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BACKGROUND: Widespread exposure to organophosphate ester (OPE) flame retardants with potential reproductive toxicity raises concern regarding
the impacts of gestational exposure on birth outcomes. Previous studies of prenatal OPE exposure and birth outcomes had limited sample sizes, with
inconclusive results.
OBJECTIVES: We conducted a collaborative analysis of associations between gestational OPE exposures and adverse birth outcomes and tested
whether associations were modified by sex.
METHODS: We included 6,646 pregnant participants from 16 cohorts in the Environmental influences on Child Health Outcomes (ECHO) Program.
Nine OPE biomarkers were quantified in maternal urine samples collected primarily during the second and third trimester and modeled as log2-trans-
formed continuous, categorized (high/low/nondetect), or dichotomous (detect/nondetect) variables depending on detection frequency. We used
covariate-adjusted linear, logistic, and multinomial regression with generalized estimating equations, accounting for cohort-level clustering, to esti-
mate associations of OPE biomarkers with gestational length and birth weight outcomes. Secondarily, we assessed effect modification by sex.
RESULTS: Three OPE biomarkers [diphenyl phosphate (DPHP), a composite of dibutyl phosphate and di-isobutyl phosphate (DBUP/DIBP), and bis
(1,3-dichloro-2-propyl) phosphate] were detected in >85% of participants. In adjusted models, DBUP/DIBP [odds ratio (OR) per doubling= 1:07;
95% confidence interval (CI): 1.02, 1.12] and bis(butoxyethyl) phosphate (OR for high vs. nondetect = 1:25; 95% CI: 1.06, 1.46), but not other OPE
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biomarkers, were associated with higher odds of preterm birth. We observed effect modification by sex for associations of DPHP and high bis(2-
chloroethyl) phosphate with completed gestational weeks and odds of preterm birth, with adverse associations among females. In addition, newborns
of mothers with detectable bis(1-chloro-2-propyl) phosphate, bis(2-methylphenyl) phosphate, and dipropyl phosphate had higher birth weight-for-
gestational-age z-scores (b for detect vs. nondetect = 0:04–0:07); other chemicals showed null associations.

DISCUSSION: In the largest study to date, we find gestational exposures to several OPEs are associated with earlier timing of birth, especially among
female neonates, or with greater fetal growth. https://doi.org/10.1289/EHP13182

Introduction
Organophosphate esters (OPEs) have been increasingly used as
flame retardants over the last decade as polybrominated diphenyl
ether (PBDE) flame retardants were phased out in the mid-2000s
over concerns regarding toxicity.1 OPEs are widely applied as flame
retardants and plasticizers in polyurethane foams used in furniture,
baby products, electronics, textiles, and building materials.2–4

Because they are not chemically bound to the polymers, they slowly
volatilize into indoor air and then partition into dust.2,5–7 Individuals
are exposed to OPEs through ingestion of indoor dust, inhalation,
dermal exposure, and dietary intake.3,4 OPE metabolites have been
frequently detected in urine samples from the US general popula-
tion.5,8 OPEs and their metabolites are expected to be less persistent
in the human body, compared with PBDEs,1 with half-lives being
on the order of hours to days as estimated from animal9–11 and
human models.12,13 The detection of OPEs and their metabolites in
pregnant people,14–16 as well as the cord blood,17 placenta,18 decid-
uae and chorionic villi,19 and amniotic fluid,20 indicates maternal–
fetal transfer ofOPEs during pregnancy.

A growing body of literature indicates that gestational expo-
sure to environmental chemicals contributes to adverse birth
outcomes.21–24 Laboratory studies suggest that OPEs have devel-
opmental and reproductive toxicity in animals.25–33 For example,
parental exposure of zebrafish to environmentally relevant con-
centrations of tris(1,3-dichloro-2-propyl) phosphate (TDCPP)
and tris(2-butoxyethyl) phosphate (TBOEP) adversely affected
growth and survival of the offspring,27–29 and prenatal exposure
of rats to TDCPP increased the number of noticeably smaller
pups and lowered body weight in the offspring.30 In human stud-
ies, OPE levels measured prior to or during pregnancy have been
associated with adverse reproductive outcomes, such as decreased
fertilization, implantation, and live birth,34,35 along with preg-
nancy loss36 and spontaneous abortion.37 Certain OPEs were also
shown to interfere with thyroid function in toxicological
models38–41 and epidemiological studies.42–46 They have also
been linked to changes in peroxisome proliferator-activated
receptor (PPAR) activity in in vitro models47–49 and oxidative
stress in animal50,51 and human studies.52,53 These biologic tar-
gets serve critical roles in multiple pathways involved in fetal
growth,54–57 metabolism,58,59 and adipose tissue development.60

Adverse birth outcomes, including preterm birth and low birth
weight (LBW), are risk factors for neonatal mortality and chronic
morbidity, increasing risks of neurodevelopmental disabilities
and respiratory and gastrointestinal complications.57,61–63 There
is growing recognition of the potential adverse health outcomes
with early-term birth, and those born early term experience an
increased risk for infant morbidity and mortality,64 as well as for
adverse cognitive and educational outcomes.65,66 Despite the
potential developmental toxicity of OPEs, epidemiological evi-
dence examining associations between maternal prenatal urinary
OPE metabolites and birth outcomes, such as gestational age or
birth size, is inconclusive.67–74 For example, previous studies
reported adverse associations of bis(1,3-dichloro-2-propyl) phos-
phate (BDCPP), a composite of dibutyl phosphate and di-isobutyl
phosphate (DBUP/DIBP), and isopropyl-phenyl phenyl phosphate
(ip-PPP) with shorter gestational duration among females67,74 and
of BDCPP with shorter gestational age among males.74 Other

studies reported associations of diphenyl phosphate (DPHP) with
greater risk of LBW69 and of BDCPP and bis(butoxyethyl) phos-
phate (BBOEP) with lower birth weight and length.70

On the other side of the spectrum, high birth weight is associ-
ated with childhood obesity.75–77 OPEs have been characterized as
metabolism-disrupting compounds78 and, thus, play a role in the
development of obesity.79 Childhood obesity is associated with a
number of adverse health impacts, including diabetes and cardio-
vascular disease,80 and is a growing concern worldwide.81 One
study observed a greater ponderal index, a measure of birth weight
relative to birth length, associated with prenatal measurements of
BDCPP.68 In contrast, another study found a reduced risk of large-
for-gestational-age (LGA) infants in relation to DPHP.71 Finally,
two studies found no strong associations with either gestational
age or birth weight.72,73 The inconsistent results, as well as the
small to moderate sample sizes of previous studies, motivated fur-
ther investigation of these associations in a larger population.

