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Natural killer (NK) cell deficiency (NKD) is a rare disease in which NK cell
function is reduced, leaving affected individuals susceptible to repeated viral
infections and cancer. Recently, a patient with NKD was identified carrying
compound heterozygous variants of MCM10 (minichromosome maintenance
protein 10), an essential gene required for DNA replication, that caused a sig-
nificant decrease in the amount of functional MCM10. NKD in this patient
presented as loss of functionally mature late-stage NK cells. To understand
how MCM10 deficiency affects NK cell development, we generated MCM10
heterozygous (MCM10+/−) induced pluripotent stem cell (iPSC) lines. Ana-
lyses of these cell lines demonstrated that MCM10 was haploinsufficient,
similar to results in other human cell lines. Reduced levels of MCM10 in
mutant iPSCs was associated with impaired clonogenic survival and
increased genomic instability, including micronuclei formation and telomere
erosion. The severity of these phenotypes correlated with the extent of
MCM10 depletion. Significantly, MCM10+/− iPSCs displayed defects in NK
cell differentiation, exhibiting reduced yields of hematopoietic stem cells
(HSCs). Although MCM10+/− HSCs were able to give rise to lymphoid
progenitors, these did not generate mature NK cells. The lack of mature
NK cells coincided with telomere erosion, suggesting that NKD caused by
these MCM10 variants arose from the accumulation of genomic instability
including degradation of chromosome ends.
1. Introduction
Defects in DNA replication have been linked to multiple congenital diseases
that exhibit surprisingly different phenotypes [1]. One such disease is natural
killer (NK) cell deficiency (NKD). NK cells are lymphocytes of the innate
immune system that have cytotoxic and immunoregulatory roles in tumour sur-
veillance and viral clearance [2]. The predominant model for NK cell
development is a linear progression through 5 stages starting with hematopoie-
tic stem cells (HSCs) in the bone marrow, and transitioning through the
lymphoid progenitor (LP) stage to be committed to innate lymphoid develop-
ment at stage 3 in secondary lymphoid tissue [2–4]. The final stages of
development similarly take place in secondary lymphoid tissue. However,
both stage 4 and 5 NK cells can also be detected in peripheral blood [4–6].
Stage 4 cells have immunomodulatory roles and are identified by high cluster
of differentiation (CD) 56 surface expression and absence of T cell marker
CD3 [2]. These cells are thought to give rise to the more abundant cytotoxic
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stage 5 NK cells, which represent approximately 90% of all
NK cells in peripheral blood [5–7]. Stage 5 cells are character-
ized by low expression of CD56 and high expression of CD16
[8]. Generally, NK cells represent between 3 and 30% of the
lymphocyte population. However, in classical NKD they are
less than 1%, making individuals highly vulnerable to viral
infection [9–11]. Importantly, the closely related T and B cell
populations are unaffected [12]. Classical NKD has been
associated with pathogenic variants of several DNA replica-
tion genes, including minichromosome maintenance protein 4
(MCM4), MCM10, go-ichi-ni-san subunit 1 (GINS1), and
GINS4. Individuals with NKD caused by these variants pre-
dominantly have significant depletion of terminally
differentiated stage 5 NK cells [13–19].

DNA replication is a complex process required for cell
division and is conceptually divided into multiple steps: (1)
origin licensing, (2) origin firing, (3) elongation and (4) ter-
mination. During origin licensing, in G1 phase of the cell
cycle, two MCM2-7 complexes are loaded onto the DNA in
a head-to-head orientation at each origin [20,21]. During the
transition from G1 to S phase, the GINS complex and the heli-
case co-activator cell division cycle 45 (CDC45) bind to
MCM2-7 to form the CDC45:MCM2-7:GINS (CMG) helicase
[22,23]. MCM10 is known as a ‘firing factor’ that is essential
for CMG activation [22,24–26]. In addition to its role as a
firing factor, MCM10 has several additional functions in
DNA replication. In yeast, Xenopus egg extracts, and human
cells, MCM10 is important for recruitment of DNA polymer-
ase α [27–30]. Furthermore, in vitro studies have suggested
that MCM10 aids the replisome in bypassing bulky lesions
[31]. Additional studies have characterized a role for
MCM10 in inhibiting fork regression, maintaining fork stab-
ility and preventing unrestrained fork progression upon
encountering replication stress [30,32–34]. Altogether, these
observations suggest that MCM10 plays an important role
in both replication initiation and maintenance of efficient
DNA synthesis throughout elongation.

Inefficient DNA replication precipitates genomic instabil-
ity. Telomeres are particularly vulnerable to incomplete
replication and are considered ‘difficult-to-replicate’ regions.
This is due, in part, to their lack of replication origins and
reliance on replisomes initiating in nearby subtelomeric
regions [35,36]. If these subtelomeric origins are not activated,
cells are reliant on origins of replication even further from the
telomere, increasing the probability that they will stall and
prevent complete replication of chromosome ends [35]. In
addition, as the replisome encounters telomeric DNA, it
must replicate through a highly repetitive sequence that is
prone to form secondary structures (e.g. G-quadruplexes)
[37]. Ultimately, incomplete replication can lead to telomere
loss. We recently described increased telomere erosion and
other forms of genomic instability in human cell lines that
modelled MCM10 patient variants [38]. Interestingly, these
phenotypes were more severe in transformed HCT116 than
in non-transformed hTERT RPE-1 cells, suggesting that
there are cell type specific MCM10 thresholds for robust
maintenance of genome stability [38]. These observations
led us to hypothesize that inefficient DNA replication leads
to genomic instability during NK cell differentiation that inhi-
bits NK cell development. In this study, we generated
MCM10 heterozygous (MCM10+/−) induced pluripotent
stem cells (iPSCs) to assess telomere maintenance throughout
NK cell differentiation.
We show here that MCM10 is haploinsufficient in iPSCs
leading to genomic instability and poor clonogenic survival.
We isolated and characterized two clones that expressed
different levels of MCM10, allowing us to evaluate the level
of genomic instability related to different doses of MCM10.
Both MCM10+/− clones had increased levels of micronuclei,
a hallmark of genomic instability, but only the clone expres-
sing less MCM10 exhibited telomere erosion at the iPSC
stage. Despite these differences, mutant clones were equally
impaired in their ability to generate HSCs and mature NK
cells. We assessed telomere length as cells progressed from
iPSCs to NK cells and observed a normal degree of telomere
erosion in wild-type (WT) cells. However, in MCM10
deficient cells telomere shortening was more significant, lead-
ing to an increase in chromosome ends lacking detectable
telomere signal, ‘signal-free ends’ (SFE), at the NK cell
stage. Taken together, we demonstrate that MCM10+/−

