi-

fied as a tumor suppressor in prostate cancer13 and its inactivation

promotes progression and metastasis in colorectal,14 lung,15 ovarian16

and luminal B breast17 cancers. However, RASAL2 has also shown

pro-oncogenic roles in triple-negative breast18 and hepatocellular19

cancers. Furthermore, RASAL2 is upregulated in metastatic CRCs with

higher expression associated with lymph node involvement and dis-

tant metastasis.12 Knockdown of RASAL2 in multiple CRC cell lines

decreases cell proliferation, anchorage-dependent and -independent

growth, cell invasion, and migration,12 and may represent a potential

candidate for targeted therapy.

Relating germline variation to outcome in patients with RAS

mutant cancers offers the prospect of identifying novel therapeutic

targets. To explore this possibility, we analyzed genome-wide associa-

tion study (GWAS) and survival data on 1589 patients with advanced

CRC from the clinical trials COIN20 and COIN-B.21 Patients' tumors

were profiled for mutations in the mitogen-activated protein kinase

(MAPK) and Akt pathways, to help stratify our survival analyses by

MAPK pathway activation status.

2 | MATERIALS AND METHODS

2.1 | Patients and samples

In total, 2671 unrelated patients with metastatic or locally advanced

CRC were recruited into the MRC clinical trials COIN (NCT00182715)20

and COIN-B (NCT00640081)21 and treated with oxaliplatin and

F IGURE 1 Flow diagram of
patients with mitogen-activated
protein kinase (MAPK)-activated
colorectal cancers (CRCs). Of the
1948 patients with germline
genotyping and survival data,
694 had MAPK-activated tumors
without somatic PIK3CA
mutations (no Akt activation) or
microsatellite instability and had
covariate data. Nine patients had
CRCs with two MAPK-activating
mutations (eight with KRAS and
NRAS mutations and one with
KRAS and BRAF mutations). In
total, 760 patients did not have
MAPK-activated tumors, defined
as KRAS, NRAS, and BRAF
wild-type.
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TABLE 1 Clinicopathological features of patients with and without MAPK-activated tumors.

Clinicopathological factor

Patients with MAPK-activated

CRCs (n = 694)

Patients without MAPK-activated

CRCs (n = 760)

p-Valuen % n %

Sex

2.2 � 10�3Male 436 62.8 535 70.4

Female 258 37.2 225 29.6

Age

—Median (years) 64 — 64 —

Response at 12-weeks

1.9 � 10�11

Responders 295 50.2 452 69.0

Nonresponders 293 49.8 203 31.0

No data 106 105

Overall survival

2.6 � 10�13Median (95% CI; days) 433 (397–465) — 611 (569–659) —

WHO performance status

4.7 � 10�2

0 330 47.6 356 46.8

1 301 43.4 359 47.2

2 63 9.1 45 6

Site of primary tumor

2.1 � 10�12

Left colon 137 19.7 235 30.9

Right colon 233 33.6 127 16.7

Rectosigmoid junction 94 13.5 133 17.5

Rectum 219 31.6 253 33.3

Unknown colon 3 0.4 2 0.3

Multiple sites 8 1.2 10 1.3

Status of primary tumor

0.19
Resected 400 57.6 411 54.1

Unresected 294 42.4 349 45.9

Stage

1

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 694 100 760 100

Timing of metastases

0.44
Metachronous 206 29.7 241 31.7

Synchronous 488 70.3 519 68.3

Type of metastases

2.3 � 10�4

Liver only 120 17.3 199 26.2

Liver + others 394 56.8 386 50.8

Nonlivera 180 25.9 175 23

Number of metastatic sites

1 220 31.7 290 38.2

5.9 � 10�32 275 39.6 301 39.6

≥3 199 28.7 169 22.2

MAPK activated 694 100 0 0 —

Mutation status

KRAS mutation 521 75.1 0 0 —
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fluoropyrimidine chemotherapy, with or without cetuximab. Patients

were combined for survival analyses since there was no evidence of het-

erogeneity in overall survival (OS; time from trial randomization to death

or end of trial) between patients when analyzed by trial, trial arm, type of

chemotherapy received, or cetuximab use.22 Assessment of response

was performed at 12 weeks; response was defined as complete or partial

response using RECIST 1.0 guidelines and no response was defined as

stable or progressive disease.

