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Abstract

Artificial intelligence provides a promising solution for streamlining COVID-19 diagnoses; 

however, concerns surrounding security and trustworthiness impede the collection of large-scale 

representative medical data, posing a considerable challenge for training a well-generalized 

model in clinical practices. To address this, we launch the Unified CT-COVID AI Diagnostic 

Initiative (UCADI), where the artificial intelligence (AI) model can be distributedly trained and 

independently executed at each host institution under a federated learning framework without data 

Bai et al. Page 2

Nat Mach Intell. Author manuscript; available in PMC 2024 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sharing. Here we show that our federated learning framework model considerably outperformed 

all of the local models (with a test sensitivity/specificity of 0.973/0.951 in China and 0.730/0.942 

in the United Kingdom), achieving comparable performance with a panel of professional 

radiologists. We further evaluated the model on the hold-out (collected from another two hospitals 

without the federated learning framework) and heterogeneous (acquired with contrast materials) 

data, provided visual explanations for decisions made by the model, and analysed the trade-offs 

between the model performance and the communication costs in the federated training process. 

Our study is based on 9,573 chest computed tomography scans from 3,336 patients collected 

from 23 hospitals located in China and the United Kingdom. Collectively, our work advanced the 

prospects of utilizing federated learning for privacy-preserving AI in digital health.

As the gold standard for identifying coronavirus disease 2019 (COVID-19) carriers, 

polymerase chain reaction with reverse transcription (RT–PCR) is the primary diagnostic 

modality to detect viral nucleotide in specimens from cases with suspected infection; 

however, due to the various disease courses in different patients, the detection sensitivity 

hovers at around only 0.60–0.71 (refs.1–4), which results in a considerable number of false 

negatives. As such, clinicians and researchers have made tremendous efforts in searching 

for alternatives5–7 and complementary modalities2,8–11 to improve the testing scalability and 

accuracy for COVID-19 and beyond.

It has been reported that coronavirus carriers present certain radiological features in chest 

computed tomography scans (CTs), including ground-glass opacity, interlobular septal 

thickening and consolidation, which can be exploited to identify COVID-19 cases. Chest 

CTs have thus been utilized to diagnose COVID-19 in some countries and regions with 

reported sensitivity ranging from 0.56 to 0.98 (refs.12–15); however, these radiological 

features are not explicitly tied to COVID-19, and the accuracy of CT-based diagnostic tools 

heavily depends on the radiologists’s own knowledge and experience. A recent study16 has 

further investigated the substantial discrepancies in differentiating COVID-19 from other 

viral pneumonia by different radiologists. Such inconsistency is undesirable for any clinical 

decision system; there is thus an urgent demand to develop an accurate and automatic 

method to help address the clinical deficiency in current CT-based approaches.

Successful development of an automated method relies on a sufficient amount of data 

accompanied by precise annotations. We identified three challenges—specifically data-

related—for developing a robust and generalized AI model for CT-based COVID-19 

identifications. (1) Incompleteness. The high-quality CTs that were used for training were 

only a small subset of the entire cohort and therefore unlikely to cover the complete set 

of useful radiological features for identification. (2) Isolation. The CTs acquired across 

multiple centres were difficult to transfer for training due to security and privacy concerns, 

whereas a locally trained model may not be generalized to, or improved by, the data 

collected from other sites. (3) Heterogeneity. Due to the different acquisition protocols (for 

example, contrast agents and reconstruction kernels), CTs collected from a single hospital 

are still not yet well standardized; it is therefore challenging to train a precise model on the 

basis of a simple combination of data17.
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Furthermore, it remains an open question whether the patients with COVID-19 from diverse 

geographies and varying demographics show similar or distinct patterns. All of these 

challenges will impede the development of a well-generalized AI model, and thus, of a 

global intelligent clinical solution. It is worth noting that these challenges are generally 

encountered by all of the possible trails in applying AI models in clinical practices, not 

necessarily COVID-19 related.

We launched the Unified CT-COVID AI Diagnostic Initiative (UCADI; Figs. 1 and 2) 

to tackle these problems. It was developed on the basis of the concept of federated 

learning18,19, which enables machine learning engineers and clinical data scientists to 

collaborate seamlessly without sharing the patient data; thus, in UCADI, every participating 

institution can benefit from and contribute to the continuously evolving AI model, helping 

deliver even more precise diagnoses for COVID-19 and beyond.

