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Abstract
Hepatoblastoma, the most frequently diagnosed primary paediatric liver tumour, 
bears the lowest somatic mutation burden among paediatric neoplasms. Therefore, 
it is essential to identify pathogenic germline genetic variants, especially those in on-
cogenic genes, for this disease. The tRNA methyltransferase 6 noncatalytic subunit 
(TRMT6) forms a tRNA methyltransferase complex with TRMT61A to catalyse adeno-
sine methylation at position N1 of RNAs. TRMT6 has displayed tumour-promoting 
functions in several cancer types. However, the contribution of its genetic variants 
to hepatoblastoma remains unclear. In this study, we investigated the association be-
tween four TRMT6 polymorphisms (rs236170 A > G, rs451571 T > C, rs236188 G > A 
and rs236110 C > A) and the risk of hepatoblastoma in a cohort of 313 cases and 1446 
healthy controls. Germline DNA was subjected to polymorphism genotyping via the 
TaqMan qPCR method. Odds ratio (OR) and 95% confidence interval (CI) were used 
to determine hepatoblastoma susceptibility variants. The rs236170 A > G, rs236188 
G > A and rs236110 C > A polymorphisms were significantly associated with hepato-
blastoma risk. Combination analysis of the four polymorphisms revealed that chil-
dren bearing 1–4 risk genotypes were at significantly enhanced hepatoblastoma risk 
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1  |  INTRODUC TION

N1-methyladenosine (m1A), one of the chemical modifications, is lo-
cated on the first nitrogen atom of adenosine in RNA. m1A is present 
ubiquitously in mRNA, rRNA, lncRNA and tRNA but is most enriched in 
tRNA. By affecting RNA base pairing, m1A profoundly impacts RNA's 
structure, stability, translation and function. For instance, m1A at po-
sition 58 of tRNA is critical for maintaining the proper structure of 
tRNA and stability and starting the translational process; lack of m1A 
modification in this site was reported to induce tRNA-derived small 
RNAs (tDRs), facilitating ribosome assembly and leading to malignant 
transformations.1 Several methyltransferases that catalyse RNA m1A 
modification have been identified, including the tRNA methyltransfer-
ase 6 (TRMT6), TRMT61A, TRMT61B, TRMT10C and NML.2 TRMT6 
and TRMT61A form a functional heterotetramer complex to deposit 
N1-methylation in target RNA. TRMT6, the noncatalytic subunit of 
the methyltransferase complex, is responsible for tRNA binding, while 
TRMT61A, carrying a methyl donor binding pouch, acts as the cata-
lytic subunit.2 Recently, increasing evidence indicates that TRMT6 is 
preferentially expressed in cancerous tissues and plays an oncogenic 
role in various types of cancer, such as glioma,3 bladder cancer1 and 
hepatocellular carcinoma (HCC).4,5

Hepatoblastoma, the most common primary paediatric liver ma-
lignancy, is extremely rare, with an annual incidence varying from 
1.2 to 1.5 cases per million.6 In particular, it was estimated that the 
incidence rate of hepatoblastoma is about 1.4 per million Chinese chil-
dren yearly.7 Hepatoblastoma is an embryonal tumour arising from 
hepatoblasts, which often exhibits mixed histological patterns rep-
resenting different developmental stages of the liver. Several factors 
seem to increase the risk of hepatoblastoma, including inferior birth 
status (premature birth and very low birth), some treatments (Oxygen 
therapy, furosemide, total parenteral nutrition [TPN] and radiation) 
and toxins (e.g. plasticizers). Besides, hereditary predispositions also 
contribute to the development of hepatoblastoma. For instance, 
several constitutional genetic syndromes have shown associations 
with increased hepatoblastoma risk, such as Trisomy 18/Edward's 
syndrome, Beckwith–Wiedemann syndrome (BWS) and familial ad-
enomatous polyposis (FAP). Unlike adult tumours with high somatic 
mutation prevalence, germline variants in cancer susceptibility genes 
are often reported in paediatric cancers, which may contribute to 
8%–10% of paediatric tumours. Additionally, previous findings indicate 

that hepatoblastoma harbours the fewest somatic mutations out of all 
solid childhood tumours, underlying the importance of genetic vari-
ants in the pathogenesis of hepatoblastoma.8 Other and our research 
teams have identified hepatoblastoma susceptibility genetic variants 
in many genes, including MPO, CCND1, LIN28B, HMGA2, XPC, YTHDF1, 
YTHDC1, WTAP, WDR4 and METTL1.9–18

Although different research teams confirmed the contributing 
role of TRMT6 in the carcinogenesis of HCC,4,5 its impacts on hepa-
toblastoma are unknown. Besides, no studies have reported the as-
sociations between genetic polymorphisms of the TRMT6 gene and 
the risk of hepatoblastoma. Our research aims to identify pathogenic 
genetic polymorphisms for hepatoblastoma in Chinese children with 
a cohort of 313 cases and 1446 healthy controls.