The Environmental influences on Child Health Outcomes
(ECHO) Program, funded by the National Institutes of Health
(NIH), combines 69 cohorts across the US to understand the impact
of environmental exposures on children’s health.82,83 The present
analysis leverages a large, diverse sample from 16 ECHO cohorts to
quantify nine OPE biomarkers in urine samples of pregnant partici-
pants.We examined associations of urinaryOPE biomarker concen-
trations with birth outcomes related to gestational age at birth
(completed gestational weeks; preterm, early-term, late/postterm
birth) and birth weight [birth weight-for-gestational-age (BW-GA)
z-score, term LBW, small-for-gestational-age (SGA), and LGA].
As a secondary aim, we explored whether associations were modi-
fied by child’s sex.

Methods

Study Population
In 2016, the NIH established the ECHOProgram, an innovative and
collaborative research initiative. The overarching scientific goal of
ECHO is to advance understanding of the effects of a broad array of
early environmental exposures on children’s development and
health outcomes with high public health impact. To achieve this
goal, the ECHOProgrambrought together new and existing cohorts,
leveraging previously collected biologic samples and other informa-
tion on various environmental exposures (e.g., physical, chemical,
social, behavioral). From 2017 to 2019, cohorts enrolled partici-
pants into the ECHO Program, but continued to collect data and
samples under their own protocols. In late 2019, the ECHOProgram
initiated a common protocol that cohorts followed.

We invited all ECHO cohorts that had collected biologic sam-
ples prior to the initiation of the common protocol to participate
in the present study. Sixteen ECHO cohorts that had prenatal
maternal urine samples available for OPE quantification and
participant-level data decided to participate in the present study.
Each of these cohorts then selected participants according to their
own criteria (Table S1). Data collected and submitted to ECHO
prior to March 2022 were used for data analysis. Information
about the participating cohorts, including their geographic loca-
tions, is provided in Table S1 and Figure S1, respectively. To
maximize the sample size within budget constraints, we used a
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single spot or first morning urine sample per participant, primar-
ily collected during the second and third trimesters of pregnancy.
In total, urinary OPE and dilution data (described below) were
available for 7,048 of 12,873 total pregnant participants enrolled
in ECHO from these cohorts. We excluded pregnancies with no
available child information (n=82), multiple births (n=10), or
missing birth outcome data (gestational age, birth weight, or bio-
logical sex at birth; n=309). We excluded one child with a gesta-
tional age of >42 completed weeks because the Aris et al.
method for calculating birth weight z-scores cannot be used for
gestations of >42 completed weeks.84 Therefore, our final ana-
lytic sample size was 6,646 mother–child dyads. A flowchart
depicting inclusion/exclusion criteria is shown in Figure S2.

Institutional review boards (i.e., the ECHO single IRB or the
ECHO cohorts’ local IRBs) reviewed informed consent/assent
forms, Health Insurance Portability and Accountability Act
(HIPAA) authorization forms, recruitment materials, and other
relevant information. Each ECHO cohort obtained written
informed consent or the permission of the parent/guardian. The
work of the ECHO Data Analysis Center (DAC) was approved
through the Johns Hopkins Bloomberg School of Public Health
IRB.

OPE Biomarker Analysis
Urine samples collected from each cohort were shipped on dry
ice to the Human Health Exposure Analysis Resource (HHEAR)
laboratory at the New York University Grossman School of
Medicine. The laboratory methods were described in a previously
published study that used data from one of the included cohorts74
and are briefly summarized here. After solid-phase extraction, the
identification and quantification of target compounds in urine
samples were performed using high-performance liquid chroma-
tography (HPLC; ExionLC system; SCIEX), coupled with an
AB SCIEX QTRAP 5500+triple quadrupole mass spectrometer
(Applied Biosystems). A Kinetex hydrophilic interaction liquid
chromatography (HILIC) column (100 mm×2:1 mm, 2:6 lm
particle size; Phenomenex) coupled with a Betasil C18 guard col-
umn (20 mm×2:1 mm, 5 lm particle size; Thermo Scientific)
was used for the separation of nine OPE biomarkers and nine in-
ternal standards (ISs).

Quality control (QC) samples included synthetic and urine pool
samples spiked with 1 ng of native standard (NS) and 1 ng of IS,
which were analyzed with study samples. HHEAR Urine QC
Pools A & B, as well as Standard Reference Materials (SRM3672
and SRM3673; National Institute of Standards and Technology),
were analyzed with every sample batch. Reagent blanks demon-
strated trace levels of all OPE biomarkers, thus OPE biomarker
concentrations in the study samples were subtracted from the cor-
responding reagent blank values. Matrix-spiked samples showed
average recoveries of 70.4%–133%, with coefficients of variation
(CVs) of ± 9%–19%. CVs for HHEAR Urine QC Pools A & B
were ± 12%–31% and ± 12%–30%, respectively. For SRM3672
and SRM3673, CVs were ± 12%–40% and ± 12%–27%, respec-
tively. Masked duplicate samples were also analyzed with the
study samples. Among 191 masked duplicates provided by seven
cohorts, those in which bothwere quantified at or above the limit of
detection (≥LOD) were used to calculate relative percentage
differences.85

The nine OPE biomarkers analyzed include a) BBOEP, a
metabolite of TBOEP; b) bis(2-chloroethyl) phosphate (BCETP),
a metabolite of tris(2-chloroethyl) phosphate (TCETP); c) bis(1-
chloro-2-propyl) phosphate (BCPP), a metabolite of tris(1-chloro-
2-propyl) phosphate (TCPP); d) BDCPP, a metabolite of TDCPP;
e) bis(2-ethylhexyl) phosphate (BEHP), a metabolite of tris(2-
ethylhexyl) phosphate (TEHP); f ) bis(2-methylphenyl) phosphate

(BMPP), a metabolite of tris(2-methylphenyl) phosphate (TMPP);
g) DBUP/DIBP, metabolites of tributyl phosphate (TBUP) and its
isomer tri-isobutyl phosphate (TIBP); h) DPHP, a major metabo-
lite of triphenyl phosphate (TPHP); and i) dipropyl phosphate
(DPRP), a metabolite of tripropyl phosphate (TPRP) (Table S2).
DBUP/DIBP are reported as a composite because they coeluted
and could not be quantified individually; therefore, they were
quantified as a composite sum of both analytes. The LOD of target
analytes ranged from 0.01 to 0:04 ng=mL.