Results

Developing a local accurate AI diagnostic model.

Training an accurate AI model requires comprehensive data collection. We therefore first 

gathered, screened and anonymized the chest CTs at each institute participating in UCADI 

(five hospitals in China and 18 hospitals in the United Kingdom), comprising a total of 9,573 

CTs from 3,336 patients. We summarized the demographics and diagnoses of the cohort in 

Supplementary Tables 1 and 2.

Developing an accurate diagnostic model requires a sufficient amount of high-quality data. 

Consequently, we identified the three branches of Wuhan Tongji Hospital Group (Main 

Campus, Optical Valley and Sino-French) and the National COVID-19 Chest Imaging 

Database (NCCID)20 as individual UCADI participants. Each site contains adequate high-

quality CTs for the development of the three-dimensional convolutional neural network 

(CNN) model. We used 80% of the data for training and validation (hereafter referred to as 

trainval) and the remaining 20% for testing. We also utilize the CTs collected from Tianyou 

hospital and Wuhan Union hospital as hold-out test sets. We consistently use the same 

partition in both the local and federated training processes for a fair comparison.

The NCCID is an initiative established by NHSX (a joint unit of the National Health 

Service (NHS) England and the Department of Health and Social Care (DHSC)), providing 

massive CT and chest X-ray modalities of COVID-19 and non-COVID-19 patients from 

over 18 partnership hospitals in the United Kingdom. As each hospital’s data quantity and 

categorial distribution are quite uneven, we pooled all of the CTs and identified the entire 

NCCID cohort as a single participant. Unlike the CTs procured from China, which are all 

non-contrast, around 80% of CTs from NCCID are acquired using contrast materials (for 

example, iodine). Such materials are usually utilized to block X-rays and appeared with 

higher attenuation on CTs, which could help emphasize tissues such as blood vessels and 

intestines (in Supplementary Fig. 1 and Table 3); however, in practice, we found that a 

simple combination of the contrast and non-contrast CTs did not back the training of a well-

generalized model as their intrinsic differences induced in the acquisition procedures21. To 

overcome the data heterogeneity between the contrast and non-contrast CTs in the NCCID, 
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we therefore applied an unpaired image-to-image translation method called CycleGAN22 

to transform the contrast CTs into non-contrast variants as augmentations during the local 

model training. In Supplementary Table 4, we have compared CycleGAN with two other 

recent image translation methods (CouncilGAN23 and ACL-GAN22). We showed that the 

model trained on CycleGAN transformed contrast CTs has the best performance (test on 

the non-contrast CTs); however, this modality transformation is not always helpful, as the 

performance degenerated when training on the raw plus translated contrast CTs.

We developed a densely connected three-dimensional convolutional neural network model

—3D-DenseNet—on the basis of the massive cohort collection towards delivering precise 

diagnoses with AI approaches; we report its architectural designs and training optimizations 

in the Methods and Supplementary Fig. 2. We examined the predictive power of 3D-

DenseNet on a four-class pneumonia classification task as well as COVID-19 identification. 

In the first task we aimed to distinguish COVID-19 (Fig. 3a, Supplementary Fig. 3 and 

Table 5) from healthy cases and two other pneumonia types, namely non-COVID-19 

viral and bacterial pneumonia (Fig. 3b). We preferred a four-class taxonomy, as further 

distinguishing COVID-19 from community-acquired pneumonia24,25 can help deliver more 

commendatory clinical treatments where the bacterial and the viral are two primary 

pathogens of community-acquired pneumonia26 (Fig. 2c); however, given that different 

institutions are accompanied by various annotating protocols, it is more feasible for the 

model to learn to discriminate COVID-19 from all non-COVID-19 cases. We therefore 

base the experimental results on this two-category classification in the main text. We 

report the four-class experiments based on the Wuhan Tongji Hospital Group’s cohort in 

Supplementary Fig. 3 and Table 5.