iPSCs exhibit genomic instability and that the differentiation
into NK cells is impacted at two stages, the generation of
HSCs and mature stage 5 NK cells.
2. Results
2.1. MCM10 is haploinsufficient in induced pluripotent

stem cells
We previously reported compound heterozygous variants of
MCM10 that caused NKD and restrictive cardiomyopathy,
respectively [18,38]. In these patients, one allele was null
and the second was hypomorphic [18,38]. When modelling
these variants in transformed HCT116 and non-transformed
hTERT-immortalized RPE-1 human cell lines, we demon-
strated that MCM10 was haploinsufficient. Reduction of
MCM10 in both cell types resulted in fewer active replication
forks, but only HCT116 mutants had a measurable impair-
ment of global DNA synthesis and resulting impact on cell
cycle distribution. Despite normal cell cycle distribution,
MCM10+/− RPE-1 cells exhibited a reduction in proliferation
and increased apoptosis [18,38]. To understand the effects
of MCM10 deficiency during differentiation, we targeted
exon 3 of MCM10 in iPSCs derived from adult female
dermal fibroblasts (iPS12-10) with clustered regularly inter-
spaced short palindromic repeats (CRISPR) and CRISPR-
associated protein 9 (CRISPR/Cas9) (figure 1a). We isolated
two MCM10 heterozygous clones (2 and 10), and one non-
targeted clone (NT) that retained two normal MCM10 alleles
(figure 1b and electronic supplementary material, figure S1a).
We included this NT clone to ensure that the observed effects
were not due to genome editing per se, but to the monoallelic
knockout of MCM10. Following gene targeting, cell lines
retained key iPSC characteristics including octamer-binding
transcription factor 4 (OCT4) expression and normal
morphology (electronic supplementary material, figure S1b).

Similar to our model cell lines, we found that MCM10+/−

iPSCs had a significant reduction in protein expression in com-
parison to parental WT cells. Moreover, we observed a nearly
two-thirds reduction of chromatin bound MCM10 (figure 1c,d
and electronic supplementary material, figure S1c,d). Interest-
ingly, although mutant clone 10 appeared to have lower
MCM10 expression compared to mutant clone 2, both clones
maintained a similar level of chromatin bound MCM10. We
hypothesized that this reduction of MCM10 would cause
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Figure 1. MCM10 is haploinsufficient in iPSCs. (a) Schematic of MCM10 indicating the location of CRISPR/cas9 gene targeting. Enlarged schematic of exon 3 has
green arrows indicating location of primers used for genotyping, a red/purple box indicating the location of the guide RNA, and a blue box indicating the location of
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Lamin B1 as the loading control from chromatin extracts. Ubiquitinated form of MCM10 is indicated by an asterisk. Degradation product of MCM10 is indicated by
two asterisks. (e) Representative image of clonogenic survival in which 2000 cells were plated. ( f ) Quantification of clonogenic survival from 5 biological replicates.
Each individual point (black symbols) represents a technical replicate (3 per biological replicate). Error is indicated as standard deviation (s.d.). Significance was
calculated using one-way ANOVA. *<0.05, ****<0.0001.
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defects in cell growth and survival. To assess this, we com-
pared the ability of single cells from the MCM10+/−, NT and
parental WT populations to form colonies. Both MCM10+/−

clones, but not the NT clone, had a significant reduction in
clonogenic survival compared to the parental cell line
(figure 1e,f ). Together, these results demonstrate that MCM10
is haploinsufficient in human iPSCs.
2.2. Cell cycle distribution appears unaltered in MCM10
induced pluripotent stem cell mutants

We previously reported that transformed MCM10 mutant
cells showed a reduction in the rate of DNA synthesis and
a decrease in the S phase population. However, that was
not true for non-transformed mutant cells, implying that
the latter were less sensitive to MCM10 depletion [38].
Moreover, during the generation of iPSCs dynamics of
DNA replication can change dramatically, including
variations in fork speed and the number of active replica-
tion origins [39–41]. Thus, we were curious as to whether
iPSCs behaved similarly to highly proliferative transformed
or non-transformed cells [32]. We used quantitative
chromatin flow cytometry to assess cell cycle distribution,
origin licensing and the rate of DNA synthesis. To perform
these analyses, we pulse-labelled iPSCs with 5-ethynyl-20-
deoxyuridine (EdU) for 30 min followed by isolation of
nuclei and extraction of proteins not bound to chromatin.
We then stained for EdU, MCM2 and total DNA content
with 40,6-diamidino-2-phenylindole (DAPI). The combination
of DAPI staining and EdU labelling allowed for precise
identification of replicating cells and staining of chromatin
bound MCM2 was used to assess origin licensing
(figure 2a). We confirmed that the MCM10+/− iPSC clones
maintained normal licensing, indicated by equivalent levels
of MCM2 loading in G1 phase when compared to WT (elec-
tronic supplementary material, figure S2a,b). The cell cycle
distribution was not significantly different between the
MCM10+/− iPSC clones and either parental WT or NT cells,
nor did we see any differences in DNA synthesis when com-
paring maximal or mean EdU intensities (figure 2a–c).
Consistent with these results, all cell lines had similar
amounts of chromatin bound proliferating cell nuclear anti-
gen (PCNA), a critical DNA polymerase processivity factor
present at all replication forks (figure 2d ). These results
were similar to those previously reported for MCM10+/−

non-transformed RPE-1 cells [18,38]. It is worthwhile to
note that both mutant iPSCs and RPE-1 cells nevertheless dis-
played significant proliferation defects. Finally, to understand
if MCM10+/− iPSC clones experience increased DNA double
stranded breaks (DSBs), we performed western blot analyses
for phosphorylated KRAB-associated protein-1 (KAP1) and
phosphorylated histone H2AX (γH2AX; figure 2f ). KAP1 is a
target of the Ataxia-telangiectasia mutated (ATM) kinase and
histone H2AX is a target of both the Ataxia telangiectasia
and Rad3 related (ATR) and ATM kinases. While phospho-
KAP1 showed a strong signal in etoposide treated WT
iPSCs, it was undetectable in all untreated cell lines
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independent of MCM10 status. Interestingly, untreated NT or
MCM10+/− iPSC clones showed elevated γH2AX levels in com-
parison to WT, although this remained lower than in etoposide
treated WT iPSCs. Taken together, these data imply that
MCM10 deficient iPSCs did not generate DSBs. It is important
to note that the level of global replication stress as indicated by
γH2AX levels was identical in the NT and MCM10+/− iPSC
clones. This implies that phenotypic differences between
MCM10 proficient or deficient iPSCs cannot simply be
attributed to an increase in general replication stress.