2  |  MATERIAL S AND METHODS

2.1  |  Patient and study design

Patients were diagnosed with hepatoblastoma as manifested by evi-
dence from clinical examinations, laboratory testing, pathological 
examination and imaging. Sufficient peripheral whole blood samples 
were obtained from participants for analysis. Cases (n = 313) were all 
Han Chinese descendants younger than 14 years of age. They were 
diagnosed in seven independent hospitals in Guangzhou, Kunming, 
Changsha, Taiyuan, Xi'an, Zhengzhou and Shenyang. Children who 
underwent health check-ups in those hospitals during a similar pe-
riod were recruited as healthy controls (n = 1446) to minimize selec-
tion bias. Patients and controls were matched concerning age and 
sex (Table S1).12 We staged the patients according to the PRETEXT 
classification.19 All patients offered informed consent for molecular 
research before being recruited. The study was conducted with a pro-
tocol (No: 202016601) authorized by the institutional review board of 
Guangzhou Women and Children's Medical Center. Participants' epi-
demiological and clinical characteristics were described previously.12

2.2  |  Genotyping and selecting polymorphisms

We arbitrarily chose the candidate single nucleotide 
polymorphisms (SNPs) for this study from the dbSNP database 

compared to those without risk genotype (adjusted OR = 1.52, 95% CI = 1.19–1.95, 
p = 0.0008). We also conducted stratification analyses by age, sex and clinical stage. 
Ultimately, we found that the rs236110 C > A was significantly associated with the 
downregulation of MCM8, a neighbouring gene of TRMT6. In conclusion, we identified 
three susceptibility loci in the TRMT6 gene for hepatoblastoma. Our findings warrant 
further validation by extensive case–control studies across different ethnicities.

K E Y W O R D S
hepatoblastoma, m1A modification, polymorphism, susceptibility, TRMT6
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(http://​www.​ncbi.​nlm.​nih.​gov/​proje​cts/​SNP) following the previ-
ously published criteria.20–22 Only SNPs having potential biological 
functions, as suggested by SNPinfo (https://​snpin​fo.​niehs.​nih.​gov), 
were qualified for the study. Moreover, we only chose SNPs with low 
linkage disequilibrium (LD) (R2 < 0.8) (https://​ldlink.​nih.​gov/?​tab=​ldma-
trix). The four TRMT6 polymorphisms (rs236170 A > G, rs451571 T > C, 
rs236188 G > A and rs236110 C > A) showed low LD with each other, 
with R2 varying from 0.066 to 0.732. Regarding potential biological 
functions, the rs236110 C > A is located in an exonic splicing enhancer 
or exonic splicing silencer, to which a specialized protein binds to el-
evate or decrease the efficiency of exon inclusion. The rs236170 A > G 
in the miRNA binding site of the TRMT6 gene may impact the stability 
of its transcripts. The rs236188 G > A in the transcription factor bind-
ing site may potentially alter the affinity between certain transcription 
factors and the promoters of the TRMT6 gene. Finally, the rs451571 
T > C and rs236110 C > A are missense variants in the coding sequence 
and may lead to changes in amino acids during translation. Genomic 
DNA was extracted from participants' peripheral blood samples do-
nated before treatment using the Tiangen Blood DNA Extraction kits 
(Tiangen Biotechnology). Genotyping assays were performed using 
Taqman qPCR on a TaqMan platform (Applied Biosystems).