For the three UCADI data centres in China (Main Campus, Optical Valley and Sino-French 

branches of Wuhan Tongji Hospital Group), the locally trained 3D-DenseNet achieved an 

average test sensitivity/specificity of 0.804/0.708 for identifying COVID-19. As for the 

collection from Britain (NCCID), the test sensitivity/specificity (on non-contrast CTs) of the 

local model can be improved from 0.703/0.961 to 0.784/0.961 with the help of CycleGAN 

to mitigate the heterogeneity between contrast and non-contrast CTs. We further compared 

3D-DenseNet with two other 3D CNN baseline models: 3D-ResNet27 and 3D-Xception28 

(Supplementary Tables 6 and 7). As a result, we demonstrated that 3D-DenseNet had better 

performance and smaller size, presenting it as highly suitable for federated learning.

To interpret the learned features of the model, we performed gradient-weighted class 

activation mapping (GradCAM)29 analysis on the CTs from the test set. We visualized the 

featured regions that lead to identification decisions and found that the generated heatmaps 

(Fig. 3c) primarily characterized local lesions that highly overlap with the radiologists’s 

annotations, suggesting that the model is capable of learning robust radiologic features 

rather than simply overfitting30. This heatmap can help the radiologists localize the lesions 

quicker for delivering diagnoses in an actual clinical environment. Moreover, localizing the 

lesions will also provide a guide for further CT acquisition and clinical testing. A similar 

idea has been described as region-of-interest detection in a similar study31.
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To examine the cross-domain generalization ability of the locally trained models, we tested 

China’s locally trained model on Britain’s test set and vice versa, reporting the numerical 

results in Fig. 4; however, due to incompleteness, isolation and heterogeneity in the various 

data resources, we found that all of the locally trained models exhibited less-than-ideal 

test performances on other sources. Specifically, the model trained on NCCID non-contrast 

CTs had a sensitivity/specificity/AUC of 0.313/0.907/0.745 in identifying COVID-19 on 

the test set of China, which is lower than locally trained ones, and vice versa. We next 

describe how to incorporate federated learning for the cross-continent privacy-preservation 

collaboration on training a generalized AI diagnostic model, mitigating the domain gaps and 

data heterogeneity.

Enable multination privacy-preserving collaboration with federated learning

We developed a federated learning framework to facilitate the collaboration nested under 

UCADI and NCCID, integrating diverse cohorts as part of a global joint effort on developing 

a precise and robust AI diagnostic tool. In traditional data science approaches17,31, sensitive 

and private data from different sources are directly gathered and transported to a central 

hub where the models are deployed; however, such procedures are infeasible in real clinical 

practices as hospitals are usually reluctant (and often not permitted) to disclose data due 

to privacy concerns and legislation32. On the other side, the federated learning technique 

proposed by Google33, by contrast, is an architecture in which the AI model is distributed to 

and executed at each host institution without data centralization. Furthermore, transmitting 

the model parameters effectively reduced the latency and the cost associated with sending 

large amounts of data during internet connections. More importantly, the strategy to preserve 

privacy by design enables medical centres to collaborate on developing models without 

sharing sensitive clinical data with other institutions. Swarm Learning34 was recently 

proposed towards model decentralization via edge computation; however, we conjecture that 

it is immature for the privacy-preserving machine learning35 applications based on massive 

data collection and participants due to the exponential increase in computation.

With UCADI, we have provided: (1) an online diagnostic interface allowing people to query 

the diagnostic results on identifying COVID-19 by uploading their chest CTs; and (2) a 

federated learning framework that enables UCADI participants to collaboratively contribute 

to improving the AI model for COVID-19 identification. Each UCADI participant will send 

the model weights back to the server via a customized protocol during the collaborative 

training process every few iterations. To further mitigate the potential for data leaks during 

such a transmission process, we applied an additive homomorphic encryption method called 

Learning with Errors (LWE)36 to encrypt the transmitted model parameters. By doing so, 

participants will keep within their data and infrastructure, with the central server having no 

access whatsoever. After receiving the transmitted packages from the UCADI participants, 

the central server then aggregates the global model without comprehending the model 

parameters of each participant. The updated global model would then be distributed to 

all participants, again utilizing LWE encryption, enabling the continuation of the model 

optimization at the local level. Our framework is designed to be highly flexible, allowing 

dynamic participation and breakpoint resumption (detailed in the Methods).
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With this framework, we deployed the same experimental configurations to validate the 

federated learning concept for developing a generalized CT-based COVID-19 diagnostic 

model (detailed in the Methods). We compared the test sensitivity and specificity of 

the federated model to the local variations (Fig. 4). We plotted the receiver operating 

characteristic curves curves and calculated the corresponding AUC scores—along with 

95% confidence intervals and P-values—to validate the model’s performance (Fig. 4). 