Birth Outcomes
ECHO cohorts ascertained birth outcomes for those children born
prior to 2019 via their own protocol, with most cohorts relying
on maternal or child medical record abstraction (e.g., ultrasound
or last menstrual period to estimate the due date), and others
using parent report or cohort-obtained data, such as staff-reported
information collected at a hospital birth visit. For children born in
or after 2019, the ECHO protocol specified the data source,
obtained through medical record abstraction. The primary method
for obtaining birth outcomes for each cohort is listed in Table S1.
We assessed gestational age at birth as a continuous outcome
(completed gestational weeks) and categorized as preterm (<37
wk), early term (37–38 wk), full term (39–40 wk), and late/post-
term (41–42 wk). We calculated sex-specific BW-GA z-scores
based on the equations of Aris et al. and examined the continuous
z-scores.84 We also categorized birth weight for gestational age
as binary variables corresponding to SGA and LGA (<10th per-
centile and >90th percentile, respectively)110 and assessed term
LBW (birth weight <2,500 g among births at ≥37 wk gestation).

Covariates
We used Dagitty86 to construct a directed acyclic graph (DAG)
identifying confounders, mediators, and precision variables (Figure
S3). Covariate information was collected by each ECHO cohort and
harmonized by the ECHO DAC. We included as potential covari-
ates maternal race/ethnicity (as a proxy for structural inequality and
racism; non-Hispanic white, non-Hispanic black, Hispanic, others),
maternal age at delivery (in years), maternal education (less than
high school, high school degree/general educational development,
some college/associated degree/trade school, bachelor’s degree,
masters/professional/doctorate degree), maternal marital status
(married/living with a partner, widowed/separated/divorced, single/
never married/partnered/not living together), maternal prepreg-
nancy body mass index (BMI; in kilograms per meter squared),
maternal smoking during pregnancy (yes, no), parity (0, 1,≥2), and
child’s sex assigned at birth (male, female). We also included infor-
mation related to timing of urine specimen collection including time
of day, trimester, season, and year.

Statistical Analysis
We presented descriptive statistics of covariates and birth out-
comes among participants included in our study sample and
among participants from the 16 participating ECHO cohorts who
were not included in our sample. Urinary dilution was measured
as either specific gravity or creatinine in each cohort; therefore,
we applied the approach described by Kuiper et al. to account for
the influence of urinary dilution on biomarker concentrations.87,88
Briefly, we multiplied OPE concentrations by the ratio of the
cohort-specific median dilution value to the participant’s dilution
value87,88 for specific gravity, the values were first subtracted
from one.89 We calculated Spearman correlation coefficients
among dilution-standardized OPE biomarker concentrations and
examined descriptive statistics to determine percentiles and the
proportion of participants with concentrations ≥LOD.
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For regression analyses, we modeled OPE biomarkers
detected in >80% of participants (DBUP/DIBP, DPHP, BDCPP)
as dilution-standardized continuous log2-transformed variables
based on model fit statistics (compared with untransformed con-
centrations) and exposure distributions.90 For OPE biomarker
concentrations <LOD, we used machine-read values provided by
the laboratory and replaced negative or zero values with 0.001 to
facilitate log2 transformation. Instrument-derived values were
negative for some biomarkers, as the background signal for those
chemicals was subtracted from those of procedural blanks. We
modeled OPE biomarkers detected in 50%–80% of participants
(BCPP, BCETP, BBOEP) as three-level categorical variables,
with the nondetect category defined as participants with values
<LOD and the remaining two categories created by dichotomiz-
ing participants at the median of dilution-adjusted values ≥LOD
(high- and low-exposure categories). Finally, we modeled OPE
biomarkers detected in <50% of participants (BMPP, BEHP,
DPRP) as binary variables dichotomized as nondetect (<LOD)
or detect (≥LOD).

We estimated associations of each OPE biomarkers with birth
outcomes in linear (continuous outcomes), logistic (binary out-
comes), and multinomial logistic regression models [four-level
categorized gestational age treating full term (39–40wk) as the ref-
erence group]91 using generalized estimating equations, account-
ing for clustering at the cohort level. Given our large sample size,
we adjusted for all measured variables on our DAG that served as
confounders and risk factors of birth outcomes while excluding
potential causal intermediates. We included maternal race/ethnic-
ity, maternal age at delivery, maternal education, maternal marital
status, maternal prepregnancy BMI, maternal smoking during
pregnancy, parity, child’s sex, and sample collection season and
year. To assess potential nonlinear associations between continu-
ous covariates (i.e., maternal age, prepregnancy BMI, and year of
specimen collection) and OPE biomarker concentrations, we fit
models using restricted cubic splines to examine the shape of cova-
riate–outcome associations. Based on visual inspection of the
shape of these associations and model fit statistics, we used contin-
uous linear terms for sample collection year and maternal prepreg-
nancy BMI. For maternal age at delivery, we used a restricted
cubic spline with 3 knots, at the 25th, 50th, and 75th percentiles, to
allow for nonlinear relationships with birth outcomes. To account
for covariate data with <20%missingness, we usedmultiple impu-
tation by chained equations, using all covariates, as well as the
study cohort, as predictors. Because prior studies have reported
sex-specific associations of some OPEs with birth outcomes,67,69,70

we explored differences in associations by child’s sex using strati-
fied models. In addition, we tested for effect measure modification
using the Wald p-value for the interaction term between child’s sex
and OPE biomarkers. If an interaction term was significant, we
interpreted the sex-stratified estimates by comparing their magni-
tude and direction.

In a sensitivity analysis, we used a leave-one-cohort-out
approach to evaluate the influence of each cohort on our results.
For this analysis, we estimated associations of OPEswith birth out-
comes as above, but we excluded one cohort at a time. For exam-
ple, we ran 16 unique linear regression models of associations
between DPHP and gestational age, with each model excluding
participants from a different cohort. As a secondary analysis, we
adjusted for potential copollutant confounding by jointly modeling
all OPE biomarkers in the same regression model to examine inde-
pendent effects of each compound.

We considered associations to be statistically significant if the
p-value was <0:05 for main effects and <0:1 for interaction
terms in the effect measure modification analysis. We did not
make adjustment for multiple comparisons because this would

lead to fewer errors of interpretation in our observational setting,
as recommended by Rothman.92 We conducted all analyses using
SAS (version 9.4; SAS Institute, Inc.).

Results
Demographic and sample-related characteristics of 6,646 mother–
child dyads from 16 cohorts are summarized in Table 1. Cohort
participants were racially/ethnically diverse, with 52.5% non-
Hispanic white, 19.5% non-Hispanic black, 18.9% Hispanic, and
9.0% others. The majority of the pregnant participants were married
or living with a partner (76.2%); had no gestational diabetes, hyper-
tension, or preeclampsia (84.0%); and did not smoke during preg-
nancy (92.8%). Prenatal maternal urine samples were collected
during 2007–2020, and almost all were collected during the second
or third trimester (99.6%). Approximately 6:8% of newborns were
born preterm, 21.6% early term, 59.4% full term, and 12.2% late/
postterm, and the median gestational age was 39 wk (25th, 75th
percentile = 38, 40 wk; Table 2). The median birth weight was
3,360 g (25th, 75th percentiles = 3,040 and 3,685 g), and 6.3% of
newborns were SGA and 16.0% were LGA. Among 6,197 new-
borns born at ≥37 wk gestation, 2.4% were term LBW. There were
5,825 participants from the 16 participating ECHO cohorts who
did not meet our criteria for inclusion; their demographic character-
istics are presented in Table S3.