2.3. MCM10+/− induced pluripotent stem cells exhibit
decreased survival due to increased genomic
instability

Chronic replication stress has cumulative effects over time
and is not always evident in a single cell cycle ‘snapshot’.
Since we did not observe cell cycle abnormalities, we hypoth-
esized that our MCM10+/− clones had reduced survival due
to chronic replication stress undetectable by flow cytometry.
Both telomere erosion and micronuclei formation are hall-
marks of genomic instability that may arise from replication
stress [42]. In addition, we previously demonstrated that
MCM10 deficient cell lines are prone to telomere erosion
[38]. When we used telomere restriction fragment (TRF)
assays to interrogate telomere length in the iPSC cell lines,
we observed a reduction in average telomere length from
approximately 13 kb in parental WT cells to 7.5 kb in
mutant clone 10 but did not see a reduction in NT or
mutant clone 2 cells (figure 3a and electronic supplementary
material, figure S3a). As a complementary approach, we used
telomere fluorescence in situ hybridization (T-FISH) followed
by quantitative measurement of fluorescence intensities on
metaphase spreads to examine changes in telomere length.
One key advantage of this method is that it requires fewer
cells. To confirm the accuracy of this assay we utilized three
HCT116 cell lines including WT, WT overexpressing ‘super-
telomerase’ (ST), and MCM10+/− clone 8 [43]. We previously
used TRF analyses to demonstrate that HCT116 ST telomere
length is greater than 12 kb, that of HCT116 WT is 5–6 kb
and of HCT116MCM10+/− clone 8 is 2–4 kb [38]. Consistently,
when we assessed telomere signals on metaphase spreads, ST
cells had average signal intensities 1.9-fold higher than WT.
WT intensities, in turn, were on average 1.7-fold higher
than those of HCT116 MCM10+/− clone 8, in agreement
with our previous studies (electronic supplementary
material, figure S3b). These results demonstrate that quanti-
tative measurement of telomere fluorescence on metaphase
chromosomes recapitulates telomere measurements using
TRF analysis. We therefore used quantitative T-FISH to
measure relative telomere length in iPSCs. Interestingly,
mutant clone 10 had a significant reduction of average telo-
meric signal compared to WT, NT and mutant clone 2. The
small but statistically significant reduction in average telo-
mere signal intensity for mutant clone 2 and the NT clone
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in comparison to parental WT cells was likely due to telomere
erosion associated with normal cell culturing, as these two
clones were not different from each other (electronic
supplementary material, figure S3c). These results were
consistent with the TRF analysis of the same cell lines
(electronic supplementary material, figure S3c).

Telomere erosion is not the only measure of genomic
instability. We also quantified micronuclei, which occur
as a result of defects in chromosome segregation, nuclear
envelope assembly or through generation of acentric
chromosomes [44]. To this end, we counted the number
of micronuclei per iPSC colony and normalized it to
the number of nuclei in each colony. We observed a signifi-
cant increase in micronuclei in both MCM10+/− clones
(figure 3b,c and electronic supplementary material, figure
S3d ). Interestingly, a subset of micronuclei for both WT
and MCM10+/− cells contained telomeres, as indicated by
T-FISH (figure 3d ), suggesting that telomere erosion and
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micronuclei formation might be connected. To further evalu-
ate whether micronuclei formation is linked to telomere
defects in MCM10 mutant iPSCs, we performed FISH ana-
lyses for both telomeres and centromeres in MCM10+/−

clone 10 (figure 3e). The majority of micronuclei (83%) con-
tained telomere foci, with a subset of those also containing
centromere foci (20% of telomere positive micronuclei, and
17% of all micronuclei). Notably, we did not observe micro-
nuclei containing only centromere foci. In addition, a
fraction of micronuclei contained diffuse or ‘hazy’ centromere
FISH signals, suggesting that centromeric DNA in these
micronuclei was under-condensed (electronic supplementary
material, figure S3e). Although elevated telomere erosion and
micronuclei formation did not lead to a significant increase in
apoptosis, measured by Annexin V expression (electronic
supplementary material, figure S3f ), they are clear indicators
of increased genomic instability which—over multiple cell
divisions—likely culminated in poor clonogenic survival of
MCM10+/− iPSCs.
 407
2.4. MCM10 deficiency impacts multiple steps of
natural killer cell differentiation

Because NKD is caused by compound heterozygous variants
in MCM10, we wanted to explore the ability of MCM10+/−

mutant iPSCs to differentiate into NK cells. To achieve this,
we utilized a protocol in which iPSCs were seeded in a micro-
well plate. Within each well an embryoid body forms
containing CD34+ HSCs with supporting stromal cells.
After 12 days, these embryoid bodies were dissociated and
the HSC population was isolated. HSCs were then plated
and further differentiated for 14 days into LPs. These were
collected and plated for differentiation over an additional
14 days into NK cells (figure 4a). The predominant cell type
derived from this in vitro differentiation protocol are stage 4
NK cells [45–47]. However, we were able to generate a
small population of stage 5 NK cells, allowing us to assess
the effect of MCM10 deficiency on all stages of NK cell
development.

Prior to purification of CD34+ HSCs and differentiating
HSCs into LPs, we sampled WT and mutant populations to
compare the production of CD34+ HSCs from parental WT or
MCM10+/− iPSCs. We observed a significant reduction of the
CD34+ HSC population in both MCM10 mutant cell lines
(figure 4b). This resulted in a strong reduction in the number
of CD34+ HSCs produced per iPSC in clones 2 (73% less) and
10 (60% less) (figure 4c). Notably, total cells produced per
seeded iPSC were equivalent following embryoid body dis-
sociation in MCM10+/+ or MCM10+/− populations (electronic
supplementary material, figure S4a). This suggests that the
reduction in CD34+ cells was not due to reduced cell prolifer-
ation, but defective differentiation into CD34+ HSCs. When
HSCs were directed towards LP differentiation, we did not
observe a change in the total number of cells produced per
HSC (figure 4d). Similarly, therewas not a significant reduction
in the number of CD56+ CD3+ NK cells which could be either
stage 4 or 5 at the completion of the differentiation protocol
(figure 4e). Conversely, there was essentially no production of
mature stage 5 NK cells from either MCM10+/− iPSC clone
(figure 4f ). We assessed cytokine production and surface
CD107a expression, a measurement for NK cell activation
that correlates with cytokine secretion and killing potential of
stage 4 and stage 5 NK cells in the presence of K562 target
cells [48]. We did not see a significant difference in surface
CD107a or TNFα and IFNγ production between WT and
MCM10+/− derived stage 4 NK cells. This suggests that these
MCM10+/− stage 4 NK cells were functional (figure 4g,h
and electronic supplementary material, figure S4b–e). In sum-
mary, our in vitro differentiation experiments revealed that
although MCM10+/− iPSC clone 10 exhibited a more severe
genomic instability phenotype than clone 2, the ability
of MCM10 mutants to differentiate into mature stage 5 NK
cells was severely impacted in both clones. Based on our
data, loss of MCM10 affected differentiation as early as the for-
mation of HSCs and culminated in the lack of mature stage 5
NK cells.
2.5. Defects in natural killer cell development are
accompanied by telomere erosion