As confirmed by the curves and numbers, the federated model outperformed all of the 

locally trained ones on the same test splits collected from China and the United Kingdom. 

Specifically, for the test performance on the 1,076 CTs of 254 cases in China (all from 

the three branches of Wuhan Tongji Hospital Group), the federated model achieved a 

sensitivity/specificity/AUC of 0.973/0.951/0.980, respectively, outperforming the models 

trained locally at Main Campus, Optical Valley, Sino-French and NCCID. Furthermore, the 

federated model achieves a sensitivity/specificity/AUC of 0.730/0.942/0.894 for COVID-19 

classification when applied to the test set of the NCCID (from 18 UK hospitals), vastly 

outperforming all the locally trained models. We based the performance measure on the CT 

level instead of the patient level, coherent with the prior study31.

We illustrated that the federated framework is an effective solution to mitigate against the 

issue that we cannot centralize medical data from hospitals worldwide due to privacy and 

legal legislation. We further conducted a comparative study on the same task with a panel 

of expert radiologists. With an average of nine years’s experience, six qualified radiologists 

from the Department of Radiology, Wuhan Tongji Hospital (Main Campus) were asked to 

make diagnoses on each CT from China, as one of the four classes. The six experts were 

first asked to provide diagnoses individually, then to address integrated diagnostic opinions 

via majority votes (consensus) in a plenary meeting. We presented the radiologists and AI 

models with the same data partition for a fair comparison. In differentiating COVID-19 from 

the non-COVID-19 cases, the six radiological experts obtained an average 0.79 in sensitivity 

(0.88, 0.90, 0.55, 0.80, 0.68, 0.93, respectively), and 0.90 in specificity (0.92, 0.97, 0.89, 

0.95, 0.88, 0.79, respectively). In reality, the consideration of a clinical decision is usually 

made by consensus decision among the experts. Here we use the majority votes among the 

six expert radiologists to represent such a decision-making process. We provide the detailed 

diagnostic decisions of each radiologist in Supplementary Table 5. We found that the 

majority vote helps reduce the potential bias and risk: the aggregated diagnoses are with the 

best performance among individual radiologists. In Fig. 4a, we plotted the majority votes in 

blue markers (sensitivity/specificity: 0.900/0.956) and remarked that the federatively trained 

3D-DenseNet had shown comparable performance (sensitivity/specificity: 0.973/0.951) with 

the expert panel. We have further presented and discussed the models’s performance on 

the hold-out test sets (645 cases from Wuhan Tianyou Hospital and 506 cases from Wuhan 

Union Hospital) in Supplementary Table 8. We proved that the federatively trained model 

also performed better on these two hold-out datasets, yet the confidence sometimes is not 

well calibrated.

During the federated training process, each participant is required to synchronize the model 

weights with the server every few training epochs using web sockets. Intuitively, more 

frequent communication should lead to better performance. However, each synchronization 

accumulates extra time. To investigate the trade-off between the model performance and 
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the communication cost during the federated training, we conduct parallel experiments with 

the same settings but different training epochs between the consecutive synchronizations. 

We report the models’s subsequent test performance in Fig. 5a and time usage in Fig. 5b. 

We observe that, as expected, more frequent communication leads to better performance. 

Compared with the least frequently communication scenario, to download the model from 

the beginning and train locally without intermediate communications, synchronizing at every 

epoch will achieve the best test performance with less than 20% increment in time usage.