Detection frequencies and distributions of dilution-standardized
urinary OPE biomarker concentrations in all participants and by
cohort are presented in Tables 3 and S4 and Figure S4, respectively.
DPHP, DBUP/DIBP, and BDCPP were detected in 99.5%, 95%,
and 87% of the study samples. The detection frequencies of BCETP,
BBOEP, and BCPP were between 50% and 80%, and those of
BMPP, BEHP, andDPRPwere <36%. The highest median concen-
trations were observed for DPHP (0:92 ng=mL) and BDCPP
(0:86 ng=mL), followed by BCETP (0:52 ng=mL), DBUP/DIBP
(0:19 ng=mL), BCPP (0:12 ng=mL), and BBOEP (0:05 ng=mL).
The nine OPE biomarkers were only weakly correlated with each
other (Spearman’s correlation coefficients = − 0:05 to 0.26) (Table
S5). Medians of relative percentage differences calculated from
validmasked duplicate samples ranged from6.2% to 16.9% for OPE
biomarkers with detection frequencies of >85%, 13.3% to 26.6%
for those with detection frequencies between 50% and 80%, and
17.8% to 53.6% for those with detection frequencies of <36%
(Table S6).

We did not observe associations between prenatal maternal
urinary concentrations of DPHP or BDCPP and gestational dura-
tion in the overall study population (Table 4). However, associa-
tions of DPHP with continuous gestational age and with preterm
and early-term birth differed by sex (p for interaction term
between OPE and sex; pint <0:02) (Figure 1 and Table S7).
Among females, higher DPHP concentration was associated with
shorter gestational age [regression coefficients ðbÞ= − 0:03 wk;
95% confidence interval (CI): −0:06, −0:01] and higher odds of
preterm vs. full-term birth [odds ratio (OR) per doubling in
concentration= 1:12; 95% CI: 1.05, 1.19], whereas among males
higher DPHP concentrations were associated with greater gesta-
tional age (b=0:02 wk; 95% CI: 0.00, 0.04). DBUP/DIBP was
associated with higher odds of preterm birth (OR=1:07; 95% CI:
1.02, 1.12) in all newborns. When stratified by child’s sex,
DBUP/DIBP was associated with shorter gestational age
(b= − 0:03 wk; 95% CI: −0:06, −0:001) and higher odds of pre-
term birth (OR=1:09; 95% CI: 1.03, 1.16) among female new-
borns only, although the tests for interaction were not statistically
significant (pint >0:33).

The low-exposure category of BCETP, compared with the
nondetect category, was associated with lower odds of late/post-
term vs. full-term birth among all births (OR=0:83; 95% CI:
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0.73, 0.95). The associations of the high category of BCETP with
preterm birth and gestational age differed by sex (pint <0:01),
indicating higher odds of preterm birth and shorter gestational
age among females [OR=1:27 (95% CI: 1.03, 1.58) for preterm
birth; b= − 0:13 wk (95% CI: −0:24, −0:03) for gestational age]
and lower odds of preterm birth and longer gestational age among
males [OR=0:77 (95% CI: 0.55, 1.06) for preterm birth;
b=0:06 wk (95% CI: −0:06, 0.18) for gestational age]. The
high-exposure category of BBOEP was associated with shorter
gestational age (b= − 0:07 wk; 95% CI: −0:14, −0:01) and
higher odds of preterm vs. full-term birth (OR=1:25; 95% CI:
1.06, 1.46) in all newborns. The association between the high
category of BBOEP and early-term birth differed by sex
(pint =0:03), with lower odds among females (OR=0:75; 95%
CI: 0.60, 0.94) and higher odds among males (OR=1:10; 95%
CI: 0.89, 1.35). The high category of BCPP was associated with
higher odds of early-term birth compared with full-term birth
(OR=1:18; 95% CI: 1.05, 1.32). Three binary OPE biomarkers
were not associated with gestational duration, except for an asso-
ciation of detectable BEHP with lower odds of late/postterm vs.
full-term birth (OR=0:84; 95% CI: 0.72, 0.97).

Table 2. Gestational length and birth weight outcomes among 6,646 ECHO
mother–child dyads.

Birth outcomes

n (%)a

All
(n=6,646)

Females
(n=3,250)

Males
(n=3,396)

Gestational age at birth (completed weeks)
Preterm (20–36) 449 (6.8) 221 (6.8) 228 (6.7)
Early term (37–38) 1,436 (21.6) 659 (20.3) 777 (22.9)
Full term (39–40) 3,947 (59.4) 1,964 (60.4) 1,983 (58.4)
Late/postterm (40–42) 814 (12.2) 406 (12.5) 408 (12.0)

Birth weight (g)
200–2,499 365 (5.5) 204 (6.3) 161 (4.8)
2,500–3,999 5,644 (84.9) 2,824 (86.9) 2,820 (83.0)
≥4,000 637 (9.6) 222 (6.8) 415 (12.2)

Term LBWa

No 6,047 (97.6) 2,939 (97.0) 3,108 (98.1)
Yes 150 (2.4) 90 (3.0) 60 (1.9)

SGA (<10th percentile BW-GA z-score)
No 6,227 (93.7) 3,032 (93.3) 3,195 (94.1)
Yes 419 (6.3) 218 (6.7) 201 (5.9)

LGA (>90th percentile BW-GA z-score)
No 5,580 (84.0) 2,752 (84.7) 2,828 (83.3)
Yes 1,066 (16.0) 498 (15.3) 568 (16.7)

Note: BW-GA, birth weight for gestational age; ECHO, Environmental influences on
Child Health Outcomes; LBW, low birth weight; LGA, large for gestational age; SGA,
small for gestational age.
aAmong 6,197 term births.

Table 1. Demographic and sample-related characteristics among 6,646
ECHO mother–child dyads.