We hypothesized that the loss of mature stage 5 NK cells is
accompanied by accumulation of genomic instability.
Because our previous work showed that loss of MCM10
can lead to accelerated telomere erosion, we set out to exam-
ine telomere length in the different stages of NK cell
development in vitro. We utilized T-FISH on metaphase
spreads to measure average telomere signal intensity and
quantify SFEs. SFEs are chromosome ends with undetectable
telomere signal that is indicative of a critically short telomere.
This is a particularly informative measure because a single
critically short telomere, rather than shorter average telomere
length as measured by TRF, can trigger cell cycle arrest and
apoptosis [49]. We first looked at the development of iPSCs
to CD34+ HSCs. We observed that HSCs derived from
MCM10+/− iPSC clone 10 had more than double the
number of SFEs and significantly reduced average telomere
signal compared to parental WT cells (figure 5a and elec-
tronic supplementary material, figure S5a). However, HSCs
derived from clone 2 did not have a difference in SFEs com-
pared to parental WT controls (figure 5a and electronic
supplementary material, figure S5a). This was surprising
because both clones had defects in HSC differentiation. The
reduced generation of HSCs may therefore be driven by
genomic instability at other regions of the genome. When
we evaluated cells differentiated into LPs, clone 10 had
reduced average telomere intensity compared to WT (elec-
tronic supplementary material, figure S5b). However,
neither MCM10+/− clone had a significant increase in SFEs
compared to WT LPs (figure 5a). Altogether this suggests
that MCM10 deficiency has a minor impact on telomere
stability during differentiation from iPSC to HSCs and
subsequently to LP cells.

Finally, we utilized both quantitative T-FISH and TRF
analyses to assess telomere length in NK cells. WT NK cell
populations were a mixture of stage 4 and 5 cells, whereas
MCM10+/− NK cells were exclusively stage 4. Metaphase
analysis of MCM10+/− NK cells derived from clones 2 and
10 demonstrated a reduction in average telomere signal by
approximately 30% for each population (figure 5b). Impor-
tantly, TRF data for iPSC clone 10 and its derived NK cells
showed that telomeres not only shortened during in vitro
differentiation but exhibited greater length heterogeneity as
indicated by the broad signal extending from 15 kb to
below 3 kb (figure 5c). This implies that some of these cells
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have very short telomeres. Unfortunately, we were unable to
collect enough MCM10+/− iPSC clone 2 derived NK cells to
perform a TRF analysis. However, we measured SFEs for
NK cells generated from clones 2 and 10, and each displayed
an approximately 10-fold increase in telomere loss compared
to WT NK cells (figure 5a). Together, these data show that
early steps in NK cell differentiation up to the stage of
HSCs were impacted by genomic instability that cannot be
explained by telomere shortening alone. However, sub-
sequent differentiation steps induced accelerated telomere
erosion in MCM10+/− mutants. This telomeric loss appeared
to predominately take place past the differentiation into LPs
and during NK cell maturation. These observations suggest
that later stage NK cell development is sensitized to defects
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in telomere replication. This is consistent with the patient
phenotype in which only the NK cell lineage is affected by
MCM10 deficiency while other closely related lymphoid
lineages remain intact.
3. Discussion
MCM10 is critical for efficient DNA replication and its acute
depletion results in severe genomic instability [50–52].
We have previously demonstrated that chronic MCM10
deficiency leads to increased cell death, the accumulation of
genomic aberrations and telomere maintenance defects [38].
This study extends these results by recapitulating the
reduced viability, elevated genomic instability and haploin-
sufficiency in human iPSCs [38]. A single null allele of
MCM10 is not sufficient to generate disease in humans,
nor does it impact mouse development [18,38,53]. Rather,
both alleles of MCM10 must either produce a severely
reduced level of WT MCM10 or a hypomorphic form of
MCM10 [18,38]. In this study, we selected two mutant iPSC
clones that expressed different levels of MCM10. Both
mutations significantly reduced cell survival, and the severity
of telomere erosion correlated with the level of MCM10
depletion. These observations explain why biallelic patient
variants caused NKD, but heterozygous parents remained
unaffected [18].

Both MCM10+/− iPSC clones had similar amounts of
chromatin bound MCM10 despite differences in total
MCM10 expression. Yet, the clone that showed a higher
degree of depletion also displayed more severe hallmarks of
genome instability. One explanation for the differences seen
between these clones is that a depleted pool of unbound
MCM10 limits the exchange kinetics when MCM10 dissociates
from chromatin. This may not affect origin firing but could
impact replisome progression through ‘hard-to-replicate’
regions of the genome, including telomeres. Several studies
have suggested that low levels of MCM10 are required for
origin firing, while MCM10’s role during elongation is depen-
dent on higher protein pools [27,30,54,55]. Furthermore, there
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is evidence in yeast that multiple copies of Mcm10 are present
at each replication fork [26,27]. The role of MCM10 during
elongation includes recruitment of DNA polymerase α,
bypassing lagging strand blocks and stabilizing the replication
fork [27–30,34]. Yeast, Xenopus, and human MCM10 are each
capable of dimerizing in vitro and in vivo [56–59], aiding in ser-
ving as a scaffold for its multiple protein binding partners
[58,60]. Through protein interactions, MCM10 has been impli-
cated in preventing replication fork regression as well as
unrestrained re-priming upon encountering replication stress
[30,32,33]. In yeast, the N-terminal coiled coil domain of
Mcm10, which mediates self-association, is needed to elicit a
robust response to certain types of replication stress, but it
remains unclear whether this function is conserved in
human cells [61]. A reduction in free MCM10 could affect
both transient association with the replication fork and the
protein’s propensity to self-interact.