Discussion

COVID-19 is a global pandemic. Over 200 million people have been infected worldwide, 

with hundreds of thousands hospitalized and mentally affected37,38, and above four million 

are reported to have died as of October 2021. There are borders between countries, yet 

the only barrier is the boundary between humankind and the virus. We urgently demand 

a global joint effort to confront this illness effectively. In this study, we introduced a 

multination collaborative AI framework, UCADI, to assist radiologists in streamlining and 

accelerating CT-based COVID-19 diagnoses. First, we developed a new CNN model that 

achieved performance comparable with expert radiologists in identifying COVID-19. The 

predictive diagnoses can be utilized as references while the generated heatmap helps with 

faster lesion localization and further CT acquisition. We then formed a federated learning 

framework to enable the global training of a CT-based model for precise and robust 

diagnosis. With CT data from 22 hospitals, we have herein confirmed the effectiveness 

of the federated learning approach. We have shared the trained model and open-sourced 

the federated learning framework. It is worth mentioning that our proposed framework is 

with continual evolution, is not confined to the diagnosis of COVID-19 but also provides 

infrastructures for future use. The uncertainty and heterogeneity are the characteristics of 

clinical work. Due to the limited medical understanding of the vast majority of diseases, 

including pathogenesis, pathological process, treatment and so on the medical characteristics 

of diseases can be studied by the means of AI. Along with this venue, research can be more 

instructive and convenient in dealing with large (sometimes isolated) samples, especially 

suitable for transferring knowledge in studying emerging diseases.

However, certain limitations are not well addressed in this study. First is the potential bias 

in the comparison between experts and models. Due to legal legislation, it is infeasible and 

impossible to disclose the UK medical data with radiologists and researchers in China 

or vice versa. Radiologists are thus from nearby institutions. Though their diagnostic 

decisions are quite different, it is not unrealistic to conclude that our setting and evaluation 

process eliminate biases. The second is engineering efforts. Although we have developed 

mechanisms such as dynamic participation and breakpoint resumption, the participants still 

happened to drop from the federated training process for the unstable internet connection. 

Also, the computation efficiency of the three-dimensional CNN model still has space for 

improvements (in Supplementary Table 7). There are always engineering advancements that 

can be incorporated to refine the framework.
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Methods

We first describe how we constructed the dataset and then discuss the details of our 

implementations for collaboratively training the AI model, we provided further analysis 

of our methods at the end of this section.

CN dataset development (UCADI).

A total of 5,740 chest CT images that are acquired from the three branches (Main Campus, 

Optical Valley and Sino-French) of Tongji Hospital Group located in Wuhan, China, using 

similar acquisition protocols. Three scanners are used to obtain the CTs: GE Medical 

System/LightSpeed16, GE Medical Systems/Discovery 750 HD and Siemens SOMATOM 

Definition AS+. The scanning slice thickness is set as 1.25 mm and 1 mm for the GE and the 

Siemens scanners, respectively. The reconstruction protocols include a statistical iteration 

(60%) and sinogram affirmed iteration for the GE and the Siemens devices, respectively. All 

of the Chinese-derived CTs are taken without the intravenous injection of iodine contrast 

agent (that is, non-contrast CTs). Regarding the acquisition date, 2,723 CTs of the 432 

patients with COVID-19 were enrolled, selected and annotated from 7 January 2020; 3,017 

CTs from other three categories were then retrieved from the databases of these three 

hospitals, with an event horizon dating back to 2016.

As detailed in the Supplementary Information, the chest CTs were then divided into a 

training/validation (hereafter: trainval) split of 1,095 cases, and a testing split of 254 cases. 

The trainval split consists of 342 cases (1,136 CTs) for healthy individuals, 405 cases (2,200 

CTs) for those COVID-19 positive, 56 cases (250 CTs) for other viral pneumonia and 292 

cases (1,078 CTs) for bacterial pneumonia. For the test split, we considered a balanced 

distribution over the four classes, consisting of 80 cases (262 CTs) for healthy individuals, 

94 cases (523 CTs) for the COVID-19-positive instances, 20 cases (84 CTs) for other 

viral pneumonia and 60 cases (207 CTs) for bacterial pneumonia. Specifically, the virus 

types that are regarded as other viral pneumonia include respiratory syncytial, Epstein–Barr, 

cytomegalovirus, influenza A and parainfluenza.

We also collected independent cohorts including 507 COVID-19 cases from Wuhan Union 

Hospital and 645 COVID-19 cases from Wuhan Tianyou Hospital. These hold-out test sets 

were used for testing the generalization of the locally trained models as well as the federated 

model. As the data source only contained COVID-19 cases, we did not utilize it during the 

training process. We also summarized and reported the demographic information (that is, 

gender and age) of the cohort in Supplementary Table 1.