2.2 | Germline genotyping

DNA was extracted from blood samples from 2244 patients by con-

ventional methods and genotyped using Affymetrix Axiom Arrays.23

After quality control (QC), genotype data were available on 1950

patients. Prediction of untyped single nucleotide polymorphisms

(SNPs) was carried out using IMPUTE2 v2.3.024 based on data from

the 1000 Genomes Project as reference.25,26 Discordant sex, indi-

vidual and SNP missingness, heterozygosity, relatedness, principal

component analysis (PCA), minor allele frequency (MAF), and

Hardy–Weinberg Equilibrium (HWE) QC steps were performed as

previously described.22 In brief, we excluded SNPs with MAFs

<5%, poor imputation scores (INFO score <0.8), missingness >0.02,

or HWE exact test p < 1.0 � 10�6. Survival data were missing on

two patients, leaving 1948 for analysis.

2.3 | Somatic genotyping

Tumor samples were not available, or were of insufficient quantity, in

301 of the 1948 patients. DNA was extracted from formalin-fixed

paraffin embedded CRC for the remaining 1647 patients and screened

for KRAS (codons 12, 13, and 61), NRAS (codons 12 and 61), BRAF

(codons 594 and 600) and PIK3CA (codons 542, 545, 546, and 1047)

mutations using Pyrosequencing and Sequenom technologies.27

Microsatellite instability (MSI) status in tumors was determined using

the markers BAT-25 and BAT-26. Overall, KRAS mutations (G12A,

G12D, G12V, G12C, G12R, G12S, G13C, G13D, G13S, G13R, Q61H,

Q61L, Q61R, and four remained uncharacterized) were identified in

637/1589 (40.1%), NRAS mutations (G12C, Q61K, Q61L, Q61H,

Q61R, and one remained uncharacterized) in 54/1546 (3.5%), BRAF

mutations (D594G and V600E) in 143/1554 (9.2%) and PIK3CA muta-

tions (E542K, E545K, Q546K, H1047L, and H1047R) in 212/1448

(14.6%) CRCs. MSI was detected in 45/1237 (3.6%) CRCs.27 Of those

also tested for BRAF mutations, 13/45 (28.9%) CRCs with MSI carried

BRAF V600E as compared with 93/1185 (7.8%) without MSI

(p = 3.1 � 10�6), consistent with their sporadic nature.28

MAPK-activated CRCs were assigned as those carrying KRAS,

BRAF, or NRAS mutations. In total, 829 patients with MAPK-activated

CRCs had corresponding GWAS data. We excluded patients with

potentially Akt-activated tumors (those with PIK3CA mutations,

n = 108), MSI (n = 20), and those in whom covariate data were lacking

(n = 7 for platelet count, primary tumor surface area, time to metasta-

ses or synchronous/metachronous metastases). Of the remaining

694 patients, 521 (75.1%) carried KRAS mutations, 44 (6.3%) NRAS

mutations, 120 (17.3%) BRAF mutations, and 9 (1.3%) had combinations

of these mutations (Figure 1 and Table 1). For comparison, we analyzed

760 patients without MAPK-activated tumors (i.e., those with KRAS,

NRAS, and BRAF wild-type CRC) and a further subset whose CRCs car-

ried PIK3CA mutations as a marker of Akt-activation (n = 87 patients

with covariate data).

2.4 | Statistical analyses

We previously identified clinicopathological factors associated with

survival in patients from COIN and COIN-B.22 Due to the number of

covariates added to the regression models, dimensionality reduction

was performed using PCA to reduce the risk of overfitting. A thresh-

old of 70% total variance explained was used to select the number of

principal components to include,29 the first five were selected (but

only four were necessary when analyzing patients with NRAS muta-

tions). We carried out the GWAS for OS under an additive model. All

analyses performed by MAPK gene mutation status were multivariate.