Replication elongation through telomeres poses inherent
challenges to replisomes due to their propensity to form sec-
ondary structures that can inhibit replication fork progression
[36,62]. We previously demonstrated in HCT116 and RPE-1
cells that a reduction of MCM10 expression below 50% resulted
in telomere erosion. In our iPSC lines this was not the case;
instead more severe depletion of MCM10 was required to
elicit telomere erosion. These data support the notion that cell
type specific thresholds for MCM10 expression exist, causing
different levels of replication stress and telomere instability.
Telomere erosion in MCM10+/− HCT116 cells was due to pre-
mature fork stalling within telomeric DNA [38]. We suspect a
similar phenomenon is occurring in MCM10+/− iPSCs at a
rate that is insufficient for checkpoint activation. This allows
cells with under-replicated DNA to escape into mitosis where
stalled replication forks can lead to chromosome breaks and
mis-segregation, known causes of micronuclei formation. If
forks stalled in telomeres, we would expect to see chromosome
fragments with telomeric sequences packaged into micronuclei
[44]. Indeed, we observed telomere fragments within the vast
majority (83%) of micronuclei in MCM10+/− clone 10
suggesting that the formation of most micronuclei was linked
to telomere maintenance defects when MCM10 levels were
significantly reduced.

We believe the telomere erosion phenotype is critical to the
tissue specific pathologies seen in MCM10+/− patients,
although replication of other genomic loci, for instance
common fragile sites, is presumably also affected by MCM10
deficiency [38,63]. This hypothesis is supported by evidence
in the literature. First, pathogenic variants in regulator of telo-
mere length 1 (RTEL1), a binding partner of MCM10 [64,65],
have also been reported in NKD patients. RTEL1 is
well characterized as a telomere maintenance protein and
pathogenic variants of RTEL1 are also linked to telomeropa-
thies [66–68]. RTEL1-linked telomeropathies exhibit earlier
onset of NK and combined NK and B cell deficiencies [68].
In addition, while telomeres were not directly assessed, fibro-
blasts isolated from NKD patients with GINS1 and MCM4
pathogenic variants demonstrate increased genomic instability
[16]. Interferon regulatory factor 8 (IRF8) pathogenic variants can
also lead to NKD, and although this transcription factor regu-
lates expression of many proteins, its notable targets include
telomerase and other replication proteins [69–71]. Finally,
other hematopoietic lineages may overcome excessive telomere
erosion through the upregulation of telomerase or through tel-
omerase independent mechanisms, as was recently described
in T cells, thus making them less sensitive to telomere erosion
compared to NK cells [45,72–78].

We have demonstrated that MCM10+/− iPSCs are haploin-
sufficient and display significant genomic instability.
Differentiation places cells under considerable stress, often
requiring multiple rapid cell divisions. We previously
reported the inability of MCM10 deficient cells to differen-
tiate into NK cells in vitro and in vivo, but did not assess
telomere length or other genomic instability markers during
the course of this differentiation process [18]. Additionally,
we did not interrogate NK cell differentiation from iPSCs at
each transition point (HSC and LP). Here, we demonstrate
that MCM10+/− iPSCs show impaired generation of HSCs.
This defect in HSC development was surprising because we
did not observe significant perturbations of other blood cell
lineages in NKD patients [12,18]. Interestingly, Cacialli et al.
recently reported that Mcm10 is critical for HSC emergence
in zebrafish embryos, suggesting that the protein has an
evolutionarily conserved role in hematopoiesis [79]. We also
reported a second more severe combination of human
variants in MCM10 that caused fetal demise due to cardio-
myopathy and underdeveloped thymus and spleen,
consistent with the idea that cell type specific requirements
for the level of MCM10 expression exist. Interestingly, while
both MCM10+/− iPSC clones 2 and 10 displayed defects in
HSC generation, only clone 10 had measurable differences
in telomere length and signal free ends. This indicates that tel-
omere erosion is not driving the defect in HSC generation,
although we cannot exclude that these cells may experience
replication stress at telomeres without detectable erosion.
When we directed an equal number of HSCs to LP differen-
tiation, we harvested similar cell numbers in WT and
MCM10+/− cultures. However, these cells were not analysed
for surface markers and the mutants may have a different
proportion of LPs than WT controls. Most notably, we were
unable to yield any stage 5 NK cells from MCM10 deficient
LP populations, arguing that their differentiation potential
was severely compromised. These data not only recapitulate
the NKD patient phenotype but indicate that changes in each
cell type’s ability to tolerate telomere instability impacts the
differentiation of MCM10 mutants along the NK cell lineage.