UK dataset development (NCCID).

For the total 2,682 CTs that were acquired from the 18 partner hospitals located in the 

United Kingdom (Supplementary Table 3), the acquisition devices and protocols varied from 

hospital to hospital. There are over 14 types of utilized CT scanners: Siemens Sensation 

64; Siemens SOMATOM Drive; Siemens SOMATOM Definition AS/AS + /Edge/Flash; GE 

Medical Systems Optima CT660; GE Medical Systems Revolution CT/EVO; GE Medical 

Systems LightSpeed VCT; Canon Medical Systems Aquilion ONE; Philips Ingenuity Core 
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128 and Toshiba Aquilion ONE/PRIME. Settings such as filter sizes, slice thickness and 

reconstruction protocols are also quite diverse among these CTs. This might explain the 

reason why the NCCID locally trained model failed to perform as well as the Chinese 

locally trained variant (Fig. 4c). Regarding the material differences, 2,145 out of 2,682 CTs 

were taken after the injection of an iodine contrast agent (that is, contrast CTs). As pointed 

out by previous study21, contrast and non-contrast CTs have different feature distributions 

in terms of attenuation and brightness; it is therefore infeasible to simply mix all the CTs 

together for local or federated training. The reported numbers in Fig. 3 are based on the 

non-contrast CTs, while in Supplementary Table 3, we used CycleGAN22 to incorporate 

both contrast and non-contrast CTs, and shall elaborate upon such settings in the following 

section.

As detailed in Supplementary Information, CTs from NCCID were first partitioned into 

two types: contrast and non-contrast. Such division is based on the metadata provided in 

the CTs as well as validated from the professional radiologists. For the contrast CTs, the 

trainval produces a split of 421 cases, and a testing split of 243 cases. The trainval split 

consists of 276 cases (1,097 CTs) for non-COVID-19 and 145 cases (491 CTs) for the 

COVID-19 positive cases. The test split contains 160 cases (259 CTs) for non-COVID-19 

and 83 cases (138 CTs) for the COVID-19 positives. The non-contrast CTs is fewer in 

quantity compared with the contrast ones. It has 116 cases (394 CTs) for non-COVID-19 

and 54 cases (163 CTs) for the COVID-19 positive cases. Moreover, there are 75 cases (103 

CTs) for non-COVID-19 and 27 cases (37 CTs) for the COVID-19 positive cases for the test 

split.

We also noticed that a small subset of the CTs only contained partial lung regions, we 

removed these insufficient CTs whose number of slices are less than 40. As for our selection 

criteria in this regard, although the partial lung scans might be infeasible for training 

segmentation or detection models, we believe that a sufficient number of slices is enough to 

ensure the model effectively captures the requisite features and thereby help with the precise 

classification in medical diagnosis.

We reported patient demographical information (that is, gender and age) of the cohort in 

Supplementary Table 2. However, the reported demographics is not inclusive since the 

demographical attributes of non-COVID-19 cases are not recorded. In comparison to the 

demographical information of the COVID-19 cases acquired from China, COVID-19 cases 

in the United Kingdom were with larger averaged ages and had more male patients. These 

demographical differences might also explain why the United Kingdom locally trained 

model failed to perform well when applied to the CTs acquired from China.

Data preprocessing, model architecture and training setting.

We pre-processed the raw acquired CTs for standardization as well as to reduce the 

burden on computing resource. We utilized an adaptive sampling method to select 16 

slices from all sequential images of a single CT case using random starting positions and 

scalable transversal intervals. During the training and validation process, we sampled once 

for each CT study, while in testing we repeated the sampling five independent times to 

obtain five different subsets. We then standardized the sampled slices by removing the 

Bai et al. Page 10

Nat Mach Intell. Author manuscript; available in PMC 2024 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



channel-wise offsets and rescaling the variation to uniform units. During testing, the five 

independent subsets of each case were fed to the trained CNN classifier to obtain the 

prediction probabilities of the four classes. We then averaged the predictive probabilities 

over these five runs to make the final diagnostic prediction for that case. By so doing, we 

can effectively include impacts from different levels of lung regions as well as to retain 

scalable computations. To further improve the computing efficiency, we utilized trilinear 

interpolation to resize each slice from 512 to 128 pixels along each axis and rescaled the 

lung windows to a range between −1,200 and 600 Hounsfield units before feeding into the 

network model.