2.3  |  Statistical analysis

We first performed a goodness-of-fit chi-square test to check these 
SNPs' Hardy–Weinberg equilibrium (HWE) in the controls. Next, we 
assessed the SNPs' associations with hepatoblastoma susceptibility 
using the logistic regression analysis after adjustment for age, sex 
and clinical stage. The resulting odds ratio (OR) and 95% confidence 
interval (CI) were used to evaluate the significance of the associa-
tions. In the multivariate analyses, age, sex and the clinical stage 
were used as adjusted covariates. The following genetic models 
were employed to evaluate the association between the four SNPs 
and hepatoblastoma susceptibility: homozygous (WW vs. VV), het-
erozygous (WW vs. WV), dominant (WW vs. WV/VV) and recessive 
(WW/WV vs. VV) models. W and V depicted wild type and variant 
alleles of an SNP, respectively. The stratified analyses by age, sex 
and clinical stage were also carried out. In the last, we investigated 
the association between the above SNPs and expression levels of 
relevant genes, that is, expression quantitative trait locus (eQTL), 
using a web tool based on Genotype-Tissue Expression (GTEx) pro-
ject.23 All analyses were two-sided using SAS v9.1 software (SAS 
Institute Inc., Cary, NC), and a significance level of 0.05 was adopted.

3  |  RESULTS

3.1  |  Association study

Overall, 310 cases and 1444 healthy controls were genotyped 
successfully among the 313 cases and 1446 controls. Four poten-
tial functional TRMT6 polymorphisms (rs236170 A > G, rs451571 

T > C, rs236188 G > A and rs236110 C > A) were successfully 
genotyped and analysed for their contributions in hepatoblas-
toma susceptibility. The results are summarized in Table  1. We 
first performed a single locus analysis after confirming that the 
genotype distributions of these SNPs were not divergent from 
the Hardy–Weinberg equilibrium. Multivariate regression analy-
sis demonstrated that three TRMT6 polymorphisms (rs236170 
A > G, rs236188 G > A and rs236110 C > A) were significantly 
associated with susceptibility to hepatoblastoma (Table  1). 
Significant associations with decreased hepatoblastoma risk 
were observed under the heterozygous (adjusted OR = 0.74, 95% 
CI = 0.56–0.97, p = 0.031) and dominant (adjusted OR = 0.77, 
95% CI = 0.59–0.99, p = 0.039) models for rs236170 A > G, but 
under the heterozygous (adjusted OR = 0.68, 95% CI = 0.47–0.99, 
p = 0.043) model only for rs236188 G > A. Intriguingly, rs236110 
C > A showed either protective or detrimental effects under 
different genetic models, including the heterozygous (adjusted 
OR = 0.75, 95% CI = 0.57–0.997, p = 0.048), homozygous (ad-
justed OR = 2.76, 95% CI = 1.65–4.61, p = 0.0001) and recessive 
(adjusted OR = 3.01, 95% CI = 1.81–5.00, p < 0.0001) models. 
Moreover, we defined rs236170 AA, rs451571 CC, rs236188 AA 
and rs236110 AA as risk genotypes. The integrative analyses in-
dicated that 1–4 risk genotypes significantly conferred hepato-
blastoma susceptibility (adjusted OR = 1.52, 95% CI = 1.19–1.95, 
p = 0.0008).

3.2  |  Stratification analysis

We also stratified the association study by age, sex and clinical 
stage (Table 2). Under the dominant genetic model, the association 
between rs236170 and hepatoblastoma susceptibility remained 
significant in the subgroup of I + II stages (adjusted OR = 0.66, 95% 
CI = 0.48–0.92, p = 0.015). Regarding the recessive genetic model, 
the rs236110 was significantly associated with the risk of hepato-
blastoma, regardless of age, sex and clinical stage. Finally, 1–4 risk 
genotypes significantly contributed to hepatoblastoma predispo-
sition among both age groups, boys and subgroups of clinical I + II 
stages (Table 2).

3.3  |  Expression quantitative trait loci 
(eQTL) analysis

We finally interrogated whether the significant SNPs affected the 
expression of the TRMT6 gene or its nearby genes. The data from the 
GTEx website unveiled that the rs236110 C > A polymorphism was 
related to the altered expression of the minichromosome maintenance 
8 (MCM8) gene, located near the TRMT6 gene. Liver samples carry-
ing minor alleles of rs236110 C > A (CA and AA) have significantly 
lower expression levels of the MCM8 gene than those with CC al-
leles (Figure 1), suggesting the potential impacts of the SNP on the 
expression of crucial genes.

http://www.ncbi.nlm.nih.gov/projects/SNP
https://snpinfo.niehs.nih.gov
https://ldlink.nih.gov/?tab=ldmatrix
https://ldlink.nih.gov/?tab=ldmatrix
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4  |  DISCUSSION

Many keystone studies have shown that paediatric cancer is char-
acterized by a low burden of somatic mutations but a relatively high 
frequency of germline variants.24–27 Unlike adult cancers, the few re-
current somatic mutations are insufficient to interpret paediatric tu-
mours' initiation and clinical heterogeneity and to facilitate precision 
therapies. Instead, several studies suggest that specific pathogenic 
germline variants are promising in directing clinical management 
and risk stratification for solid tumours in children.28,29 Therefore, 

discovering disease-predisposing germline variants in paediatric 
neoplasms is indispensable for clinical decision-making, disease sur-
veillance and risk evaluation for patients, parents and siblings.