Few studies have assessed telomere length in NK cells.
During normal development, NK cells, like any other cell
type, experience a steady decrease of telomerase expression
and continuous telomere shortening [75]. However, previous
studies relied on assessing telomere length in NK cells that
were acquired from peripheral blood or were already at stage
4 and 5. In our study, we analysed telomere maintenance at dis-
tinct stages of differentiation from iPSCs to mature NK cells. We
demonstrated thatNK cells derived fromWT iPSCs have shorter
telomeres than their parental stem cells, consistent with the idea
of steady erosion over time. Moreover, we observed telomere
shortening in MCM10+/− iPSCs differentiating into NK cells.
Despite differences in telomere length at the HSC stage, both
MCM10+/− clones had a significant increase in SFE and
reduction in telomere signal as cells transitioned from LPs into
NK cells, demonstrating this stage of development is particu-
larly sensitive to MCM10 depletion secondary to telomere
loss. Importantly, within the MCM10+/− population we saw
greater heterogeneity in telomere length by TRF analysis, and
increased SFEs. This is meaningful because one critically short
telomere can activate a DNA damage response and lead to
cell death or senescence [49]. The dramatic increase in SFEs in
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stage 4MCM10+/− NK cells suggests that the lack of CD16-posi-
tive stage 5NK cells is due to critically short telomeres. Thus, our
in vitro system recapitulates the patient phenotype and provides
a mechanism for the absence of mature stage 5 NK cells. In our
model (figure 6)wepropose that at each stage of differentiation a
minimal amount ofMCM10 is required.However, this threshold
ofMCM10 is variable duringdifferent stages ofNKcell develop-
ment, and manifests as an oscillating differentiation threshold.
When MCM10 levels are insufficient, telomere-driven genomic
instability impairs differentiation. This is compounded by
progressive telomere erosion with each proliferative cycle,
such that the differentiation threshold becomes insurmountable
in MCM10 mutants at the transition from stage 4 to stage 5
NK cells.
4. Material and methods
4.1. Cell culture
The iPS12-10 cell line was derived from adult female dermal
fibroblasts (Cell Applications, RRID:CVCL_C7XH) and was
cultured on tissue culture treated plates (6-well Costar 3506,
24-well Costar 3524) coated with Geltrex (ThermoFisher
A1413202) diluted 1:100 in Ham’s F12 (Corning 10-080-CV)
or Vitronectin XF (StemCell Technologies 100-0763) diluted
1:25 in CellAdhere Dilution buffer (StemCell Technologies
07183), in mTeSR PLUS (StemCell Technologies 05825) with
daily medium changes. For passaging, iPSCs were disso-
ciated briefly with Accutase (Innovative Cell Technologies
AT104-500) to maintain 3 to 5 cell aggregates. When cells
were thawed, they were cultured with 10 µm Y-27632 dihyr-
ochloride (ROCKi) (R&D 1254) for 1 day. HCT116 (ATCC,
CCL-247, RRID:CVCL_0291) cells were cultured in McCoys
5A medium supplemented with 10% FBS (Sigma F4135),
1% Pen Strep (Gibco 15140), and 1% L-glutamine (Gibco
205030). Cells were cultured at 37°C and 5% CO2.
4.2. Cell line generation using CRISPR/Cas9
To genetically engineer iPSCs, cells were dissociated into
single cells and 250 000 cells were transfected with 1 µg
Cas9 mRNA and 1 µg guide RNA targeting exon 3 of
MCM10 (Synthego Corporation, 50GAAGAAAATAACTTCT
TGACG) in Resuspension Buffer T (ThermoFisher) by electro-
poration with the Neon Transfection system (1100 V, 20 ms, 1
pulse, 10 µl tip, ThermoFisher MPK1025). Cells were grown
with 10 µm ROCKi for 2 days before resuming normal cultur-
ing conditions. Single clones were isolated by plating
transfected cells at low density and allowing colonies to
form. Colonies were then transferred to separate wells by
scraping. To assess targeting, primers to introns 2 and 3 of
MCM10 (forward: 50 GGAGACAAGGAGAACAAAGACC;
reverse: 50 GCTGGCCCAAACATTTCATC) were used to
amplify across exon 3 and the PCR product was digested
with HPY188III (NEB R0622). Protection from digestion indi-
cated one allele had an insertion/deletion or point mutation
disrupting this restriction site and Sanger sequencing was uti-
lized to confirm a mutation that would result in a null allele.
4.3. Protein extraction and western blotting
Cells were dissociated, counted and 300 000 cells were plated
per well of a 6-well plate in medium containing ROCKi. After
24 h the medium culturing returned to usual. Once approxi-
mately 60% confluent, cells were washed in PBS, pelleted,
and stored at −80°C. WT and mutant cells were collected at
similar confluency and colony size. For etoposide treatment,
WT cells were cultured with 10 µM etoposide (RPI E55500)
for 2 h. For whole cell extracts, cells were lysed in NETN
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buffer (0.005% NP-40, 1 mM EDTA, 20 mM Tris-HCl, pH 8.0,
100 mM NaCl) with protease inhibitors (leupeptin,
phenylmethylsulfonyl fluoride, N-ethylmaleimide, and pep-
statin) or in RIPA buffer (50 mM Tris-HCl, pH 8.0, 150 mM
NaCl, 10 mM NaF, 1% NP-40, 0.1% SDS, 0.4 mM EDTA,
0.5% sodium deoxycholate, 10% glycerol) for 10 min while
rotating. Soluble lysates were isolated by centrifugation at
16 000g for 10 min. Proteins were denatured by boiling in
the presence of SDS for 5 min and then separated by molecu-
lar weight on SDS-PAGE gel and analysed by western blot.
For chromatin fractionation, extracts were prepared by lysis
in Buffer A (10 mM HEPES, pH 7.9, 10 mM KCl, 1.5 mM
MgCl2, 0.34 M sucrose, 10% glycerol, 0.1% Triton X-100 and
protease inhibitors). Insoluble nuclear proteins were isolated
by centrifugation and chromatin-bound proteins were sub-
sequently released by sonication after being resuspended in
TSE buffer (20 mM Tris-HCl, pH 8.0, 500 mM NaCl, 2 mM
EDTA, 0.1% SDS, 0.1% Triton X-100 and protease inhibitors).
The remaining insoluble factors were cleared by centrifu-
gation before fractionation by SDS-PAGE and analysed by
western blot. Primary antibodies were diluted in 5% BLOT-
QuickBlocker (G-Biosciences 786-011) as follows: rabbit
anti-Mcm10 (Novus H00055388-D01P, RRID:AB_11047378;
1:500) mouse anti-GAPDH (GeneTex GTX627408, RRID:
AB_11174761; 1:5000), mouse anti-Tubulin (Sigma T9026,
clone DM1A, RRID:AB_477593; 1:10 000), mouse anti-
PCNA (Abcam ab29, RRID:AB_303394; 1:3000), rabbit anti-
Lamin B1 (Proteintech 12987-1-AP, RRID:AB_2136290;
1:3000), rabbit anti-ATM (Proteintech 27156-1-AP, RRID:
AB_2880780; 1:1000), mouse anti-KAP1 (Proteintech 66630-
1-IG, RRID:AB_2732886; 1:5000), rabbit anti-phosphorylated
KAP1 (Abcam ab133440; 1:1000), rabbit anti-H2AX (Bethyl
A300-083A, RRID:AB_203289; 1:10 000), rabbit anti-γ-H2AX
(Bethyl A300-081A, RRID:AB_203288; 1:5000). Secondary
antibodies goat anti-mouse HRP conjugate (Jackson Labora-
tories 115-035-003, RRID:AB_10015289) and goat anti-rabbit
HRP conjugate (Jackson Laboratories 111-035-144, RRID:
AB_2307391) were diluted in 5% BLOT-QuickBlocker at
1:10 000. Detection was performed using a WesternBright
Quantum detection kit (K-12042-D20) and quantification
was done with FIJI version 1.8.0_172 [80].

4.4. Immunofluorescence
Two days prior to staining, cells were dissociated, counted
and 50 000 cells were plated per well of a 24 well plate in
medium containing ROCKi. After 24 h, medium was
exchanged for fresh medium without ROCKi. After 24 h,
cells were fixed with 4% paraformaldehyde (Electron
Microscopy Sciences 15714) for 15 min at room temperature
and permeabilized with 0.1% Triton X-100 for 15 min at
room temperature. Cells were blocked in ABDIL (20 mM
Tris, pH 7.5, 2% BSA, 0.2% fish gelatin, 150 mM NaCl, 0.1%
sodium azide) for 1 h at room temperature. Anti-OCT4
(Abcam ab200834, RRID:AB_2924374) was diluted 1:500 in
ABDIL and was applied to the slides overnight at 4°C.
Cells were washed 3 times with PBST (0.1% Tween in PBS)
before applying the secondary antibody (AlexaFlour 488
donkey anti-rabbit, Invitrogen A21206, RRID:AB_2535792)
diluted in ABDIL at 1:1000 for 1 h at room temperature.
Cells were washed 3 times with PBST, where the second
wash contained 5 µg ml−1 DAPI (Life Technologies D1306,
RRID:AB_2629482). Samples were imaged with an EVOS
FL imaging system (ThermoFisher AMF43000). For OCT4
imaging, colonies were first located in the DAPI channel.
For micronuclei images, colonies were first located in the
phase channel to prevent any bias in choosing colonies. For
micronuclei quantification, images were blinded, and micro-
nuclei and nuclei counted for each colony.