Gene and gene-set analysis were performed on the summary sta-

tistics from the association analysis to identify genes containing signifi-

cant numbers of highly associated SNPs and significantly enriched gene

sets. The threshold for significance at gene level was p < 2.5 � 10�6,

TABLE 1 (Continued)

Clinicopathological factor

Patients with MAPK-activated

CRCs (n = 694)

Patients without MAPK-activated

CRCs (n = 760)

p-Valuen % n %

NRAS mutation 44 6.3 0 0 —

BRAF mutation 120 17.3 0 0 —

Multiple mutations 9 1.3 0 0 —

Note: Data are n (%) or median. Differences between patients with and without MAPK-activated CRCs were analyzed using a Chi-squared test, Cox

regression (for overall survival) and Fisher's exact test (for stage). Response was defined as complete or partial response using RECIST 1.0 guidelines and

nonresponse was defined as stable or progressive disease.

Abbreviations: CRCs, colorectal cancer; MAPK, mitogen-activated protein kinase.
aNonliver metatases included those in the lungs, peritoneum, and lymph nodes.
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a Bonferroni correction for 20 000 independent tests.30 Correction for

multiple testing for gene-set analysis was made by adjusting p-values

for the false discovery rate to produce q-values,31,32 held to a signifi-

cance threshold of q < 0.05.

2.5 | Bioinformatic analyses

Regional association plots were created using LocusZoom (http://

locuszoom.org). PCA, survival analyses, and manhattan/quantile–

quantile plots were performed using the psych (https://cran.r-project.

org/web/packages/psych/index.html), gwasurvivr,33 and qqman R

(https://www.r-project.org/)34 packages, respectively.

Gene and gene-set analyses were performed using MAGMA35

v1.09b (https://ctg.cncr.nl/software/magma). SNPs were annotated

to genes (including those 35 kb before the genes transcription zone

and 10 kb after) using the --annotate command and the gene location

file for hg19: “NCBI37.3.loc.” SNP p-values were assessed with

the linkage disequilibrium between them using the multi = snp-wise

and --gene-model commands. This model takes advantage of the sum

of the �log10(p) for all SNPs, as well as the top SNP associations

within each gene, to assess the association of their constituent genes.

Genes were annotated to sets by gene-ontology terms.36 A competi-

tive model (--set-result command) was used to assess each gene-set's

association with OS.

Expression quantitative trait loci (eQTL) analysis was performed

by searching the Genotype-Tissue Expression (GTEx) project database

(https://gtexportal.org/home/)37 for associations between SNPs and

gene expression.

3 | RESULTS

Patients with MAPK-activated CRCs were defined as those carrying

KRAS, NRAS, or BRAF mutations and that did not have Akt-activating

mutations (n = 108) or MSI (n = 20). After QC, 694 patients had

MAPK-activated CRCs (Figure 1). Patients with MAPK-activated CRCs

had more right-sided primary tumors, worse response at 12 weeks

and poorer survival (median OS 433 days) as compared with patients

without MAPK-activated CRCs (KRAS, NRAS, and BRAF wild-type,

n = 760, median OS 611 days; hazard ratio [HR] = 1.57, 95% confi-

dence interval [CI] = 1.39–1.77, p = 2.6 � 10�13; Table 1). Genome-

wide SNP, gene and gene-set analyses were performed to identify

determinants of survival using the first five principal components as

covariates, which explained 71.9% of the total variance for previously

established prognostic factors.22 No detectable genomic inflation was

observed (lambda = 1.08). No SNPs passed the threshold for

genome-wide significance (p < 5.0 � 10�8).

In MAGMA gene analysis, RASAL2 at 1q25.2, was the most signif-

icant gene associated with survival in patients with MAPK-activated

CRCs (p = 2.0 � 10�5) (Figure 2), although it did not achieve formal

genome-wide significance. Patients carrying the minor (A) allele in the

lead SNP, rs12028023 in intron 1 of RASAL2, had a median increase

in survival of 167 days as compared with patients carrying the major

(G) allele (HR = 0.63, 95% CI = 0.5–0.8, p = 1.3 � 10�5, Figure 3).