This study aimed to interrogate whether genetic variants in the 
TRMT6 gene predispose to hepatoblastoma. Our results demon-
strated that three TRMT6 polymorphisms (rs236170 A > G, rs236188 
G > A and rs236110 C > A) were able to modify hepatoblastoma risk 
in Chinese children individually. Moreover, the four studied SNPs col-
laboratively affected susceptibility to hepatoblastoma. We previously 
reported several hepatoblastoma-predisposing genes that regulate 
different types of RNA methylation, including YTHDF1,17 YTHDC1,14 

TA B L E  1 Association of TRMT6 gene polymorphisms with hepatoblastoma susceptibility.

Genotype
Cases 
(N = 310)

Controls 
(N = 1444) Pa Crude OR (95% CI) P

Adjusted OR (95% 
CIb Pb

rs236170 A > G (HWE = 0.012)

AA 121 (39.03) 475 (32.89) 1.00 1.00

AG 125 (40.32) 665 (46.05) 0.74 (0.56–0.97) 0.031 0.74 (0.56–0.97) 0.031

GG 64 (20.65) 304 (21.05) 0.83 (0.59–1.16) 0.265 0.83 (0.59–1.16) 0.269

Additive 0.152 0.88 (0.75–1.05) 0.152 0.88 (0.75–1.05) 0.154

Dominant 189 (60.97) 969 (67.11) 0.038 0.77 (0.59–0.99) 0.039 0.77 (0.59–0.99) 0.039

Recessive 246 (79.35) 1140 (78.95) 0.873 0.98 (0.72–1.32) 0.874 0.98 (0.72–1.32) 0.884

rs451571 T > C (HWE = 0.118)

TT 198 (63.87) 871 (60.32) 1.00 1.00

TC 92 (29.68) 514 (35.60) 0.79 (0.60–1.03) 0.083 0.79 (0.60–1.04) 0.090

CC 20 (6.45) 59 (4.09) 1.49 (0.88–2.53) 0.140 1.48 (0.87–2.51) 0.149

Additive 0.744 0.97 (0.78–1.19) 0.744 0.97 (0.78–1.20) 0.753

Dominant 112 (36.13) 573 (39.68) 0.245 0.86 (0.67–1.11) 0.245 0.86 (0.67–1.11) 0.258

Recessive 290 (93.55) 1385 (95.91) 0.068 1.62 (0.96–2.73) 0.071 1.60 (0.95–2.70) 0.079

rs236188 G > A (HWE = 0.477)

GG 270 (87.10) 1199 (83.03) 1.00 1.00

GA 36 (11.61) 236 (16.34) 0.68 (0.47–0.99) 0.042 0.68 (0.47–0.99) 0.043

AA 4 (1.29) 9 (0.62) 1.97 (0.60–6.46) 0.261 1.91 (0.58–6.25) 0.287

Additive 0.169 0.79 (0.57–1.11) 0.170 0.79 (0.57–1.10) 0.169

Dominant 40 (12.90) 245 (16.97) 0.079 0.73 (0.51–1.04) 0.080 0.73 (0.51–1.04) 0.080

Recessive 306 (98.71) 1435 (99.38) 0.214 2.08 (0.64–6.81) 0.224 2.01 (0.61–6.59) 0.249

rs236110 C > A (HWE = 0.036)

CC 205 (66.13) 925 (64.06) 1.00 1.00

CA 79 (25.48) 477 (33.03) 0.75 (0.56–0.99) 0.043 0.75 (0.57–0.997) 0.048

AA 26 (8.39) 42 (2.91) 2.79 (1.67–4.66) <0.0001 2.76 (1.65–4.61) 0.0001

Additive 0.333 1.11 (0.90–1.38) 0.333 1.11 (0.90–1.38) 0.325

Dominant 105 (33.87) 519 (35.94) 0.490 0.91 (0.71–1.18) 0.490 0.92 (0.71–1.19) 0.518