4.5. Clonogenic survival assay
iPSCs were dissociated to single cells and 2000 WT or 4000
MCM10+/− cells were plated in 6-well plates in triplicate for
each biological replicate. Qualitative images were plated at
2000 WT and MCM10+/− cells per well in a 6-well plate. For
the first 48 h cells were cultured in the presence of ROCKi
and then cultured as usual for a total of 6 days. Next,
medium was removed, colonies were gently washed with
PBS, fixed with 10% acetic acid/10% methanol solution in
PBS and stained with crystal violet. Excess stain was
washed off with distilled water. Plates were scanned using
an Epson Expression 1680 scanner and FIJI version
1.8.0_172 was used to count the number of colonies.

4.6. Fluorescent activated cell sorting analysis
For analyses during the differentiation protocol, cells
were washed in fluorescent activated cell sorting (FACS)
buffer (1% BSA in PBS) and stained with the indicated fluoro-
chrome-conjugated antibodies: CD3-APC (BioLegend 300412,
RRID:AB_314066), CD16-FITC (BioLegend 302006, RRID:
AB_314206), CD56-PerCP/Cy5.5 (BioLegend 318322, RRID:
AB_893389), and/or CD34-PE (BD Biosciences 555822,
RRID:AB_396151) at manufacturer recommended dilutions
for 30 min at 4°C. Following surface staining, cells were
washed 3 times in PBS and stained to assess viability (LIVE/
DEAD Fixable Aqua Dead Cell Stain Kit, ThermoFisher
L34965) for 30 min at 4°C. Excess LIVE/DEAD stain was
removed by washing cells 3 times with FACS buffer. Flow
cytometry data were obtained on an LSR II instrument (BD
Biosciences) with 20 mW Blue (488 nm), 40 mW Red
(640 nm), 25 mW Violet (405 nm) lasers and analysed by
FlowJo version v10.8.1_CL (BD Life Sciences) [81].

For analyses of apoptosis, two days prior to FACS, cells
were dissociated and 200 000 cells were plated per well of a 6
well plate in medium containing ROCKi. After 24 h, medium
was exchanged for fresh medium without ROCKi. After 24 h,
medium containing dead and dying cells and adherent cells
was collected and washed with PBS. For Annexin V and PI
staining to determine apoptosis rates, the APC Annexin V
apoptosis kit from BioLegend (640932) was utilized following
manufacturer instructions. Briefly, cells were resuspended in
Annexin V binding buffer and stained simultaneously with
APC Annexin V and PI solution for 15 min at room tempera-
ture. Flow cytometry data were obtained on an LSR II
instrument (BD Biosciences) with 20 mW Blue (488 nm),
40 mW Red (640 nm), 25 mW Violet (405 nm) lasers and ana-
lysed by FlowJo version v10.8.1_CL (BD Life Sciences) [81].

For flow cytometry analyses of cell cycle distribution, DNA
synthesis and origin licensing, nuclei were isolated and stained
for flow cytometry as previously described in Matson et al.
[82]. Briefly, cells were pulsed with 10 µm Edu for 30 min
before harvesting. Following harvesting, cells were extracted
on ice with CSK buffer (PIPES 10 mM, sucrose 300 mM,
NaCl 100 mM and MgCl2 3 mM) containing 0.5% Triton
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X-100, and protease/phosphatase inhibitors (1 mg ml−1

pepstatin A, 1 mg ml−1 leupeptin, 1 mg ml−1 aprotinin,
10 mg ml−1 phosvitin, 1 mM β-glycerol phosphate, and 1 mM
sodium orthovanadate). Nuclei were pelleted and then fixed
in 4% paraformaldehyde. Following fixation, EdU was
subjected to click reaction with Alexa Fluor 647 Azide anti-
body (Invitrogen A10277). Primary antibody staining for
MCM2 (mouse anti-MCM2, BD Biosciences 610700, RRID:
AB_2141952; 1:200) was completed for 1 h at 37°C followed
by secondary staining (donkey anti-mouse AF488 Jackson
ImmunoResearch Labs 715-545-150, RRID:AB_2340846;
1:10 000) for 1 h at 37°C. After washing, cells were resuspended
in 1% BSA, 0.1% NP-40, 1 µg ml−1 DAPI and 100 µg ml−1

RNase in PBS. The next day flow cytometry data were acquired
on a BD LSR II with 20 mW Blue (488 nm), 17 mW Red
(633 nm), 25 mW Violet (405 nm) lasers and data analysed by
FlowJo version v10.8.1_CL (BD Life Sciences) [81].

4.7. Telomere restriction fragment analysis
Cells were rinsed in 100 mM Tris and 100 mM EDTA, pH 8.0,
pelleted and stored at −80°C. The Gentra Puregene Cell Kit
(Qiagen 158445) extraction protocol was used to isolate geno-
mic DNAwith the use of 20% SDS for cell lysis instead of the
provided reagent. To confirm that DNA was not degraded,
approximately 0.25 µg was fractionated on a 1% TAE gel.
To assess telomere length, genomic DNA was digested with
HinfI (NEB R0155) and RsaI (NEB R0167) and intact telo-
meric DNA purified by phenol/chloroform extraction.
Telomeric DNA was resolved on a 0.7% 1× TBE agarose gel
overnight at 35 V. The gel was washed in 0.25 M HCl for
20 min to depurinate, followed by denaturation with 1×
denaturation solution (1.5 M NaCl, 0.5 M NaOH) and neu-
tralization in 1× neutralization buffer (1 M Tris, 1.5 M NaCl,
pH 7.5). The DNA was transferred overnight via capillary
action to a Hybond-XL membrane (GE Healthcare
RPN303S). The membrane was prehybridized in Church
buffer for 1 h at 55°C to prevent nonspecific binding. To
detect telomeric DNA, a C-rich telomere probe ((C3TA2)4)
was labelled with 32P-g-ATP and used for hybridization over-
night at 55°C in Church buffer. After 3 washes in 4× SSC and
1 with 4× SSC with 0.1% SDS, the membrane was exposed to
a phosphor imaging screen and detection was completed
with a Typhoon FLA 9500 imager. Determination of the
peak of signal was completed in FIJI version 1.8.0_172 and
Photoshop21.1.1 [80].