In contrast, rs12028023 genotype was not associated with survival

in patients without MAPK-activated tumors (HR = 1.00, 95%

CI = 0.81–1.23, p = 0.98) nor a subset whose CRCs carried PIK3CA

mutations as a marker of Akt-activation (HR = 1.72, 95% CI = 0.87–

3.37, p = 0.12); the difference in the relationship between patient

groups was significant (pZ-test = 2.1 � 10�3 and 5.3 � 10�3, respec-

tively). Cetuximab administration did not influence the prognostic

effect of rs12028023, regardless of the MAPK-activation status

(MAPK-activated pZ-test= 0.29, nonactivated pZ-test= 0.49).

The rs12028023 A-allele was also associated with improved

response at 12-weeks in patients with MAPK-activated cancers

(77/128, 60.2% of patients carrying the A allele responded compared

with 212/447, 47.4%with the G allele, OR= 1.62, 95% CI= 1.11–2.36,

p = 1.2 � 10�2). This relationship was not seen in patients without

MAPK-activated cancers (93/134, 69.4% vs. 352/513, 68.6%,

OR= 0.98, 95% CI= 0.70–1.51, p= 0.91).

We dissected the prognostic role of RASAL2 by MAPK gene

mutation status. The rs12028023 A-allele was associated with

improved survival in patients with KRAS (median increase of 191 days,

HR = 0.63, 95% CI = 0.5–0.8, p = 1.0 � 10�4) and NRAS (median

increase of 407 days, HR = 0.22, 95% CI = 0.05–0.9, p = 3.8 � 10�2)

mutant CRCs (combined RAS mutant—median increase of 186 days,

HR = 0.62, 95% CI = 0.5–0.8, p = 3.4 � 10�5), but not in patients

with BRAF mutant CRCs (HR = 1.05, 95% CI = 0.6–1.8, p = 0.87;

Figure 4). Although there was a trend for a predictive effect on RAS

compared with RAF mutant backgrounds, this did not reach statistical

significance (for KRAS versus BRAF mutant, pZ-test = 0.097, NRAS ver-

sus BRAF mutant, pZ-test = 4.6 � 10�2, combined RAS versus BRAF

mutant, pZ-test = 8.5 � 10�2).

The rs12028023 A-allele was associated with reduced surface area

of the primary tumor (Beta = �0.037, standard error [SE] = 0.017,

F IGURE 2 Relationship between gene, genotype and survival in 694 patients with mitogen-activated protein kinase-activated colorectal
cancers. (A) Manhattan plot of gene associations with overall survival (OS). Genes are ordered by chromosome position and plotted against the

�log10(p) for their association with OS. The red line represents the threshold for genome-wide significance (p = 2.5 � 10�6). (B) Regional locus
zoom plot shows results of the analysis for single nucleotide polymorphisms (SNPs) and recombination rates. �log10(p) (y-axis) of the SNPs are
shown according to their chromosomal positions (x-axis) for an area 200 kb upstream and downstream of RASAL2. The sentinel SNP (purple) is
labeled by its rsID. The color intensity of each symbol reflects the extent of linkage disequilibrium with the sentinel SNP, deep blue (r2 = 0)
through to dark red (r2 = 1.0). Genetic recombination rates, estimated using 1000 Genomes Project samples, are shown with a blue line. Physical
positions are based on NCBI build 37 of the human genome. Also shown are the relative positions of genes and transcripts mapping to the region
of association. Genes have been redrawn to show their relative positions; therefore, maps are not to physical scale.
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p = 3.2 � 10�2) in patients with MAPK-activated CRCs. rs12028023

was an eQTL for RASAL2 in cultured fibroblasts (p = 1.6 � 10�11) with

the A-allele associated with decreased RASAL2 expression.