Characteristics n (%)a

Maternal race/ethnicity
Non-Hispanic white 3,470 (52.5)
Non-Hispanic black 1,288 (19.5)
Hispanic 1,251 (18.9)
Other races/ethnicitiesb 597 (9.0)
Missing 40
Maternal education
Less than high school 535 (8.6)
High school degree/GED or equivalent 1,337 (21.4)
Some college, no/associate degree, trade school 1,115 (17.9)
Bachelor’s degree 1,727 (27.7)
Masters, professional, or doctorate degree 1,522 (24.4)
Missing 410
Maternal marital status
Married or living with a partner 4,768 (76.2)
Widowed, separated, divorced 280 (4.5)
Single, never married, partnered, not living together 1,213 (19.4)
Missing 385
Maternal age at delivery (y)
<20 209 (3.1)
20–24 975 (14.7)
25–29 1,653 (24.9)
30–34 2,218 (33.4)
35–39 1,290 (19.4)
≥40 301 (4.5)

Parity
0 2,566 (42.8)
1 1,994 (33.3)
≥2 1,436 (23.9)
Missing 650
Prepregnancy BMI (kg=m2)
Underweight (<18:5) 177 (2.8)
Normal weight (18.5–24.9) 2,866 (46)
Overweight (25–29.9) 1,607 (25.8)
Obese (>30) 1,586 (25.4)
Missing 410
Tobacco use during pregnancy
No 5,123 (92.8)
Yes 396 (7.2)
Missing 1,127
Child’s sex
Female 3,250 (48.9)
Male 3,396 (51.1)
Trimester at sample collection
1 (0–13 wk) 29 (0.4)
2 (14–26 wk) 2,928 (44.1)
3 (27 wk to the end of pregnancy) 3,689 (55.5)
Sample collection season
Winter (December–February) 1,481 (22.3)
Spring (March–May) 1,881 (28.3)
Summer (June–August) 1,736 (26.1)
Autumn (September–November) 1,548 (23.3)
Sample collection year
2007 189 (2.8)
2008 330 (5.0)
2009 456 (6.9)
2010 554 (8.3)
2011 798 (12.0)
2012 824 (12.4)
2013 516 (7.8)
2014 593 (8.9)
2015 400 (6.0)
2016 508 (7.6)
2017 488 (7.3)
2018 720 (10.8)
2019 263 (4.0)
2020 7 (0.1)

Note: BMI, body mass index; ECHO, Environmental influences on Child Health
Outcomes; GED, general educational development.
aPercentage was calculated without missing observations.
bOther races/ethnicities include Asian, native Hawaiian or other Pacific Islanders,
American Indian or Alaska native, and multiple race.

Table 3. Distributions of dilution-standardized urinary OPE biomarker con-
centrations among 6,646 ECHO pregnant participants.

OPE
biomarkers

LOD
(ng/mL)

n (%)
>LOD

Percentile

5th 25th 50th 75th 95th

DPHP 0.03 6,613 (99.5) 0.26 0.54 0.92 1.78 8.33
DBUP/DIBP 0.04 6,343 (95) 0.06 0.12 0.19 0.30 0.88
BDCPP 0.02 5,784 (87) <LOD 0.31 0.86 1.70 5.02
BCETP 0.02 4,589 (69) <LOD <LOD 0.52 1.58 8.22
BBOEP 0.02 4,398 (66) <LOD <LOD 0.05 0.09 0.25
BCPP 0.02 3,494 (53) <LOD <LOD 0.12 0.75 3.45
BMPP 0.01 2,383 (36) <LOD <LOD <LOD 0.03 0.13
BEHP 0.02 1,963 (30) <LOD <LOD <LOD 0.04 0.55
DPRP 0.03 1,690 (25) <LOD <LOD <LOD 0.03 0.31

Note: BBOEP, bis(butoxyethyl) phosphate; BCETP, bis(2-chloroethyl) phosphate;
BCPP, bis(1-chloro-2-propyl) phosphate; BDCPP, bis(1,3-dichloro-2-propyl) phosphate;
BEHP, bis(2-ethylhexyl) phosphate; BMPP, bis(2-methylphenyl) phosphate; DBUP/
DIBP, composite of dibutyl phosphate and di-isobutyl phosphate; DPHP, diphenyl phos-
phate; DPRP, dipropyl phosphate; ECHO, Environmental influences on Child Health
Outcomes; LOD, limit of detection; OPE, organophosphate ester.

Environmental Health Perspectives 017004-5 132(1) January 2024



We did not observe evidence of associations of DPHP,
DBUP/DIBP, BDCPP, BBOEP, and BEHP with fetal growth
(Table 5). The low and high categories of BCPP and detectable
BMPP and DPRP (compared with nondetectable) were associated
with greater BW-GA z-score (bs = 0:07 for low and high BCPP
categories and BMPP, 0.04 for DPRP) in the overall population.
Similarly, the high category of BCPP (OR=0:52; 95% CI: 0.31,
0.89) and detectable DPRP (OR=0:72; 95% CI: 0.55, 0.94) were
associated with lower odds of term LBW. There were no statisti-
cally significant associations for SGA or LGA among all births,
except for an association between the high category of BCETP
and lower odds of SGA (OR=0:83; 95% CI: 0.71, 0.96). When
stratified by child’s sex, lower odds of SGA were observed
among male newborns only in association with BDCPP, BCETP,
BCPP, and BMPP, although most of the tests for interaction were
not statistically significant (Table S8).

Leave-one-out analyses confirmed the robustness of the
results to the exclusion of each cohort (Figures S5–S7 and Excel
Tables S1–S3). Excluding the two largest cohorts, Conditions
Affecting Neurocognitive Development and Learning in Early
Childhood (CANDLE; n=1,453) or New Hampshire Birth
Cohort Study (NHBCS; n=1,317), the two largest cohorts,
slightly attenuated or strengthened some associations, but the
directions of the estimates were not changed. When jointly
modeling all OPE biomarkers in the same regression model to
adjust for potential copollutant confounding, the results were
similar to the primary results (Tables S9 and S10).

Discussion
In this large, geographically and sociodemographically diverse
ECHO sample that included over 6,600 participants from across
the US, several OPE biomarkers were frequently detected in prena-
tal maternal urine samples. We observed that DBUP/DIBP and the
high-exposure category of BBOEPwere associated with decreased
gestational duration, specifically, greater odds of preterm birth.
Child’s sex appeared to modify associations of higher DPHP and
the high category of BCETP both with continuous gestational age
at birth andwith pretermbirth, with adversefindings among female
newborns. On the other hand, we observed modest associations of
detectable BCPP, BMPP, and DPRP with increased fetal growth,
specifically greater BW-GA z-score and lower odds of term LBW,

although we did not observe a corresponding increased risk of
LGA birth or sex-dimorphic association.