Recessive 284 (91.61) 1402 (97.09) <0.0001 3.06 (1.84–5.07) <0.0001 3.01 (1.81–5.00) <0.0001

Risk genotypesc

0 163 (52.58) 908 (62.88) 1.00 1.00

1–4 147 (47.42) 536 (37.12) 0.0007 1.53 (1.19–1.96) 0.0008 1.52 (1.19–1.95) 0.0008

Note: Values were in bold if the P 〈 0.05 or the 95 % CI excluding 1.00.
Abbreviations: CI, confidence interval; HWE, Hardy–Weinberg equilibrium; OR, odds ratio.
aChi-square test for genotype distributions between hepatoblastoma patients and cancer-free controls.
bAdjusted for age and sex.
cRisk genotypes were rs236170 AA, rs451571 CC, rs236188 AA and rs236110 AA.
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WTAP,12 WDR410 and METTL1.9 For instance, the rs7766006 in the 
WTAP gene, encoding a ‘writer’ that facilitates N6-methyladenosine 
(m6A) methylation of RNAs, decreased the risk of hepatoblastoma.12 
YTHDF1 can recognize the m6A modification in the RNAs and regu-
late their stability. The YTHDF1 rs6090311 G allele protects carriers 
from developing hepatoblastoma risk,17 and eQTL analysis elucidated 
the correlation between the YTHDF1 rs6090311 polymorphism and 
downregulated expression of its surrounding genes.17

TRMT6 interacts with TRMT61A and assists the latter in install-
ing m1A modification in RNA by receiving and binding to target tRNA. 
Elevated expression levels of TRMT6 have been observed in several can-
cers and often predict inferior prognosis.1,3–5 Wang et al. reported that 
the knockdown of TRMT6 impaired glioma cells' proliferation, migration 
and invasion, as revealed by CCK8, colony formation, Edu, transwell 
and wound healing assays.3 Wang and colleagues demonstrated that 
TRMT6/TRMT61A accelerated liver tumorigenesis by mediating m1A 
methylation of PPARδ translation-related tRNAs.5 The increased PPARδ 
protein products upregulated cholesterol synthesis, further stimulating 
hedgehog signalling and fueling liver CSCs' self-renewal.5 Interestingly, 
the TRMT6/61A complex also assists the base methylation of tRNA-de-
rived fragments. Su et  al. found abundant TRMT6/61A-dependent 
m1A in 22-nucleotides long 3′ tRNA fragments. TRMT6/61A-mediated 
higher m1A modification ablated gene silencing functions of tRF-3 s, 
consequently inducing unfolded protein response to maintain bladder 
cancer cells to survive stressful tumour microenvironment.1 Moreover, 
TRMT6 also promoted HCC progression via the PI3K/AKT signalling 
pathway.4 These studies indicate that TRMT6 is closely implicated in 
cancer. Ali et al. unveiled associations between genetic alterations and TA
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F I G U R E  1 GTEx analysis for the association between TRMT6 
rs236110 C > A polymorphism and MCM8 gene expression in liver 
tissue.
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the degree of mitochondrial RNA modification, verified across various 
tissue types.30 They reported that MRPP3 rs11156876 was significantly 
associated with increased methylation level of tRNA P9.30 TRMT61B 
rs11684695 TT genotype displays the highest methylation levels of 
RNR2 RNA among GG, TG and TT genotypes.30 They also demon-
strated that genetic variants associated with altered RNA modification 
levels were disease-causing among several disorders, such as abnormal 
blood pressure, breast cancer and psoriasis.30 Therefore, it is biologi-
cally reasonable that potential functional SNPs that affect the expres-
sion and function of TRMT6 may influence disease susceptibility.

Despite the exciting findings of the study, limitations are un-
avoidable. First, this study enrolled only participants of Han Chinese 
ethnicity. Therefore, our results may not be directly extrapolated 
to different ethnic groups. Second, the sample size was relatively 
moderate, especially the number of cases. Third, we did not explore 
the effects of these SNPs on clinical outcomes because we failed 
to obtain relevant information. Finally, function analyses should be 
conducted for the gene and significant SNPs.

In conclusion, we identified three hepatoblastoma susceptibil-
ity SNPs of the TRMT6 gene. These findings may facilitate the de-
velopment of screening tests in the context of genetic counselling 
and promote our understanding of genetic variants' contribution to 
hepatoblastoma susceptibility.
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