4.8. Induced pluripotent stem cell differentiation
For differentiation of iPSCs to NK cells we utilized the STEM-
diff NK Cell Kit from Stemcell Technologies (100-0710)
following the manufacturer’s protocol. Briefly, to form
embryoid bodies (EBs), 3.5 × 106 or 0.7 × 106 dissociated
iPSCs were plated in a 6- or 24-well AggreWell 400 plate
(34421 or 34411) respectively. Cells were cultured in EB for-
mation medium (EB Medium A with ROCKi) for the first 2
days followed by half medium change with EB Medium A
on day 2 and EB Medium B on day 3. On day 5, EBs were har-
vested utilizing a 37 µm filter (Stemcell Technologies 27215)
and transferred to a non-tissue culture treated plate (Stemcell
Technologies 100-0096 or 100-0097) with EB Medium B. Half
medium changes were completed every 2 to 3 days with EB
Medium B. On day 12, EBs were harvested and dissociated
by incubating with collagenase II (Stemcell Technologies
07418) for 20 min followed by TrypLE Express (Gibco
12604-021) for 20 min. Any additional dissociation was com-
pleted mechanically by pipetting up and down. Collagenase
and TrypLE were removed, and cells were resuspended in
PBS containing 2% FBS and 1 mM EDTA. To assess total
number of hematopoietic stem cells generated by day 12,
total cell number of dissociated cells was determined with
Trypan Blue (Invitrogen T10282) on Countess slides (Invitro-
gen C10283) using a Countess automated cell counter
(Invitrogen C20181). A sample of this cell suspension was
stained for CD34. After this sample was set aside, CD34+

cells were isolated using positive immunomagnetic selection
(EasySep Human CD34-Positive Selection Kit II, Stemcell
Technologies 17856) as directed by the manufacturer with 2
rounds of magnetic isolation. The purity of CD34+ cells was
determined by flow cytometry and the total number of
CD34+ cells in the purified sample was determined based
on cell counts with a Countess automated cell counter and
Trypan Blue. To generate LPs, 25 000 CD34+ cells were
plated per well of a 24-well plate. This 24-well plate was
non-tissue-culture treated and previously coated with lym-
phoid differentiation coating material (component of
STEMdiff NK Cell Kit from Stemcell Technologies). The
cells were cultured in LP medium with half medium changes
every 3 to 4 days. Cells were transferred to a freshly coated
plate on day 7. On day 14, cells were collected and counted
with a Countess automated cell counter and Trypan Blue.
50 000 cells were plated per well of a tissue-culture treated
24-well plate irrespective of surface markers. Cells were
cultured for an additional 14 days in the NK Cell Differen-
tiation medium. Half medium changes were performed 3 to
4 days and if needed cells were split in half.

4.9. Natural killer cell functional assays
NK effector cells were plated alone or with target K562 cells
at a 2:1 ratio. The cells were incubated with anti-CD107a (Bio-
Legend 328606, RRID:AB_1186036) at 37°C and 5% CO2.
After 1 h, cytokine release was inhibited with Golgi Stop
(BD Biosciences 554724, RRID:AB_2869012) and Golgi Plug
(BD Biosciences 555029, RRID:AB_2869014). The cells were
incubated together for an additional 4 h. At collection, sur-
face staining for CD3 (BioLegend 317330, RRID:
AB_2563507), CD56 (BioLegend 92189), and CD45 (BioLe-
gend 304042, RRID:AB_2562106) was performed followed
by fixation with 2% paraformaldehyde and permeabilization
with 0.1% Triton X. Intracellular staining was then completed
for INFγ (BioLegend 93705) and TNFα (BioLegend 92960).
Samples were analysed with a LSR II instrument (BD Bio-
sciences) with 20 mW Blue (488 nm), 40 mW Red (640 nm),
25 mW Violet (405 nm) lasers and data analysed by FlowJo
version v10.8.1_CL (BD Life Sciences) [81].

4.10. Fluorescence in situ hybridization
For T-FISH of metaphase spreads, cells were arrested in meta-
phase with 0.1 µg ml−1 colcemid (KaryoMAX, ThermoFisher
15212012) for 3 h. After arrest, cells were resuspended in
0.075 M KCl for 30 min followed by drop-wise addition of
fixative (3:1 methanol:acetic acid) and incubation of 10 min.
Cells were then pelleted and underwent an additional 3
rounds of fixation. After fixation cells were dropped onto
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slides and allowed to dry. Prior to staining, slides were rehy-
drated in PBS and fixed with 3.7% formaldehyde followed by
dehydration via ethanol series. T-FISH was performed with
TelC-Cy3 probe (PNA bio F1002) and denaturation of DNA
by heating to 80°C. Hybridization was allowed to complete
overnight at 4°C. Slides were washed twice with PNA A
(70% formamide, 0.1% BSA, 10 mM Tris, pH 7.2) and 3
times in PNA B (100 mM Tris, pH 7.2, 150 mM NaCl, 0.1%
Tween-20). The second PNA B wash contained DAPI.
Slides were dehydrated, dried and mounted with Vectashield
(Vector Laboratories H-1000). Blinded slides were imaged
using a Zeiss spinning disc confocal microscope. To quanti-
tatively measure telomere fluorescence intensity, FIJI version
1.8.0_172 was used [80]. Z-stack images were split into
respective channels and flattened using a Sum Slices projec-
tion. An 8-bit duplicate of the telomere image was used to
generate a mask for telomere identification. The automatic
threshold moments methodology was applied to eliminate
background and the image was converted to a binary
image [83]. Telomere occupied regions were automatically
detected as regions of interest (ROIs). These ROIs were manu-
ally confirmed to contain a single telomere or were removed
from the ROI list. This ROI mask was applied to the original
flattened image and integrated density was measured at each
ROI as a measure of intensity. To assess signal free ends, the
ROI mask was overlayed on the original image and chromo-
some ends examined to determine if a telomere was not
detected by the automatic threshold.

For T-FISH of interphase cells, two days prior to staining,
cells were dissociated, and 50 000 cells were plated per well of
a chamber slide (Falcon 354114) in medium containing ROCKi.
After 24 h, medium was exchanged for medium without
ROCKi. After an additional 24 h, cells were fixed with 4% par-
aformaldehyde (Electron Microscopy Sciences 15714) for
10 min at room temperature and permeabilized with 0.1%
Triton X-100 for 5 min at room temperature. Cells were
blocked in ABDIL (20 mM Tris, pH 7.5, 2% BSA, 0.2% fish
gelatin, 150 mM NaCl, 0.1% sodium azide) with 100 µg ml−1

RNase A for 1 h at room temperature. Slides were then dehy-
drated via ethanol series and T-FISH performed as described
above. For centromere FISH, samples were co-stained with
TelC-Cy3 (PNA bio F1002) and CENPB-Alexa488 (PNA bio
F3004) and processed as described above. Example images
were acquired on a Zeiss spinning disc confocal microscope.
4.11. Statistical analysis
PRISM software was utilized for statistical analysis of the
data. Test type and p values are indicated in the figure
legend of each experiment.
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