Most prior studies of urinary OPE metabolite concentrations
in pregnant people have primarily quantified DPHP and BDCPP,
with few studies exploring di-n-butyl phosphate (DNBP), BCPP,
BCETP, and BBOEP (Table S11).14,16,67,68,70,71,93,94 Higher
median concentrations of DPHP were observed in pregnancy
cohorts in North Carolina (1:31 ng=mL; 2001–2006),67 Ohio
(1:36–2:16 ng=mL in different trimesters; 2003–2006),16 and
Puerto Rico (1:55 ng=mL; 2011–2015)93 compared with those
in our ECHO participants (0:91 ng=mL; 2007–2020). Other
US studies conducted in California,14 Massachusetts,71 Rhode
Island,94 and Maryland68 showed comparable or slightly lower
median concentrations of DPHP. For BDCPP, pregnancy cohorts
in North Carolina (1:85 ng=mL),67 Puerto Rico (1:41 ng=mL),93

and Rhode Island (0:94–1:55 ng=mL; 2014)94 had higher median
concentrations than the present study (0:88 ng=mL), whereas
other US cohorts had comparable or lower median levels.
Median concentrations of BCETP were higher in the North
Carolina cohort (0:63–0:83 ng=mL)67 but lower in the Rhode
Island cohort (0:25–0:38 ng=mL)94 when compared with the
present study (0:52 ng=mL). Only the Ohio cohort quantified
DNBP (0:24 ng=mL),16 comparable with our DBUP/DIBP con-
centrations (0:19 ng=mL). A Chinese birth cohort based in
Wuhan (2014–2016) showed considerably lower median concen-
trations of DPHP (0:23 ng=mL) and BDCPP (0:10 ng=mL) than
the US studies but found higher median concentrations of BBOEP
(0:15 ng=mL) compared with the present study (0:05 ng=mL).70
There are a multitude of possible reasons for these differences,
including differences in OPE sources by geographic region, sam-
pling year and season, and sociodemographic characteristics.
Further studies on possible sources and exposure pathways could
help clarify the observed differences and help determine methods
for reducing exposures.

At least eight prior epidemiological studies have examined
birth outcomes in association with prenatal exposure to OPEs,
with most of them reporting sex-specific associations.67–73 Two
studies based on the Wuhan birth cohort reported findings that
were generally consistent with our study.69,70 For example,
among 339 participants, prenatal urinary concentrations of DPHP
and sum of OPE metabolites were associated with higher risk of

Table 4. Associations between prenatal maternal urinary OPE biomarkers and gestational duration in the ECHO cohorts.

OPE biomarkers

Gestational age (wk)
(n=6,646)

Preterm (n=449)
[vs. full term (n=3,947)]

Early term (n=1,436)
[vs. full term (n=3,947)]

Late/postterm (n=814)
[vs. full term (n=3,947)]

b (95% CI) p-Value OR (95% CI) p-Value OR (95% CI) p-Value OR (95% CI) p-Value

Continuous (log2-transformed, dilution-standardized)
DPHP −0:01 (−0:02, 0.01) 0.51 1.02 (0.96, 1.09) 0.51 0.98 (0.95, 1.01) 0.21 1.00 (0.95, 1.04) 0.83
DBUP/DIBP −0:02 (−0:06, 0.02) 0.31 1.07 (1.02, 1.12) 0.01 1.00 (0.94, 1.06) 0.95 0.99 (0.96, 1.03) 0.66
BDCPP −0:01 (−0:02, 0.01) 0.43 1.00 (0.96, 1.04) 0.92 1.01 (0.99, 1.02) 0.36 0.99 (0.97, 1.00) 0.09
High/low (compared with nondetect)
BCETP—low −0:01 (−0:10, 0.09) 0.88 0.96 (0.77, 1.20) 0.71 0.96 (0.82, 1.12) 0.57 0.83 (0.73, 0.95) 0.01
BCETP—high −0:03 (−0:12, 0.06) 0.55 0.97 (0.79, 1.20) 0.81 0.96 (0.85, 1.09) 0.53 0.94 (0.81, 1.08) 0.35
BBOEP—low 0.01 (−0:07, 0.08) 0.84 1.06 (0.87, 1.29) 0.55 0.91 (0.76, 1.10) 0.34 1.03 (0.87, 1.21) 0.74
BBOEP—high −0:07 (−0:14, −0:01) 0.03 1.25 (1.06, 1.46) 0.01 0.92 (0.79, 1.07) 0.26 1.02 (0.80, 1.31) 0.85
BCPP—low 0.08 (−0:01, 0.18) 0.08 0.83 (0.66, 1.03) 0.09 1.04 (0.91, 1.20) 0.53 1.14 (0.97, 1.36) 0.12
BCPP—high −0:01 (−0:09, 0.07) 0.79 0.97 (0.77, 1.22) 0.78 1.18 (1.05, 1.32) 0.01 1.07 (0.92, 1.23) 0.39
Detect (compared with nondetect)
BMPP −0:01 (−0:09, 0.06) 0.72 1.00 (0.86, 1.16) 1.00 1.04 (0.91, 1.19) 0.53 1.02 (0.86, 1.21) 0.82
BEHP −0:08 (−0:19, 0.03) 0.18 1.01 (0.83, 1.22) 0.94 1.03 (0.89, 1.18) 0.73 0.84 (0.72, 0.97) 0.02
DPRP 0.09 (−0:02, 0.19) 0.10 0.90 (0.69, 1.18) 0.45 1.02 (0.93, 1.13) 0.63 1.18 (0.98, 1.43) 0.08

Note: Linear or multinomial regression models, fitted using generalized estimating equations with a random effect for cohort, were used to estimate bs or ORs, respectively, and their
corresponding 95% CIs and p-values. Regression models were adjusted for maternal race/ethnicity, maternal age at delivery, maternal education, maternal marital status, maternal pre-
pregnancy BMI, maternal smoking during pregnancy, parity, child’s sex, and sample collection season and year. BBOEP, bis(butoxyethyl) phosphate; BCETP, bis(2-chloroethyl) phos-
phate; BCPP, bis(1-chloro-2-propyl) phosphate; BDCPP, bis(1,3-dichloro-2-propyl) phosphate; BEHP, bis(2-ethylhexyl) phosphate; BMPP, bis(2-methylphenyl) phosphate; CI,
confidence interval; DBUP/DIBP, composite of dibutyl phosphate and di-isobutyl phosphate; DPHP, diphenyl phosphate; DPRP, dipropyl phosphate; ECHO, Environmental influen-
ces on Child Health Outcomes; OPE, organophosphate ester; OR, odds ratio.
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LBW, especially among female newborns.69 Their later study
investigating trimester-specific associations among 213 pregnant
people from the same population observed that BDCPP and
BBOEP in the third trimester were inversely associated with birth
weight and length unadjusted for gestational age, and associa-
tions were stronger among males than females.70 They also found
that DPHP in the first trimester was associated with lower birth
weight, especially among females. In line with our findings, a
Boston-area cohort including 90 pregnant people reported that
DPHP and a mixture of DPHP and BDCPP were associated
with lower odds of LGA.71 Similar to our sex-stratified results,
the North Carolina cohort of 349 pregnant people observed that
prenatal urinary concentrations of BDCPP and ip-PPP were

associated with shorter gestational age and higher odds of pre-
term birth among female newborns, whereas DPHP was associ-
ated with longer gestational age and lower odds of preterm
birth among males.67 On the other hand, a Baltimore-area
cohort of 90 pregnant people reported that BDCPP was associ-
ated with greater ponderal index, a measure of weight-for-
length similar to BMI,68 and two other studies did not observe
strong associations with any of the birth outcomes studied.72,73