Five gene sets (Golgi cisterna membrane, cisterna and stack,

monoamine transport, and Cul4A-RING E3 ubiquitin ligase complex),

were significantly associated with survival in patients with MAPK-

activated CRCs after adjusting for multiple testing (q < 0.05).

4 | DISCUSSION

To help identify novel therapeutic targets in patients with MAPK-

activated CRCs, we studied the relationship between germline variation

and survival in patients with somatically profiled advanced CRC.

RASAL2 was the most significant gene associated with survival in

patients with MAPK-activated CRCs. Although RASAL2 did not pass

formal genome-wide significance in our screen, its direct interaction

with RAS (as 1 of only 14 known RAS GAPs38) suggests it is highly

unlikely to have been identified by chance. Given that we only had

694 patients with MAPK-activated CRCs, it is more likely that we had

too few cases to achieve the stringent threshold for genome-wide sig-

nificance. It is noteworthy that the rs12028023 A-allele specifically

improved survival in patients with KRAS and NRAS mutant cancers, but

not in those with BRAF mutant cancers, supporting a direct effect on

the upstream RAS signaling pathway. The lack of association in patients

with BRAF mutant cancers was unlikely to be due to the small numbers

of samples (n = 120) since we observed this effect in a much smaller

group with NRAS mutant cancers (n = 44). Furthermore, rs12028023

did not influence survival in patients without MAPK-activated CRCs,

nor the subset with Akt-activation, highlighting its specificity to this

pathway.

Carriers of the rs12028023 A-allele were predicted to have

reduced RASAL2 expression and a median increase in survival of

167 days in patients with MAPK-activated CRCs and 186 days in the

subset with RAS-mutant CRCs. Importantly, others have shown that

reduced RASAL2 expression is also associated with improved survival

F IGURE 3 Kaplan–Meier plot of the relationship between rs12028023 genotype and overall survival in patients with mitogen-activated
protein kinase-activated colorectal cancers. Time in days plotted against survival probability for patients homozygous for the major allele (GG) and
heterozygous (GA) or homozygous for the minor allele (AA). Shaded areas represent 95% confidence intervals. The number of patients still at risk
at each time point is shown beneath. 95% CI, 95% confidence intervals; HR, hazard ratio.
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F IGURE 4 Relationship between inherited
genetic variation in RASAL2 and survival by
mitogen-activated protein kinase gene
mutation status. Regional locus zoom plots for
single nucleotide polymorphism (SNP)
associations with overall survival in patients
with colorectal cancers carrying (A) KRAS
mutations (n = 521), (B) NRAS mutations
(n = 44) and (C) BRAF mutations (n = 120).

Plots show results of the analysis for SNPs and
recombination rates. �log10(p) (y-axis) of the
SNPs are shown according to their
chromosomal positions (x-axis) for an area
200 kb upstream and downstream of RASAL2.
The sentinel SNP (purple) is labeled by its rsID.
The color intensity of each symbol reflects the
extent of linkage disequilibrium with the
sentinel SNP, deep blue (r2 = 0) through to dark
red (r2 = 1.0). Genetic recombination rates,
estimated using 1000 Genomes Project
samples, are shown with a blue line. Physical
positions are based on NCBI build 37 of the
human genome. Also shown are the relative
positions of genes and transcripts mapping to
the region of association. Genes have been
redrawn to show their relative positions;
therefore, maps are not to physical scale.
Hazard ratio (HR), 95% confidence intervals
(CI), and p-values are given for rs12028023.
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in two independent cohorts of patients with CRC,12 although these

were not molecularly stratified by MAPK-activation status. However,

these data suggest that RASAL2 may represent a potential therapeutic

target via modulation of its expression and warrant further investiga-

tion. Interestingly, we noted that the rs12028023 A-allele was associ-

ated with reduced surface area of the primary tumor in patients with

MAPK-activated CRCs, potentially supporting a link between reduced

RASAL2 expression and decreased proliferation. These data are consis-

tent with in vitro models of RASAL2 knockdown.12 Furthermore, given

RASAL2's role in tumourigenesis in other cell types,19 we speculate that

it may represent a target for intervention in a broader range of cancers.
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