We named our developed model 3D-DenseNet (Supplementary Fig. 2). It was developed 

based on DenseNet39, a densely connected convolutional network model that performed 

remarkably well in classifying two-dimensional images. To incorporate such design with 

the three-dimensional CT representations, we adaptively customized the model architecture 

into fourteen three-dimensional convolution layers distributed in six dense blocks and 

two transmit blocks (insets of Supplementary Fig. 2). Each dense block consists of two 

three-dimensional convolution layers and an inter-residual connection, whereas the transmit 

blocks are composed of a three-dimensional convolution layer and an average pooling layer. 

We placed a 3D DropBlock40 instead of simple dropout41 before and after the six dense 

blocks, which proved to be more effective in regularizing the training of convolution neural 

networks. We set the momentum of batch normalization42 to be 0.9, and the negative slope 

of LeakyReLU activation as 0.2.

During training, the 3D-DenseNet took the pre-processed CT slice sequences as the input, 

then output a prediction score over the four possible outcomes (pneumonia types). Due to 

the data imbalance, we defined the loss function as the weighted cross-entropy between 

predicted probabilities and the true categorical labels. The weights were set as 0.2, 0.2, 

0.4, 0.2 for healthy, COVID-19, other viral pneumonia and bacterial pneumonia cases, 

respectively. We utilized SGD optimizer with a momentum of 0.9 to update parameters of 

the network via backpropagation. We trained the networks using a batch size of 16. At the 

first five training epochs, we linearly increased the learning rate to the initial set value of 

0.01 from zero. This learning rate warm-up heuristic proved to be helpful, as using a large 

learning rate at the very beginning of the training may result in numerical instability43. We 

then used cosine annealing44 to decrease the learning rate to zero over the remaining 95 

epochs (100 epochs in total).

During both local and federated training processes, we utilized a fivefold cross-validation on 

trainval split, and then selected the best model and reported their test performance (in Fig. 4 

and Supplementary Fig. 2).

Federated learning and privacy preservation.

At the central server, we adapted the FedAvg33 algorithm to aggregate the updated model 

parameters from all clients (UCADI participants) to combine the weights with respect 

to clients’s dataset sizes and the number of local training epochs between consecutive 

communications. To ensure secure transmissions between the server and the clients, we 

used LWE36 to further protect all the transmitted information (that is, model parameters 
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and metadata). The LWE method is an additively homomorphic variant of the public key 

encryption scheme, therefore the participant information cannot even leak to the server, 

which is to say, that the server has no access to the explicit weights of the model. 

Compared with other encryption methods, such as differential privacy45, Moving Horizon 

Estimations46 and Model Predictive Control47, LWE differentiates itself by essentially 

enabling the clients to achieve identical performance with the variants trained without 

decryption; however, the LWE method would add further costs to the federated learning 

framework in terms of the extra encryption/decryption process and the increased size of 

the encrypted parameters during transmission. The typical time usage of a single encryption-

decryption round is 2.7 s (average over 100 trials under a test environment consisting of a 

single CPU (Intel Xeon E5–2630 v3 @ 2.40 GHz) and the encrypted model size arises from 

2.8 MB to 62 MB, which increases the transmission time from 3.1 s to 68.9 s, in a typical 

international bandwidth environment48 of 900 KB s–1 (Fig. 5).

Comparing with professional radiologists.

We further conducted a comparative study on this four-type classification between the CNN 

model and expert radiologists. We asked six qualified radiologists (with an average of nine 

years’s clinical experience, ranging from four to eighteen years) from the Tongji Hospital 

Group to make the diagnoses on the basis of the CTs. We provided the radiologists with the 

CTs and their labels from the China-derived trainval split. We then asked them to diagnose 

each CT from the test split into one of the four classes. We reported the performance of 

each single radiologist and the majority votes on the COVID-19 versus non-COVID-19 CTs 

in Fig. 4 (detailed comparisons are presented in Supplementary Table 5 and 9). If there 

are multiple majority votes for different classes, the radiologist panel will make further 

discussions until reaching a consensus.

Augmented contrast/non-contrast CTs with CycleGAN.