Some inconsistent results may be attributable to differences in
population characteristics and urinary OPE metabolite levels, as
well as smaller sample sizes, of prior studies. In particular, our
study indicates that DBUP/DIBP is highly detected (>95%) in
our large sample of US pregnant people and that it may be

Figure 1. Associations of DPHP, DBUP/DIBP, BCETP, BBOEP, and BCPP with preterm (n=449) and early-term (n=1,436), compared with full-term birth
(n=3,947), gestational age (in weeks) (n=6,646), and BW-GA z-score (n=6,646) among all newborns in the ECHO cohorts, and stratified by child’s sex
(females: n=3,250, males: n=3,396). Point estimates indicate regression coefficients or odds ratios (ORs), and error bars indicate 95% confidence intervals
(CIs). Regression models were adjusted for maternal race/ethnicity, maternal age at delivery, maternal education, maternal marital status, maternal prepreg-
nancy BMI, maternal smoking during pregnancy, parity, child’s sex, and sample collection season and year. Sample size of each birth outcome by child’s sex
is presented in Table 2, and numeric data regarding regression coefficients, ORs, 95% CIs, and p-values for main effects and interaction terms between child’s
sex and OPE biomarkers are presented in Tables 4, 5, S7, and S8. Note: BBOEP, bis(butoxyethyl) phosphate; BCETP, bis(2-chloroethyl) phosphate; BCPP,
bis(1-chloro-2-propyl) phosphate; BMI, body mass index; BW-GA, birth weight for gestational age; DBUP/DIBP, composite of dibutyl phosphate and di-iso-
butyl phosphate; DPHP, diphenyl phosphate; ECHO, Environmental influences on Child Health Outcomes.
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associated with increased risk of preterm birth. However, DBUP
and DIBP have not been frequently quantified in previous US
studies and were detected with low frequency in the Chinese
studies (Table S11), which were rarely examined in association
with adverse birth outcomes. One of the included cohorts,
Maternal And Developmental Risks from Environmental and
Social stressors (MADRES), conducted site-specific analyses
using 421 Southern Californian pregnant people, who were also
included in the present study, and reported that DBUP/DIBP was
associated with shorter gestational duration,74 underscoring the
necessity for further explorations into the potential role of this
compound as a contributing factor to shortened gestational
durations.

There are several potential mechanisms by which prenatal OPE
exposure could disrupt the timing of birth and explain observed
sex-specific differences. One of the underlying mechanisms that
may link OPE exposure with altered birth outcomes is thyroid hor-
mone disruption, which plays an essential role in fetal develop-
ment.95,96 Several epidemiological studies suggest that prenatal
OPE exposure may disrupt neonatal thyroid hormone levels in sex-
ually dimorphic ways.43,44,46 Prenatal maternal urinary concentra-
tions of DPHP and DBUP were associated with higher levels of
thyroid stimulating hormone (TSH) in newborns, especially
among females. These associations were partially mediated by the
oxidative stress of DNA damage.43 Higher BBOEP in the third tri-
mesterwas associatedwith higher neonatal TSH, especially among
males, whereas higher DPHP in the third trimester was associated
with lower neonatal TSH among females.44 DNBP, DPHP, and
BDCPP were associated with lower levels of neonatal triiodo-
thyronine and thyroxine.46 Prenatal OPE metabolites, such as
DPHP and BDCPP, were also associated with altered thyroid hor-
mone levels in pregnant people.43,45,46 Maternal thyroid disrup-
tion during pregnancy was further associated with higher risks of
preterm birth and LBW.97,98 Oxidative stress and inflammation
induced by OPEs could also provide a mechanistic link between
exposures and preterm birth.43,53,55,56 Finally, similar to other
endocrine disrupting chemicals, OPEs could also contribute to
abnormal placental development and functions in sex-dependent
manners.99,100

Disruption of maternal metabolic functions and other endocrine
systems by OPEs could also alter fetal growth.57 OPEs can activate
PPARs that play critical roles in energy homeostasis and lipid me-
tabolism.47–49 PPAR activation has previously been proposed as a
mechanism linking other environmental chemical exposures, such
as phthalates101 and per- and polyfluoroalkyl substances,102 to
weight gain. PPAR activation could therefore potentially explain
the associations with higher BW-GA z-scores that we observed for
three of the compounds.79 The parent compound of DPHP and 2-
ethylhexyl diphenyl phosphate (EHDPP) exhibited PPAR-c activa-
tion in human placental choriocarcinoma cells.59 Mice perinatally
exposed to a mixture of parent compounds of DPHP, BDCPP, and
dicresyl phosphate showed higher neonatal body weight and
PPAR-c activation in the hypothalamus and liver, especially in
female pups.103

The present study has several strengths. This is by far the larg-
est study quantifyingOPE biomarkers in the urine of pregnant peo-
ple and examining their associations with birth outcomes. We used
a geographically and sociodemographically diverse study popula-
tion, combining 16 pregnancy/birth cohorts across the US. The
quantification of urinary OPE biomarkers was performed by a sin-
gle laboratory, minimizing measurement error. Furthermore,
leave-one-out analyses suggested robustness of our results across
the cohorts. In addition, this research considered a range of birth
outcomes, enabling us to make inferences about the effect of the
OPE exposures on duration of gestation and fetal growth,104 con-
sidering the full range of early and late gestational age outcomes
and size-for-gestation outcomes. We used generalized estimating
equations to address cohort variability in birth outcome ascertain-
ment methods (e.g., medical record abstraction, maternal self-
report), but there is a slight concern regarding the potential for
decreased accuracy when using self-report methods. It should be
also noted that our study population had a slightly lower prevalence
of preterm birth (6.8%) and LBW (5.5%) compared with the US
national statistics for singleton births (8.8% and 6.9%, respec-
tively).105 This is attributed not only to the inclusion criteria for
this analysis (i.e., the availability of a prenatal urine sample for
measurement of urinary OPE biomarkers) but also to the fact that
the majority of cohorts sought to recruit pregnant people without

Table 5. Associations between prenatal maternal urinary OPE biomarkers and fetal growth in the ECHO cohorts.

OPE biomarkers

BW-GA z-score
(n=6,646)

Term LBW (n=150)
[vs. term non-LBW

(n=6,047)]a
SGA (n=419)

[vs. non-SGA (n=6,227)]
LGA (n=1,066)

[vs. non-LGA (n=5,580)]

b (95% CI) p-Value OR (95% CI) p-Value OR (95% CI) p-Value OR (95% CI) p-Value

Continuous (log2-transformed, dilution-standardized)
DPHP −0:02 (−0:05, 0.00) 0.01 1.05 (0.96, 1.15) 0.28 1.05 (0.99, 1.11) 0.11 0.97 (0.92, 1.02) 0.17
DBUP/DIBP −0:02 (−0:04, 0.00) 0.11 0.91 (0.78, 1.06) 0.22 1.02 (0.96, 1.08) 0.58 0.97 (0.94, 1.01) 0.11
BDCPP 0.00 (−0:01, 0.00) 0.33 0.98 (0.95, 1.01) 0.14 0.99 (0.97, 1.01) 0.18 0.98 (0.97, 1.00) 0.05
High/low (compared with nondetect)
BCETP—low 0.04 (−0:04, 0.12) 0.38 0.98 (0.60, 1.61) 0.94 0.91 (0.69, 1.19) 0.49 1.13 (0.95, 1.34) 0.18
BCETP—high 0.03 (−0:02, 0.08) 0.24 0.90 (0.59, 1.39) 0.64 0.83 (0.71, 0.96) 0.01 1.04 (0.92, 1.18) 0.56
BBOEP—low 0.01 (−0:04, 0.06) 0.68 0.91 (0.65, 1.26) 0.56 0.87 (0.74, 1.04) 0.12 0.99 (0.90, 1.10) 0.90
BBOEP—high −0:03 (−0:09, 0.04) 0.48 1.04 (0.74, 1.45) 0.84 1.04 (0.92, 1.19) 0.52 0.97 (0.84, 1.13) 0.70
BCPP—low 0.07 (0.01, 0.13) 0.03 0.76 (0.58, 1.00) 0.05 0.80 (0.61, 1.04) 0.10 1.06 (0.90, 1.25) 0.46
BCPP—high 0.07 (−0:01, 0.15) 0.09 0.52 (0.31, 0.89) 0.02 0.84 (0.62, 1.12) 0.23 1.04 (0.86, 1.25) 0.68
Detect (compared with nondetect)
BMPP 0.07 (0.02, 0.11) 0.004 0.97 (0.64, 1.46) 0.88 0.85 (0.72, 1.00) 0.06 1.10 (0.95, 1.28) 0.20
BEHP −0:03 (−0:08, 0.02) 0.19 1.29 (0.99, 1.67) 0.06 1.11 (0.93, 1.32) 0.24 0.95 (0.81, 1.11) 0.50
DPRP 0.04 (0.00, 0.07) 0.03 0.72 (0.55, 0.94) 0.02 0.88 (0.74, 1.06) 0.18 1.08 (0.93, 1.26) 0.31

Note: Linear or multinomial regression models, fitted using generalized estimating equations with a random effect for cohort, were used to estimate bs or ORs, respectively, and their
corresponding 95% CIs and p-values. Regression models were adjusted for maternal race/ethnicity, maternal age at delivery, maternal education, maternal marital status, maternal pre-
pregnancy BMI, maternal smoking during pregnancy, parity, child’s sex, and sample collection season and year. BBOEP, bis(butoxyethyl) phosphate; BCETP, bis(2-chloroethyl) phos-
phate; BCPP, bis(1-chloro-2-propyl) phosphate; BDCPP, bis(1,3-dichloro-2-propyl) phosphate; BEHP, bis(2-ethylhexyl) phosphate; BMI, body mass index; BMPP, bis(2-
methylphenyl) phosphate; BW-GA, birth weight for gestational age; CI, confidence interval; DBUP/DIBP, composite of dibutyl phosphate and di-isobutyl phosphate; DPHP, diphenyl
phosphate; DPRP, dipropyl phosphate; ECHO, Environmental influences on Child Health Outcomes; LBW, low birth weight; LGA, large for gestational age; OPE, organophosphate
ester; OR, odds ratio; SGA, small for gestational age.
aLBW vs. non-LBW among 6,197 non-preterm births (≥37 wk gestation).
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severe pregnancy conditions. There were two high-risk autism
spectrum disorder cohorts [Early Autism Risk Longitudinal
Investigation (EARLI) and Markers of Autism Risk in Babies-
Learning Early Signs (MARBLES)] and one cohort that enrolled
pregnant people who were cigarette smokers [Vitamin C to
Decrease Effects of Smoking in Pregnancy on Infant Lung
Function (VCSIP)], but these three cohorts accounted for only 7%
of the study population. In addition, the number of pregnancies
contributed by the 16 cohorts varied from 20 to 1,453, and each
cohort provided different proportions of their full study sample to
this analysis (Table S1). Therefore, our study findings may not be
generalizable to all the participating cohorts or to the US birthing
population, which includes individuals with numerous other risk
factors for birth outcomes.

Another limitation is the measurement of concentrations of
OPE biomarkers in a single spot or first morning urine sample col-
lected primarily during mid- to late-pregnancy, which reflects only
recent exposure because of their short half-lives.106 Previous stud-
ies have reported intraclass correlation coefficients of urinary
DPHP, DNBP, BDCPP, and BCETP ranging from 0.2 to 0.7, indi-
cating low to moderate reproducibility over a 4–6 month period in
mid- to late-pregnancy.16,68,94,107 Although OPE exposure likely
stems from the home environment, which is fairly constant over
time, transplacental transfer, as well as seasonal factors, such as
greater air partitioning in warmer months and variations in indoor
time and ventilation frequency, can influence OPE exposure levels
in pregnant people across the pregnancy.15 Therefore, further epi-
demiological studies using repeated measurements of urinary OPE
biomarkers are warranted to reduce exposure misclassification and
to investigate potential periods of heightened susceptibility. It
should be also noted that DPHP is a nonspecific metabolite of sev-
eral OPEs, including TPHP, resorcinol bis(diphenylphosphate),
and EHDPP.108,109 This implies that DPHP does not differentiate
between prenatal exposure to OPEs with varying levels of toxicity.
Last, we conducted neither a mixtures analysis to examine overall
or joint effects of OPE mixtures nor investigations into nonlinear
associations between the three continuous OPE biomarkers and
birth outcomes. Future studies could addresswhether specific com-
binations of OPEs have additive or synergistic effects and explore
potential nonlinear relationships to provide a more comprehensive
understanding of the impact of prenatal OPE exposures on birth
outcomes.

Conclusion
Our study, based on a large, diverse sample of the US population,
found that greater prenatal exposure to several OPEs related to
elevated risks of preterm birth and shorter gestational age, espe-
cially among female newborns. Some OPEs were modestly asso-
ciated with higher BW-GA z-scores, a risk factor for childhood
obesity. Although the magnitudes of the associations are modest,
the number of births that may be impacted by these compounds is
large given the widespread exposures to emerging OPE flame
retardants among US pregnant people.
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