Following similar procedures as previous work21, we first extracted and converted the slices 

from contrast and non-contrast CTs of NCCID into JPEG format images with a resolution 

of 512 px × 512 px. The trainval and test splits of the contrast CTs contain 932 images (23 

cases) and 139 images (22 cases), respectively. For the non-contrast CTs, there are 1,233 

images (26 cases) and 166 images (26 cases) for the trainval and test splits, respectively. For 

the architecture of the CycleGAN, we use ResNet49 backbone as the feature encoder and 

set the remaining parts in concordance with the original literature21. For the training settings 

of CycleGAN, we used a batch size of 12 for the total number of 200 epochs. We used the 

same settings on the trade-off coefficients in the adversarial loss. We started with a learning 

rate of 2 × 10–4, kept it constant for the first 100 epochs, then decayed it to zero linearly over 

the next 100 epochs.

To evaluate the effectiveness of utilizing CycleGAN for augmentation, we first trained the 

3D-DenseNet on trainval set of: (1) only non-contrast; (2) non-contrast and CycleGAN 

synthesized non-contrast; (3) only contrast; and (4) contrast and CycleGAN synthesized 

contrast CTs. In Supplementary Table 3, we reported the test performance of these trained 

models on the non-contrast and contrast CTs respectively. We observed that augmenting the 
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non-contrast CTs with CycleGAN would result in a better identification ability of the model 

while this was not held when converting the non-contrast ones into contrast.

Ethics approval.

The UK data used in this study is under approval by Control of Patient Information (COPI) 

notice issued by The Secretary of State for Health and Social Care. The CN data usage is 

approved by the Ethics Committee Tongji Hospital, Tongji Medical College of Huazhong 

University of Science and Technology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Conceptual architecture of UCADI.
The participants first download and train the three-dimensional CNN models on the basis of 

the data of local cohorts. The trained model parameters are then encrypted and transmitted 

back to the server. Finally, the server produces the federated model via aggregating the 

contributions from each participant without explicit access to the parameters.
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Fig. 2 |. Deployment and workflow of UCADI participants.
a, Data: construct a local dataset based on the high-quality, well-annotated and anonymized 

CTs. b, Flow: the backbone of the 3D-DenseNet model mainly consists of six three-

dimensional dense blocks (in green), two three-dimensional transmit blocks (in white) and 

an output layer (in grey). Computed tomography scans of each case are converted into a 

(16,128,128) tensor after adaptive sampling, decentralization and trilinear interpolation, and 

then fed into the three-dimensional CNN model for pneumonia classification. c, Process: 

during training, the model outputs are used to calculate the weighted cross-entropy to 

update the network parameters. While testing, five independent predictions of each case are 

incorporated to report the predictive diagnostic results.
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Fig. 3 |. Overview of CTs.
a, Radiological features correlated with COVID-19 pneumonia cases: ground glass opacity, 

interlobular septal thickening and consolidation are shown from left to right. b, Other 

non-COVID-19 cases, including healthy, other viral and bacterial pneumonia. c, Localized 

class-discriminative regions generated by GradCAM (in the heatmap) and annotated by 

professional radiologists (circled in red), for COVID-19 cases.
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Fig. 4 |. COVID-19 pneumonia identification performance of three-dimensional CNN models 
trained on four different data resources (Main Campus, Optical Valley, Sino-French and 
NCCID) individually and federatively.
a, Receiver operating characteristic curves when the models are tested on the data from 

China, in comparison with six professional radiologists, b, Receiver operating characteristic 

curves of the CNN models tested on the data from the United Kingdom. c, Numeric results 

of the test sensitivity, specificity and area under the curve (AUC, with 95% confidence 

intervals and P-values).
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Fig. 5 |. Trade-off on the performance and communication cost in federated training.
a, Relationships between transmission expense and model generalization. b, Estimated time 

spent at different communication/synchronization intervals. The statistics is measured based 

on a joint FL training of two clients. Each client has 200 CTs and 100 CTs for training and 

testing, respectively. The client’s software infrastructure is a single-core of GPU (NVIDIA 

GTX 1080Ti) and a CPU (Xeon(R) CPU E5–2660 v4 @ 2.00 GHz). The bandwidth for 

transmission is around 7.2 Mb s−1 (900 KB s−1), which is the average broadband speed.
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